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Abstract: With the development of remote sensing technologies, change detection in heterogeneous
images becomes much more necessary and significant. The main difficulty lies in how to make input
heterogeneous images comparable so that the changes can be detected. In this paper, we propose
an end-to-end heterogeneous change detection method based on the feature space constraint. First,
considering that the input heterogeneous images are in two distinct feature spaces, two encoders
with the same structure are used to extract features, respectively. A decoder is used to obtain the
change map from the extracted features. Then, the Gram matrices, which include the correlations
between features, are calculated to represent different feature spaces, respectively. The squared
Euclidean distance between Gram matrices, termed as feature space loss, is used to constrain the
extracted features. After that, a combined loss function consisting of the binary cross entropy loss and
feature space loss is designed for training the model. Finally, the change detection results between
heterogeneous images can be obtained when the model is trained well. The proposed method can
constrain the features of two heterogeneous images to the same feature space while keeping their
unique features so that the comparability between features can be enhanced and better detection
results can be achieved. Experiments on two heterogeneous image datasets consisting of optical and
SAR images demonstrate the effectiveness and superiority of the proposed method.
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1. Introduction

Change detection (CD) is the process of identifying differences in remote sensing images acquired
on the same location, but at different times [1]. It has been widely applied in many fields, such as
disaster assessment [2,3], environmental monitoring [4,5], urbanization research [6] and so on.

According to the sources of the utilized images, CD can be divided into homogeneous CD and
heterogeneous CD. The images used for homogeneous CD refer to images coming from the sensors
with the same or a similar imaging modality, e.g., synthetic aperture radar (SAR) images (SAR-to-SAR)
or optical images (optical-to-optical). For heterogeneous CD, the images are acquired by different
sensors with different imaging modalities such as SAR and optical images (SAR-to-optical). Different
from homogeneous CD, the pixels in heterogeneous images are in different distinct feature spaces [7],
and the change map (CM) cannot be obtained by simple linear operations or some homogeneous
methods, which is also the main difficulty for heterogeneous CD. Over the past several decades,
much attention has been paid to homogeneous CD [8], and many excellent methods have been
explored [9–13]. With the increase of different types of satellite sensors, however, CD based on
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homogeneous images is far away from the practical demands [8] especially when the homogeneous
images are not available. For example, when an optical image of a given area is provided by available
remote sensing image archive data and only a new SAR image can be acquired (for technical reasons,
lack of time, availability, or atmospheric conditions) in an emergency for the same area [14], we can
only use the heterogeneous images to detect changes. Thus, it is of great significance to develop novel
techniques for CD using heterogeneous images [15]. Currently, the most commonly used images in
remote sensing are optical and SAR images. Optical images are acquired by capturing the reflected light
of the Sun on different objects, and they are easy to obtain and interpret; however, the optical sensors
are easily affected by external conditions, such as weather and sunlight [16]. SAR images measure the
reflectivity of ground objects and are not sensitive to environmental conditions, but they are difficult to
interpret because of the distance-dependent imaging and the impact of multiple signal reflections [17].
A pair of heterogeneous images consisting of optical and SAR images is complementary and contains
much more information than a single SAR image pair or optical image pair. Most heterogeneous CD
research, also including the proposed method in this paper, is based on these two types of images.

Recently, the works dedicated to heterogeneous CD can be roughly divided into two categories:
classification-based methods and domain transfer-based methods. The former methods first perform
pixel- or region-based classification on input heterogeneous images to make them comparable and then
compare the processed images to get the final CM. For instance, the widely used post-classification
comparison (PCC) methods [18,19] first label two images independently in the pixel level, then compare
the labeled images to detect the changes. Besides, Prendes et al. [20] first performed the segmentation
of the two images using a region-based approach, then built a similarity measure between images
to detect changes based on the unchanged areas. To make full use of the temporal correlations
between the input images, Hedhli et al. proposed a cascade strategy, which classifies the current
image based on itself and the previous images [21]. Touati et al. [14] tried to build a robust similarity
feature map based on the gray levels and local statistics difference and optimized a formulated
energy-based model to obtain the final CM. For improvement, Wan et al. [22] used the cooperative
multitemporal segmentation to get a set of processed images at different scales and performed a
hierarchical compound classification process on them to get the final CM. However, the results of these
methods heavily depend on the accuracy of the classification. Furthermore, they are never end-to-end,
which means some parameters need to be constantly adjusted to achieve the best results, such as the
segmentation scale parameter ζscale in [22]. For the domain transfer-based methods, they do not require
much preprocessing and mainly transfer two heterogeneous images to the same feature space so that
some linear operations or homogeneous approaches can be applied. Specifically, one can transfer two
images from their respective feature spaces to the third feature space. For example, Zhao et al. [16]
constructed a deep neural network with a coupled structure and transferred the two images to a
new feature space so that the CM can be obtained by direct comparison. Touati et al. [23] mapped
two heterogeneous images to a common feature space based on the multidimensional scaling (MDS)
representation. Liu et al. [24,25] proposed a bipartite differential neural network (BDNN) to extract the
holistic features from the unchanged regions in two input images, where two learnable change disguise
maps (CDMs) are used to disguise the changed regions in input images. By optimizing the distance
between extracted features, the final CM can be obtained with the learned CDMs. In [26], a novel
framework for CD based on meta-learning was proposed, which used a convolutional neural network
(CNN) to map two images to the same feature space and a graph convolutional network (GCN) to
compare samples in the feature space. Besides, one can also transfer the first image from its original
feature space to the feature space where the second image is. For example, Zhan et al. [8] proposed
a CD method for heterogeneous images based on the logarithmic transformation feature learning
framework, which first transfers the SAR image to the feature space where the optical image is so that
they have similar statistical distribution properties, then uses a stacked denoising auto-encoder (SDAE)
to get the final CM. Niu et al. [27] adopted a conditional generative adversarial network (cGAN) to
translate the optical image into the SAR feature space and directly compared the translated image with
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the approximated SAR image to get the final CM. However, during the transfer process, both of these
methods will lose some unique features in their original feature spaces (e.g., some geometric structural
features of the shape and boundary in optical images will be lost when they are directly transferred
from the optical feature space to the SAR feature space), which may cause some missing detections.

