Riverine Sediment Changes and Channel Pattern of a Gravel-Bed Mountain Torrent
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Survey Design and Data Acquisition
3.1.1. Unmanned Aerial System-Based Survey
3.1.2. Electrical Resistivity Tomography
3.1.3. Geodetic Measurements
3.1.4. Terrestrial Laser Scanning Data
3.2. Photogrammetric Processing
4. Results
4.1. Accuracy Assessment
4.1.1. Ground Control Points
4.1.2. Independent Check Points
4.1.3. Comparison of TLS with UAS Data
4.2. Elevation Differences
4.3. Evidence of Bank Erosion
4.4. Volumetric Changes
4.5. Subsurface Conditions
5. Discussion
5.1. Quality of Data and Analysis
5.1.1. Estimation of Survey Quality
5.1.2. Implications of the Survey Quality for the Interpretation
5.1.3. Volume Calculations
5.2. Geomorphic Importance of Surveys
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huggett, R.J. Fundamentals of Geomorphology; Routledge: Abingdon, UK, 2007. [Google Scholar]
- Lewin, J.; Brewer, P.A. Sedimentary process/Fluvial Geomorphology. In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 650–663. [Google Scholar]
- Rhoads, B.L.; Lewis, Q.W.; Andresen, W. Historical changes in channel network extent and channel planform in an intensively managed landscape: Natural versus human-induced effects. Geomorphology 2016, 252, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, J.T. Riverscape mapping with helicopter-based Structure-from-Motion photogrammetry. Geomorphology 2016, 252, 144–157. [Google Scholar] [CrossRef]
- Piégay, H.; Arnaud, F.; Belletti, B.; Bertrand, M.; Bizzi, S.; Carbonneau, P.; Dufour, S.; Liébault, F.; Ruiz-Villanueva, V.; Slater, L. Remotely sensed rivers in the Anthropocene: State of the art and prospects. Earth Surf. Process. Landf. 2020, 45, 157–188. [Google Scholar] [CrossRef]
- Kammerer, H. Biotopkartierung Gesäuse—Teilbericht Kartierungsbereich Langgries; Stipa—TB für Ökologie: Graz, Austria, 2006. [Google Scholar]
- Holzinger, A.; Haseke, H.; Stocker, E. Managementplan Witterschutt und Geschiebe; Nationalpark Gesäuse GmbH: Weng im Gesäuse, Austria, 2012. [Google Scholar]
- Calle, M.; Alho, P.; Benito, G. Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology 2017, 285, 333–346. [Google Scholar] [CrossRef]
- Llena, M.; Vericat, D.; Martínez-Casasnovas, J.A.; Smith, M.W. Geomorphic adjustments to multi-scale disturbances in a mountain river: A century of observations. Catena 2020, 192. [Google Scholar] [CrossRef]
- Mossa, J. The changing geomorphology of the Atchafalaya River, Louisiana: A historical perspective. Geomorphology 2016, 252, 112–127. [Google Scholar] [CrossRef]
- Meinen, B.U.; Robinson, D.T. Streambank topography: An accuracy assessment of UAV-based and traditional 3D reconstructions. Int. J. Remote Sens. 2020, 41, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.; Antoniazza, G.; Odermatt, E.; Lane, S.N. Morphological Response of an Alpine Braided Reach to Sediment-Laden Flow Events. J. Geophys. Res. Earth Surf. 2019, 124, 1310–1328. [Google Scholar] [CrossRef] [Green Version]
- Hardin, P.J.; Lulla, V.; Jensen, R.R.; Jensen, J.R. Small Unmanned Aerial Systems (sUAS) for environmental remote sensing: Challenges and opportunities revisited. GIScience Remote Sens. 2019, 56, 309–322. [Google Scholar] [CrossRef]
- Schraml, K.; Oismüller, M.; Stoffel, M.; Hübl, J.; Kaitna, R. Debris-flow activity in five adjacent gullies in a limestone mountain range. Geochronometria 2015, 42, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Westoby, M.J.; James, M.R. Low-budget topographic surveying comes of age: Structure from motion photogrammetry in geography and the geosciences. Prog. Phys. Geogr. 2019, 43, 163–173. [Google Scholar] [CrossRef]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Li, H.; Chen, L.; Wang, Z.; Yu, Z. Mapping of river terraces with low-cost UAS Based Structure-from-Motion Photogrammetry in a complex terrain setting. Remote Sens. 2019, 11, 464. [Google Scholar] [CrossRef] [Green Version]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Seier, G.; Stangl, J.; Schöttl, S.; Sulzer, W.; Sass, O. UAV and TLS for monitoring a creek in an alpine environment, Styria, Austria. Int. J. Remote Sens. 2017, 38, 2903–2920. [Google Scholar] [CrossRef]
- Disney, M.; Burt, A.; Calders, K.; Schaaf, C.; Stovall, A. Innovations in Ground and Airborne Technologies as Reference and for Training and Validation: Terrestrial Laser Scanning (TLS). Surv. Geophys. 2019, 40, 937–958. [Google Scholar] [CrossRef] [Green Version]
- Travelletti, J.; Malet, J.-P. Characterization of the 3D geometry of flow-like landslides: A methodology based on the integration of heterogeneous multi-source data. Eng. Geol. 2012, 128, 30–48. [Google Scholar] [CrossRef]
- Scudero, S.; Martorana, R.; Capizzi, P.; Pisciotta, A.; D’Alessandro, A.; Bottari, C.; Di Stefano, G. Integrated Geophysical Investigations at the Greek Kamarina Site (Southern Sicily, Italy). Surv. Geophys. 2018, 39, 1181–1200. [Google Scholar] [CrossRef]
- Tomecka-Suchoń, S.; Żogała, B.; Gołębiowski, T.; Dzik, G.; Dzik, T.; Jochymczyk, K. Application of electrical and electromagnetic methods to study sedimentary covers in high mountain areas. Acta Geophys. 2017, 65, 743–755. [Google Scholar] [CrossRef]
- Zumr, D.; David, V.; Jeřábek, J.; Noreika, N.; Krása, J. Monitoring of the soil moisture regime of an earth-filled dam by means of electrical resistance tomography, close range photogrammetry, and thermal imaging. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Tonkin, T.N.; Midgley, N.G. Ground-control networks for image based surface reconstruction: An investigation of optimum survey designs using UAV derived imagery and structure-from-motion