In this paper, an end-to-end heterogeneous CD method based on the feature space constraint is
proposed. Compared with the domain transfer-based methods mentioned above, the proposed method
can constrain the extracted features to the same feature space while keeping the unique features during
the training process. The proposed method first uses Gram matrices, which include the correlations
between features, to represent the feature spaces of two heterogeneous images, respectively. Then, the
squared Euclidean distance between Gram matrices, termed as feature space loss, is calculated to
constrain the features. Similar to the style loss in the style transfer, the feature space loss mainly
focuses on constraining the correlations of the features, but not including the content of the features.
After that, a combined loss function, consisting of feature space loss and binary cross entropy loss,
is designed for training the model. In this way, we can keep as many features of two heterogeneous
images as possible during the training process and enhance the comparability between features so
that we can get better detection results. Furthermore, considering that the input images are in two
distinct feature spaces, we use two encoders with the same structure, but non-shared weights to extract
features separately. When training the model, to solve the problem that the numbers of changed and
unchanged pixels vary greatly in CD datasets [28], the class balancing is used to weight different parts
in the loss function.

The rest of this paper is organized as follows. The background of the proposed method will be
introduced in Section 2, and Section 3 will introduce the proposed method in detail. The experimental
results on two real heterogeneous CD datasets will be analyzed in Section 4. Finally, the conclusion of
this paper will be drawn in Section 5.

2. Background

2.1. Homogeneous Transformation

To make input heterogeneous images comparable, homogeneous transformation is a necessary and
significant step for heterogeneous CD, and it can be performed at different levels of the feature spaces.

In the low-level feature spaces, Liu et al. [7,29] used the pixel transformation based on the
mapping relationship between unchanged pixel pairs to transfer one image from its original feature
space (e.g., gray space) to another feature space (e.g., spectral space) so that the changes between
heterogeneous images can be detected. The O-PCC [19], P-PCC [18], and cGAN-based [27] methods
mentioned above also usethe homogeneous transformation to make input heterogeneous images
comparable in the low-level feature spaces. In the high-level feature spaces, Gong et al. [30] proposed an
iterative coupled dictionary learning (CDL) model to establish a pair of coupled dictionaries, which can
transfer input heterogeneous images to a common high-dimensional feature space. Jiang et al. [31,32]
utilized the deep-level features for homogeneous transformation and built a deep homogeneous
feature fusion (DHFT) model to detect the changes in heterogeneous images.

The low-level features contain more spatial information, but they cannot accurately describe
the semantic content that is abstract at the high level, especially in the regions with massive ground
objects and complex scenes [32]. The high-level features contain more semantic information, but their
resolution is usually lower and cannot help us locate where changes occurred precisely. In our method,
the homogeneous transformation is realized by the proposed feature space constraint. To make full
use of the features at different levels, we perform the proposed feature space constraint for all the
extracted features of different levels in input heterogeneous images.
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2.2. Style Transfer

Style transfer is usually considered as a generalized problem of texture synthesis, which is to
extract and transfer the texture from the source to the target [33]. It is always used to modify the style
of an image while still preserving its content.

As shown in Figure 1, the input for style transfer is a pair of images. The content image ~p is usually
of a nature scene and is responsible for providing content information, while the style image~a is usually
an art image and is responsible for providing style information. With some style transfer algorithms,
it will finally generate an image ~x with the provided content information and style information at
the same time. Among these algorithms, to produce the transferred images, Gatys et al. [34] used a
pre-trained CNN to extract features and optimized the model with the following loss function:

Ltotal (~p,~a,~x) = αLcontent (~p,~x) + βLstyle (~a,~x), (1)

where ~p, ~a, and ~x are the content image, the style image, and the generated image. The content
loss Lcontent (~p,~x) is used to minimize the distance of content representation between ~p and ~x.
The style loss Lstyle (~a,~x) is used to minimize the distance of style representation between ~a and
~x. The hyperparameters α and γ are the weighting factors for content and style loss, respectively.

Content image

Style image

Generated image

S
ty

le
 T

ra
ns

fe
r

Figure 1. An example of style transfer. Style transfer can be viewed as a process of generating an image
~x, which has the content information of a content image ~p and the style information of a style image~a
at the same time.

In style transfer, to obtain the style representation without including the content information,
Gatys et al. [34] used the Gram matrix, which is the correlations between the different filter responses,
to represent the feature space of the style image ~a. It should be noted that the content and style
representations of images are not completely independent, which means the distance of the style or
content representation between source images and target images cannot be minimized separately. Even
so, we can still make a tradeoff between style and content representations and produce the desired
images by adjusting the weighting factors α and γ.

Inspired by the main idea of style transfer, in this paper, we design a loss function to constrain
the correlations between different feature spaces in the form of Gram matrices. Different levels of
feature spaces for input paired heterogeneous images are represented by Gram matrices, and a loss
function is designed to constrain the correlations between different feature spaces, which is similar
to the style loss in style transfer. By minimizing the Gram matrix-based loss function, the features of
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input heterogeneous images can be constrained to the feature space with the same style (correlations),
while the content information is kept, which means the unique features mentioned above.

3. Proposed Method

In this section, how the features are encoded (extracted) and decoded from two heterogeneous
images will be first introduced. After that, how the feature space constraint is constructed will be
described in three parts: how to represent a feature space while keeping the unique features, how to
design the loss function for the feature space constraint, and how to build the final combined loss
function for training. Finally, we will summarize the proposed method and give the overall schematic
as shown in Figure 2.

Encoder-1

Encoder-2

Encoder-3

Encoder-4

Encoder-1

Encoder-2

Encoder-3

Encoder-4

Decoder-3

Decoder-4

Decoder-5

Decoder-2

Decoder-1

SAR (X) Optical (Y)

𝐹 ൌ 𝐹
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 |1  𝑙  4

𝓛𝒇𝒆𝒂𝒕𝒖𝒓𝒆 ൌ 𝓛𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝑭𝑿, 𝑭𝒀, 𝑭𝒁

𝑶 ሺoutputሻ𝑻 ሺgroundെtruthሻ
 

𝓛𝐛𝐜𝐞 ൌ 𝓛𝐛𝐜𝐞ሺ𝑶, 𝑻ሻ

 
𝓛 ൌ 𝓛𝒃𝒄𝒆  𝓛𝒇𝒆𝒂𝒕𝒖𝒓𝒆

argmax

max pool 2×2

up-conv 2×2

copy and transfer

Figure 2. Schematic of the proposed feature space constraint-based change detection method for
heterogeneous images. The red lines represent down-sampling, while the blue lines represent
up-sampling. The black lines only indicate the direction of information transfer. L f eature(FX , FY , FZ)

is the feature space loss among features FX , FY , and FZ, and it is used to constrain the features to the
same feature space. Lbce(O, T) is the binary cross entropy between the output and ground-truth, and it
is used to train the model to detect the changed pixels in input image pairs. L = Lbce + L f eature means
L f eature(FX , FY , FZ) and Lbce(O, T) are jointly used for training the model.

For homogeneous CD, Daudt et al. [11] proposed a fully convolutional Siamese network with
an autoencoder architecture, which was similar to U-Net [35]. Because the feature spaces of two
homogeneous images are very similar, the fully convolutional Siamese network used two encoders
with the same structure and shared weights to extract features from the input images X and Y.
However, different from homogeneous CD, the images X and Y for heterogeneous CD are in two
distinct feature spaces. Therefore, in the encoding part, as shown in Figure 2, we use two encoders
with the same structure, but non-shared weights (NSWs) to extract features FX =

{
Fl

X |1 ≤ l ≤ L
}

and

FY =
{

Fl
Y|1 ≤ l ≤ L

}
from images X and Y, where Fl

X, Fl
Y ∈ RNl×Ml , Nl is the number of features at

the lth level, and Ml is the product of the height and width of features at the lth level. It should be
noted that, to simplify the calculation, all the extracted features were vectorized, which means Fl

X
(as well as the others) is a matrix composed of the flattened features at the lth level. For the same
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reason, in the decoding part, the absolute value of the difference between features FX and FY cannot
be concatenated directly with the features FZ =

{
Fl

Z|1 ≤ l ≤ L− 1
}

, which are generated during the

decoding process. The l in Fl
Z does not mean that Fl

Z is generated by the Decoder-l, but rather that
Fl

Z has the same scale as Fl
X and Fl

Y at the lth level. For example, at the fourth level, F4
X and F4

Y are
generated by Encoder-4, and F4

Z is obtained by up-sampling the output of Decoder-5. As shown in
Figure 2, the L mentioned above is 5, which means the number of feature scales is 5 in the encoders
and 4 in the decoders. This is because we do not have Decoder-6 and therefore cannot get F5

Z at the
fifth level.

The details of the encoders and decoders in the proposed network are shown in Table 1. It should
be noted that, in practice, Encoder-5 is not adopted, and the output of Encoder-4 is down-sampled
twice, then directly passed to Decoder-5. This is because the datasets used in the experiments are
relatively small and simple, and the network must be simplified to avoid overfitting during the training
process. As shown in Table 1, the output size of 112 × 112 pixels means that the height and width
of the output features in Encoder-1 and Decoder-1 are both 112 pixels. The kernel of 3 × 3 × 1 × 16
means that the size of the kernel is 3 × 3 pixels and the number of input channels and output channels
is 1 and 16.

Table 1. Details of the encoders and decoders in the proposed network.

Block Output Size Kernel

En
co

de
r

Encoder-1 112 × 112
3 × 3 × 1 × 16

3 × 3 × 16 × 16

Encoder-2 56 × 56
3 × 3 × 16 × 32
3 × 3 × 32 × 32

Encoder-3 28 × 28
3 × 3 × 32 × 64
3 × 3 × 64 × 64

Encoder-4 24 × 24
3 × 3 × 64 × 128
3 × 3 × 128 × 128

D
ec

od
er

Decoder-1 112 × 112
3 × 3 × 32 × 16
3 × 3 × 16 × 2

Decoder-2 6 × 56
3 × 3 × 64 × 32
3 × 3 × 32 × 16

Decoder-3 28 × 28
3 × 3 × 128 × 64
3 × 3 × 64 × 32

Decoder-4 14 × 14
3 × 3 × 256 × 128
3 × 3 × 128 × 64

Decoder-5 7 × 7 3 × 3 × 128 × 128

To detect the changes based on the extracted features FX, FY, and FZ, we must constrain them
to the same feature space, so that they are comparable. However, for two heterogeneous images,
they both have their own unique features in their respective feature spaces, which are helpful for
the model to detect the changes, and these unique features may be lost if we directly constrain them
to the same feature space. For example, the geometric structural features, such as the shape and
boundary, in optical images can help locate where the change happened and make the boundary
clearer. If we directly transfer the optical images from their original feature space to that of SAR images,
these features will be lost during the transfer process. To this end, inspired by the style loss in style
transfer, we use the Gram matrices, which calculate the correlations between features, to represent
different feature spaces and design a combined loss function based on the Gram matrices. After that,
we can constrain the features to the same feature space by minimizing the squared Euclidean distance
between Gram matrices in the combined loss function while keeping their own content information.
During the training process, the statistical characteristics of features will not be changed, and only the
correlations between features are changed, which means as many unique features mentioned above
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will be kept as possible. In this way, some missing detections will not be caused, and therefore, the CD
results can be improved theoretically.

3.1. Feature Space Representation

Before constraining the extracted features FX, FY, and FZ to the same feature space, we must
characterize their respective feature spaces in the same way. In the proposed method, the Gram matrix,
which was introduced in [36] and includes the correlations between features, is applied to represent
the feature space. The Gram matrix for features FX at the lth level is Gl

X ∈ RNl×Nl :

Gl
X = [Gl

X,ij] = Fl
X(Fl

X)
T , (2)

where Gl
X,ij is the correlation between the ith feature and the jth feature:

Gl
X,ij = ∑

k
Fl

X,ikFl
X,jk. (3)

Similarly, the representations for the feature spaces of FY and FZ at the lth level are Gl
Y and Gl

Z:

Gl
Y = Fl

Y(Fl
Y)

T , (4)

Gl
Z = Fl

Z(Fl
Z)

T . (5)

We can see that the Gram matrix does not include the statistical properties of features such as the
mean and variance, but only represents the correlations between features (e.g., the correlation between
Features A and B can be regarded as the probability that when Feature A is extracted, Feature B is also
extracted). Therefore, how the encoders extract features from two heterogeneous images will not be
changed, which means the unique features in their original feature space will not be changed. During
the training process, only the correlations between features in FX , FY, and FZ are constrained, which is
very similar to the style representations in style transfer [34].

3.2. Feature Space Loss

Inspired by the style loss proposed in [34], we use the squared Euclidean distance between Gram
matrices to judge whether two feature spaces of heterogeneous images are constrained to the same
feature space. Then, the distance between feature spaces of FX and FY can be calculated as follows:

E(FX , FY) =
L

∑
l=1

El(Fl
X , Fl

Y)

=
L

∑
l=1

dist
(

Gl
X , Gl

Y

)
=

L

∑
l=1

1
4N2

l M2
l

∑
i,j

(
Gl

X,ij − Gl
Y,ij

)2
.

(6)

Similarly, we can get E(FX , FZ) and E(FY, FZ). It should be noted that in the Lth layer, we can only
get EL(FL

X , FL
Y ):

E(FX , FZ) =
L−1

∑
l=1

1
4N2

l M2
l

∑
i,j

(
Gl

X,ij − Gl
Z,ij

)2
, (7)

E(FY, FZ) =
L−1

∑
l=1

1
4N2

l M2
l

∑
i,j

(
Gl

Y,ij − Gl
Z,ij

)2
. (8)
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To constrain the features to the same feature space while training the model, we add an
optimization term, which is related to the feature space distance, into the loss function. The added
term is called feature space loss (FSL), and its definition is as follows:

L f eature(FX , FY, FZ) =
1
3
(E(FX , FY) + E(FX , FZ) + E(FY, FZ)). (9)

If there is no change between input heterogeneous images, the correlations between features FX ,
FY, and FZ should be the same, which means Gram matrices GX , GY, and GZ should also be the same,
and the FSL should be zero theoretically. However, if there are some changes between input images,
the FSL should not be 0, then L f eature should not be used to train the model theoretically. It should
be noted that some changes happened, but were not labeled in the ground-truth, and some noise in
the images can also affect the extracted features, so that the FSL may not be 0. Nevertheless, as the
training goes on, the features corresponding to those useless changes will be ignored, and the noise
will be suppressed by the encoders, which can be viewed as a few filters. If the FSL is used to train the
model regardless of whether changes happened or not, the model will tend not to detect changes at
all, which is not conducive to CD. Because of this, the FSL must be combined with some other loss
functions for CD to build the final loss function for training the CD models.

3.3. Combined Loss Function

The most commonly used loss function in CD is BCELoss, and the BCELoss between output O
and target (ground-truth) T is:

Lbce(O, T) = − [T · log O + (1− T) · log(1−O)] . (10)

To solve the imbalance between changed and unchanged pixels in CD datasets, we use the class
balancing to weight the BCELoss. The weighted BCELoss is:

Lbce(O, T) = −
[
wp · T · log O + (1− T) · log(1−O)

]
, (11)

wp = Nc/Nu, (12)

where Nc is the number of changed pixels and Nu is the number of unchanged pixels. By weighting
the BCELoss, we can expand the positive samples in the training set by wp times, which is consistent
with the number of negative samples, when the number of positive samples is much less than that of
negative ones.

Theoretically, when there is no change (T = 0) in input images, the FSL should be 0, and in
contrast (T 6= 0), FSL should be greater than 0. Therefore, we can define the final combined loss:

L =

{
Lbce + αL f eature , T = 0

Lbce , T 6= 0
(13)

where α is the weighting factor for FSL, and it is also used to ensure that the orders of the magnitude
of BCELoss and FSL are consistent.

When training the model, mini-batch gradient descent is often used to update the weights of
different modules in the model. However, it is very difficult to find a situation where there is no change
at all (T = 0) in the input batch when mini-batch gradient descent is used during the training process.
To this end, a threshold γ is introduced to replace the original T, and the combined loss function is
adjusted as follows:

L =

{
Lbce + αL f eature , p ≤ γ

Lbce , p > γ
(14)
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where p is the proportion of changed pixels in the input batch. The threshold γ is determined in such
a way that the frequency proportion of training with Lbce + αL f eature in an epoch is basically the same
as the proportion of unchanged images in the training set.

3.4. Detailed Change Detection Scheme

The schematic of the proposed method is shown in Figure 2. First, two encoders with the same
structure, but non-shared weights, are used to extract features FX and FY from input heterogeneous
images X and Y. Next, the absolute value of the difference between the extracted features FX and
FY is fed to the decoder to output a two-channel probability map, during which the features FZ are
generated in the decoding part. For example, Decoder-3 will concatenate the absolute value of the
difference between F3

X and F3
Y with the up-sampled output of Decoder-4 as the input and pass the

up-sampled output to Decoder-2. Then, a combined loss function consisting of BCELoss and FSL
is designed for training the model. BCELoss is the traditional binary cross entropy loss function
between the output of the decoder and the one-hot encoded ground-truth. FSL is the feature space
loss between the Gram matrices of features FX, FY, and FZ. BCELoss will be used throughout the
training model, and the use of FSL will be determined by the proportion of changed pixels in the input
image pairs. After the model is trained well, the final CM can be obtained by the argmax operation
on the channel dimension of the two-channel probability map. Specifically, as shown in Figure 3,
the first channel (Channel-0) represents the probabilities that pixels have not changed, while the second
channel (Channel-1) represents the probabilities that pixels have changed. In the final CM, 0 represents
an unchanged pixel and 1 a changed pixel. Therefore, for pixels in the two channel probability map,
we can choose the channel dimension, where the maximum probability is, as the final change detection
result. That is the argmax operation on the channel dimension. For example, if the probabilities of some
pixels are [0.2, 0.8, 0.4] in Channel-0 and [0.5, 0.2, 0.7] in Channel-1, then after the argmax operation, we
can get [1, 0, 1] in the final CM.

Figure 3. The argmax operation on the channel dimension of the two channel probability map.

4. Experiments

4.1. Dataset Description

The source images of the datasets that we perform experiments on are from [22]. Considering the
distribution of objects and the size of images, as shown in Figure 4, we just select the first and fourth
image pair of the four image pairs to make our datasets. It should be noted that the coregistration is a
significant step before we detect the changes between images. The first and fourth image pairs are
first loosely registered with geographic coordinates and then finely registered by the software ENVI
(the environment for visualizing images) with the control points manually selected [22]. To construct
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the test set, we crop the top-left corner of each image pair to 560× 560 pixels, and the constructed test
set (SAR images, optical images, and ground-truth) is shown in Figure 5a–c. The rest of the two images
are divided into the training set by a sliding window whose step size is 56 pixels, and the height and
width are both 112 pixels, respectively. The details of the two datasets are shown in Table 2.

(a) (b) (c)

Figure 4. Source images of Dataset-1 and Dataset-4. First row: Dataset-1, second row: Dataset-4. For
Dataset-1 in the first row, the panchromatic optical image was captured by QuickBird on 28 May 2006,
and the SAR image was acquired by GaoFen-3 with HH polarization, spotlight imaging mode, on 19
October 2016 in Heibei, China. For Dataset-4 in the second row, the images were captured in Jiangsu,
China, and they were acquired by GaoFen-2 on 1 January 2015 and GaoFen-3 with DH polarization,
UFSimaging mode, on 23 July 2018, separately. (a) SAR images. (b) Optical images. (c) Ground-truth.

Table 2. Details of the datasets in the experiments.

Dataset
Training Set Test Set

Size Numbers Unchanged Size

Dataset-1 112 × 112 320 161 (50.3%) 560 × 560
Dataset-4 112 × 112 376 266 (70.7%) 560 × 560
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. Results of the different methods. The first row is Dataset-1, and the second row is Dataset-4.
(a) SAR images. (b) Optical images. (c) Ground-truth. (d–i) are the change maps produced by: (d)
P-PCC; (e) O-PCC; (f) CMS-HCC (L1); (g) CMS-HCC (L2); (h) CMS-HCC (L3); (i) proposed method.

4.1.1. Dataset-1

The first image pair (1200× 1271 pixels in size) consists of two images that describe the urban areas
in Hebei, China. The panchromatic optical image was captured by QuickBird with a 0.6 m resolution,
and it was collected on the Google Earth platform. The SAR image was acquired by GaoFen-3 with HH
polarization, spotlight (SL) imaging mode, and 1 m resolution. They were registered and resampled
to 5 m resolution. The ground-truth is manually defined by integrating expert knowledge with the
high resolution historical images in Google Earth (changes are presented in white) [22]. As for the
sensors, Google Earth is a platform for Earth science data access and analysis. It integrates the satellite
images, aerial photography images, digital elevation model (DEM), and geographic information
systems (GISs) onto a 3D globe and then creates giant, multi-terabyte, and high resolution images of
the entire Earth [37]. The GaoFen-3 satellite is a C-band multi-polarized SAR satellite in the China
High Resolution Earth Observation System [38]. With the mentioned sliding window, we can get 320
training image pairs with a size of 112× 112 pixels and 1 test image pair with a size of 560× 560 pixels.
The number of image pairs with no changes entirely is 161, which accounts for 50.3% in the training
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set. This dataset was created from the first image pair in [22], and to be consistent with the source
image pair, we call it Dataset-1.

4.1.2. Dataset-4

The fourth image pair describes the areas near Jiangsu, China. The optical image was a
panchromatic image acquired by GaoFen-1 with 2 m resolution. The SAR image was acquired by
GaoFen-3 with DH polarization, UFSimaging mode, and 3 m resolution. They were also registered
and resampled to 2 m resolution. As for the sensors, GaoFen-1 is a Chinese civil optical remote
sensing satellite, which provides panchromatic and multispectral data. The image of GaoFen-1 used
in the fourth image pair is the Level-1C product that has been processed by radiation correction [22].
The characteristics of GaoFen-3 were introduced above. Similarly, we can get 376 training samples
with a size of 112× 112 pixels and 1 test sample with a size of 560× 560 pixels. It should be noted
that, as shown in Table 2, 266 samples (70.7%) in the training set are completely unchanged. This is the
common problem mentioned above on CD datasets, that is the imbalance between positive (changed)
and negative (unchanged) samples. This dataset was created from the fourth image pair in [22], and to
be consistent with the source image pair, we call it Dataset-4.

4.2. Implementation Details

4.2.1. Data Augmentation

As shown in Table 2, the number of images in two training sets is relatively small for training
the model, and the size of each image is only 112× 112 pixels, which makes it easier for the model
to overfit the datasets. Therefore, data augmentation is necessary for each input image pair in the
training sets.

Before each input training pair is input into the network, as shown in Figure 6, it will be first
randomly flipped horizontally and vertically, then the flipped image pair will be randomly rotated
by a random angle from 0 degrees to 360 degrees. The probability of random horizontal (vertical)
flipping is set to 0.5. This is to ensure that the number of samples that have been flipped horizontally
(vertically) is basically the same as the number of samples that have not been flipped horizontally
(vertically). The probability of random rotation is set to 0.8, which is to ensure that the ratio for the
number of unrotated images, rotated images from 0 degrees to 90 degrees, 90 degrees to 180 degrees,
180 degrees to 270 degrees, and 270 degrees to 360 degrees is 1:1:1:1:1. Theoretically, the operation of
flipping can expand the dataset to four times its original size, and the operation of rotating can further
help augment the training image pairs.

Input 

Flip vertically

Flip horizontally

Rotate randomly

Generate p
Yes

Yes

Output
Yes

No

NoNo

p>0.5 p>0.5

p>0.2

Generate p

Generate p

Figure 6. The augmentation process for each input training pair, where the p is randomly generated
between 0 and 1.
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4.2.2. Parameter Setting

The proposed method is implemented using the PyTorch framework, and stochastic gradient
descent (SGD) with momentum is applied for optimization. During the training process, the mini-batch
size, the base learning rate, the momentum, and the weight decay are set to 32, 0.001, 0.9, and 0.005,
respectively. To reduce the training time, the weights of each convolutional layer are initialized with the
Kaiming algorithm [39]. To speed up the convergence of the model, the cosine annealing schedule is
used to dynamically adjust the learning rate. Besides, according to the analysis above in our approach
(see Section 3 for details), for Dataset-1, wp, α, and γ are set to 12.0, 1.0× 107, and 1/40, respectively.
For Dataset-4, they are set to 8.0, 5.0× 107, and 1/35, respectively.

4.2.3. Evaluation Criteria

To assess the CD results more quantitatively and comprehensively, with respect to the changed
pixels, we use overall accuracy (OA), precision (Pr), recall (Re), F1 scores (F1), and the Kappa coefficient
(Kappa) [40] as the evaluation criteria. They can be calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
, (15)

Pr =
TP

TP + FP
, (16)

Re =
TP

TP + FN
, (17)

F1 =
2Pr · Re
Pr + Re

, (18)

Kappa =
po − pe

1− pe
, (19)

pe =
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

(TP + TN + FP + FN)2 , (20)

where TP is the number of pixels detected by the model and included in the ground-truth images
and FP is the number of pixels detected by the model, but not included in the ground-truth images. TN
is the number of pixels not detected by the model and not included in the ground-truth images, and FN
is the number of pixels not detected by the model, but included in the ground-truth images [41].
po represents the percentage of the correct classification, which is equivalent to OA. pe denotes
the proportion of expected agreement between the ground-truth and predictions with given class
distributions [42].

Pr and Re refer to the positive predictive value and true positive rate, respectively. F1 is the
harmonic mean of Pr and Re. OA shows the classification accuracy of the model, and Kappa is used to
evaluate the extent to which the classification results outperform random classification results.

4.3. Results and Evaluation

4.3.1. Experiments’ Design

First, to evaluate the performance of the proposed method, we compare it with several excellent
methods on Dataset-1 and Dataset-4: (1) the representation of classic methods: pixel-based PCC
(P-PCC) [18] and object-based PCC (O-PCC) [19]; (2) the state-of-the-art (SOTA) methods CMS-HCC
(cooperative multitemporal segmentation and hierarchical compound classification) on these two
datasets: CMS-HCC (L1), CMS-HCC (L2), and CMS-HCC (L3) [22], where L1, L2, and L3 are three
different segmentation scales.

Second, to verify the validity of the NSW in encoders and the FSL in the combined loss function,
we perform some experiments on Dataset-1 and Dataset-4 by training the model with or without the
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NSW or FSL. Furthermore, to investigate why the FSL can improve the CD results, we visualize the
curves of the FSL and BCELoss when training the model only with the BCELoss, which aims to find
the deeper optimization goal of the FSL.

Finally, to investigate the effect of hyperparameters α, γ, and wp on the CD results, some
experiments are performed with different values of α, γ, and wp on Dataset-4. Considering the
randomness of the experiments and in order to make the results more convincing, each experiment
is repeated ten times with different random seeds, and the mean of each criterion is calculated
for evaluation.

4.3.2. Comparison with Other Methods

Figure 5 shows the visualized results of all testing methods, and the corresponding quantitative
evaluation is presented in Table 3. The best values of each metric on Dataset-1 and Dataset-4 are marked
in bold. It should be mentioned that we directly use the results in [22] and crop the top-left with the size
of 560× 560 pixels to make a comparison. Although the proposed method is end-to-end, which means
it does not need some preprocessing such as segmentation and classification, it can still outperform the
other mentioned methods in terms of OA, Kappa, Pr, and F1 on Dataset-1 and Dataset-4.

Table 3. Results of different methods on Dataset-1 and Dataset-4, in percent.

Dataset Method OA Kappa Pr Re F1

Dataset-1

P-PCC 61.7 14.1 16.0 79.2 26.6
O-PCC 78.5 34.4 28.1 93.3 43.2

CMS-HCC (L1) 94.8 68.4 68.7 73.9 71.2
CMS-HCC (L2) 95.1 71.0 69.2 78.9 73.7
CMS-HCC (L3) 93.9 66.4 61.2 81.1 67.8

Proposed 95.7 74.3 73.5 80.2 76.6

Dataset-4

P-PCC 69.3 20.1 20.0 77.2 31.8
O-PCC 79.3 34.9 29.3 87.1 43.9

CMS-HCC (L1) 93.9 69.2 62.0 87.3 72.6
CMS-HCC (L2) 93.1 67.9 58.1 93.2 71.6
CMS-HCC (L3) 92.1 64.9 54.2 94.8 69.0

Proposed 95.2 71.0 75.5 72.1 73.6

In terms of OA scores, the proposed method can reach 95.7% on Dataset-1 and 95.2% on Dataset-4,
which is higher than 95.1% for CMS-HCC (L2) on Dataset-1 and 93.9% for CMS-HCC (L1) on Dataset-4.
Although the OA scores of the CD results for the proposed method and CMS-HCC (L2) on Dataset-1
are very similar, the result of the proposed method is 3.3% higher in Kappa than that of CMS-HCC (L2),
which means the proposed method can get better performance when the CD datasets have imbalanced
changed and unchanged pixels. Besides, for the F1 scores, the results of the proposed method are
nearly 3% and 1% better than other methods on Dataset-1 and on Dataset-4, respectively. Although
the O-PCC on Dataset-1 and the CMS-HCC (L3) on Dataset-4 can get the best Re scores (93.3% and
94.8%), they both have many FP pixels, as shown in Figure 5e,h and thus perform very poorly on the
Pr scores, which also reduces the F1 scores. According to the results in Table 3, we can see that the
CMS-HCC focuses on improving the Pr scores while keeping better Re scores. When compared with
the ground-truth in Figure 5c, the CD results of CMS-HCC, as shown in Figure 5f–h, have more TN
and FP pixels, which make it able to get better Re scores, but poor Pr scores. Even so, when the Re
scores of the proposed method and the CMS-HCC both reach about 80.0% on Dataset-1, the Pr scores
of the proposed method can reach 73.5%, while the CMS-HCC can only reach 69.2%. This further
demonstrates the superiority of the proposed method. However, compared with the CD results of
CMS-HCC, as shown in Figure 5f–h, the boundary of CD results by the proposed method, as shown in
Figure 5i, is blurry and discontinuous. This is because the proposed method has some down-sampling
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and up-sampling modules, which will cause some spatial information to be lost during the feature
extraction process. This problem may be solved by some boundary enhancement modules in semantic
segmentation [43] and post-processing operations [44].

4.3.3. Experiments on Different Modules of the Proposed Method

Table 4 shows the results of training the model with and without the NSW or the FSL on Dataset-1
and Dataset-4. The best values of each metric on Dataset-1 and Dataset-4 are marked in bold. The
NSW means the non-shared weights in encoders, and when it is used, the encoders for input paired
heterogeneous images will be trained separately. The FSL is the feature space loss in the combined loss
function, and whether it is used determines that the feature space constraint is used or not during the
training process.

Table 4. Results of the NSW and the FSL on Dataset-1 and Dataset-4, in percent. NSW: whether to
use non-shared weights in encoders. FSL: whether to add the feature space loss in the combined
loss function.

Dataset NSW FSL OA Kappa Pr Re F1

Dataset-1
84.7 40.1 34.0 78.8 47.5√
95.4 72.0 72.1 77.3 74.5√ √
95.7 74.3 73.5 80.2 76.6

Dataset-4
89.8 47.7 46.5 62.2 53.2√
94.7 69.2 71.1 73.4 72.1√ √
95.2 71.0 75.5 72.1 73.6

In the proposed method, if we use the encoders with shared weights, but not NSW to extract
features from two heterogeneous images, the CD results will be very poor. When the NSW is adopted
in encoders, as shown in Table 4, all the criteria of the model are greatly improved. Specifically,
the OA scores increase from 84.7 to 95.4%, and the Kappa scores increase from 40.1 to 72.0%. The Pr
scores increase from 34.0 to 72.1%, and the F1 scores increase from 47.5 to 74.5%. However, the Re
scores decrease slightly from 78.8 to 77.3%. This is because the model without the NSW cannot
extract compared features from two different feature spaces, and many pixels are regarded as changed;
therefore, the number of FN pixels decreases, and the Re scores increase.

Besides, as shown in Table 4, the CD results can be further improved when the FSL is adopted
in the combined loss function. Specifically, on Dataset-1, the Kappa and Re scores are improved by
2%. The F1 and Pr scores are also improved by 1 to 2%. On Dataset-4, the Re scores decrease slightly,
while the Pr scores are improved by 4%, which makes the F1 scores increase from 72.1 to 73.6%. In
terms of the Kappa and OA scores, the detection results are also improved by 0.8% and 0.5%. Based
on the performance of the NSW in encoders and the proposed FSL in the combined loss function,
were are convinced that they are both effective for the model and can improve the final CD results.
Finally, after visualizing the detection results with error bars, in terms of the standard deviations,
on Dataset-1, as shown in Figure 7, we can see that the proposed FSL can also improve the stability
of the model, especially when we use the OA, F1, and Kappa scores to assess the model. To sum up,
the NSW in encoders makes it possible to detect changes in heterogeneous images with the designed
model, and the proposed FSL can further improve the CD results and make the model more stable.



Remote Sens. 2020, 12, 3057 16 of 23

Figure 7. Results with error bars of training the model with and without the proposed FSL. The numbers
above the bars are the standard deviation of ten repeated experiments.

Figure 8 shows the smoothed curves of BCELoss and FSL when training the model on Dataset-4
only with the BCELoss. As shown in Figure 8, when the optimization goal is to minimize the BCELoss,
the BCELoss certainty keeps decreasing as the training process goes on. However, it should be noted
that the FSL also continues to decrease during the training process even if the feature space constraint
is not added to the optimization goal. According to the results in Table 4, we can see that the model
still has the ability of mapping two heterogeneous images to the same feature space so that the changes
between them can be detected when the model is trained well only with the BCELoss. Thinking about
the results in Table 4 and Figure 8, we can conclude that the feature space constraint is implicitly
included in the optimization goals even if the model is trained only with the BCELoss. This means
that the underlying optimization goal of BCELoss and FSL is very similar. When the FSL is added
into the combined loss function, as shown in Equation (14), the implicit constraint becomes explicit.
This will further reduce the distance between two feature spaces and exploit the mapping capability of
the convolutional neural network, which can therefore improve the final CD results.
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Figure 8. The curves of the BCELoss and the FSL when training the model only with the BCELoss. (a)
Binary cross entropy loss (BCELoss). (b) Feature space loss (FSL).

4.3.4. Experiments on Different Hyperparameters of the Proposed Method

In the designed loss function, as shown in Equation (14), the hyperparameter γ is the value of the
threshold. It is used to determine whether to use the combined loss function according to the input
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images. The constant one and hyperparameter α are the weighting factors for BCELoss and FSL in the
combined loss function.

Tables 5 and 6 show the CD results on Dataset-4 from training with different values of γ and α.
According to Equation (14), the greater the value of γ is, the more likely the combined loss function
will be used in the whole training process. Similarly, the greater the value of α is, the stricter the
feature space constraint between extracted features will become when the combined loss function is
used. In other words, the hyperparameters α and γ jointly determine the proportion of the FSL and
the BCELoss during the training process. After visualizing the Pr and Re scores of the CD results,
as shown in Figures 9 and 10, we can see that the Re scores keep increasing, while the Pr scores keep
decreasing when the proportion of FSL becomes higher. For example, when the value of γ increases
from 1/55 to 1/15, the Re scores decrease from 75.9 to 66.5%, while the Pr scoress increase from 71.3 to
79.1%. As introduced in Section 3, the FSL is designed to constrain the features to the same feature
space. When the proportion of FSL in the combined loss function becomes higher, it will make the
model tend not to detect the changes. If so, the number of FN pixels will decrease while the number
of TP pixels will increase. Then, the Re scores, as shown in Equation (21), will decrease, while the
corresponding Pr scores will increase. It should be noted that when the value of α increases from
zero to 1.0× 107, almost all the metrics of CD results are improved, but the changes of Re and Pr are
irregular. This may be due to the use of the mini-batch gradient descent mentioned above.

Re =
TP

TP + FN
=

1
1 + FN/TP

. (21)

Table 5. CD results of training with different values of γ, in percent.

γ OA Kappa Pr Re F1

1/55 94.9 70.5 71.3 75.9 73.3
1/45 94.8 69.8 71.6 74.1 72.7
1/35 95.2 71.0 75.5 72.1 73.6
1/25 95.1 69.8 77.9 70.3 72.7
1/15 95.2 69.4 79.1 66.5 71.9

Figure 9. Pr and Re scores of the CD results with different values of γ. The numbers above the bars are
the average scores in ten repeated experiments.
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Figure 10. Pr and Re scores of the CD results with different values of α. The numbers above the bars
are the average scores in ten repeated experiments.

Table 6. CD results of training with different values of α, in percent.

α OA Kappa Pr Re F1

0 94.7 69.2 71.1 73.4 72.1
1.0× 107 94.7 70.2 69.1 76.9 72.8
5.0× 107 95.2 71.0 69.1 72.1 75.5
1.0× 108 95.1 70.1 75.4 70.4 75.4

To achieve the better performance of the model when training with the designed loss function,
we must make a tradeoff between the FSL and the BCELoss, which is similar to the content loss and
style loss in style transfer.

In addition to the hyperparameters α and γ, we also perform some experiments on the parameter
wp. As shown in Equation (11), wp is the weighting factor in the BCELoss and used to solve the
imbalance between changed and unchanged pixels on CD datasets. The CD results of training with
different values of wp are shown in Table 7, and the visualized Pr and Re scores of the CD results are
shown in Figure 11. As the value of wp increases, the Re scores keep increasing, while the Pr scores
keep decreasing. Specifically, on Dataset-4, when the value of wp increases from 4.0 to 12.0, the Re
scores increase from 67.8 to 77.2%, while the Pr scores decrease from 75.7 to 69.7%. This is because
the model will be trained to be more sensitive to the changed pixels when the parameter wp becomes
larger. As shown in Equation (11), when the weight of T log O is increased, the number of TP pixels
will increase, while the number of FN pixels will decrease. As shown in Equation (21), the Re scores
will be improved, which may lead to a decrease in the Pr scores. To sum up, the model can get better
CD results when the balance between the Pr and Re is achieved, which can be made by adjusting the
parameter wp as shown in Equation (12).
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Figure 11. Pr and Re scores of the CD results with different values of wp. The numbers above the bars
are the average scores in ten repeated experiments.

Table 7. CD results of training with different values of wp, in percent.

wp OA Kappa Pr Re F1

4.0 95.0 68.7 75.7 67.8 71.4
6.0 95.1 70.3 74.3 72.1 73.0
8.0 95.2 71.0 75.5 72.1 73.6
10.0 95.0 70.4 73.3 73.2 73.1
12.0 94.7 70.3 69.7 77.2 73.2

5. Discussion

As mentioned above, the main difficulty for heterogeneous CD lies in how to compare the
extracted features in input heterogeneous images. First of all, before comparing the features, we must
extract them from heterogeneous images. However, different from homogeneous CD, the images for
heterogeneous CD are in different feature spaces. Therefore, similar to the symmetric structure in
BDNN [25], two encoders with the same structure, but NSWs, are used to extract the features in the
proposed method. When the model is trained well, two encoders can extract useful features from
input heterogeneous images for CD, separately. As shown in Table 4, we can find that when the NSW
is applied in the encoders, the CD results can be highly improved.

Secondly, as described in the Introduction, for the domain transfer-based methods such as
cGAN [27] and SCCN [16], some unique features may be lost during the transfer process, which
may cause some missing detections. To this end, after the features are extracted, the proposed
method uses the Gram matrices, which include the correlations between features, to represent different
feature spaces. The features will be constrained to the same feature space by minimizing the squared
Euclidean distance between Gram matrices, termed as the FSL. Different from some existing methods
of heterogeneous CD [14,29,45], we construct the final loss function by combining the traditional
BCELoss and the designed FSL. In this way, we can constrain the correlations between features of
different feature spaces to the same feature space, which is similar to the style representations in style
transfer. Meanwhile, as many of the unique features of input heterogeneous images will be kept as
possible during the training process, which is similar to the content representation in style transfer.
As shown in Table 4, when the FSL is used together with the BCELoss for optimizing the model,



Remote Sens. 2020, 12, 3057 20 of 23

the final CD results can be further improved. In addition, as shown in Figure 7, we can find that the
stability of the model can also be improved when the FSL is used in the optimization goal.

Thirdly, there are three hyperparameters, α, γ, and wp, in the proposed method. The weighting
factor wp is used in the BCELoss to deal with the imbalance between changed pixels and unchanged
pixels in CD datasets. The hyperparameters α and γ in the combined loss function are used to
determine the proportions of the BCELoss and the FSL. According to the experimental analysis on
these hyperparameters, we can find that the training process, in fact, can be viewed as a game between
the FSL and the BCELoss, which is similar to the style loss and content loss in style transfer [34].
When the balance between the FSL and the BCELoss is achieved, the best CD results can be obtained.
According to the results of the comparison experiments in Table 3, we can find that our proposed
method is superior to other compared methods in terms of OA, Kappa, Pr, and F1 scores. As shown in
Figure 5d–h, although the compared methods can get better Re scores, there are so many FP pixels in
their CD results that they perform very poorly on the OA, Kappa, and Pr scores, which also reducing
the F1 scores.

Finally, as shown in Figure 2, there are some down-sampling and up-sampling modules in the
network, which may make some spatial information lost during the feature extraction process. This lost
spatial information will make the boundary of objects in the final CM become blurry and discontinuous,
as shown in Figure 5i. This problem may be solved by some boundary enhancement modules in
semantic segmentation [43] and post-processing operations [44].

6. Conclusions

In this paper, based on the feature space constraint, an end-to-end CD method for heterogeneous
images is proposed. For the domain transfer-based methods of heterogeneous CD, there is a problem
that some unique features may be lost during the transfer process. In order to solve the problem,
inspired by the style transfer, we design a combined loss function based on the FSL and the BCELoss
in the proposed method. It can help the model constrain the features of heterogeneous images to the
same feature space while keeping as many unique features as possible. In this way, some missing
detections will be decreased, and the CD results can be further improved. Additionally, the stability
of the model can also be improved when the combined loss function is used. Experiments on two
heterogeneous image datasets consisting of optical and SAR images demonstrate the effectiveness and
superiority of the proposed method.

In the future, our research will mainly include two aspects. First, as shown in Figure 5, there is
the problem of a blurry and discontinuous segmentation boundary, which may be caused by some lost
spatial information during the down-sampling. Therefore, in the future work, we will try to use some
other architectures such as DeeplabV3 [46] to replace the U-Net architecture or use some boundary
enhancement modules in semantic segmentation [43] to make the boundary clearer. Second, according
to the analysis in preparing the datasets, we can find that there is a serious imbalance between changed
and unchanged samples. The number of changed samples is so small that we must use some methods
to augment the change samples, such as the weighting factor wp in the BCELoss. However, most of
these methods cannot actually expand the changed samples. Inspired by some GAN-based methods,
we plan to first use GAN to generate some changed samples, then train the model with the generated
samples and original datasets. In this way, we can achieve a balance between changed and unchanged
samples and maybe improve the CD results.

Author Contributions: N.S. proposed the algorithm and performed the experiments. K.C. gave insightful
suggestions for the proposed algorithm. X.S. and G.Z. provided important suggestions for improving
the manuscript. All authors read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was finished when Nian Shi was an intern at the Key Laboratory of Network
Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2020, 12, 3057 21 of 23

Abbreviations

The following abbreviations are used in this manuscript:

BCELoss binary cross entropy loss
BDNN bipartite differential neural network
CD change detection
CDMs change disguise maps
CDL coupled dictionary learning
cGAN conditional generative adversarial network
CM change map
CMS-HCC cooperative multitemporal segmentation and hierarchical compound classification
CNN convolutional neural network
DEM digital elevation model
DHFT deep homogeneous feature fusion
ENVI Environment for Visualizing Images
FSL feature space loss
GCN graph convolutional network
GISs geographic information systems
MDS multidimensional scaling
OA overall accuracy
O-PCC object-based PCC
P-PCC pixel-based PCC
PCC post-classification comparison
Pr precision
Re recall
SAR synthetic aperture radar
SDAE stacked denoising auto-encoder
SGD stochastic gradient descent
NSW non-shared weight
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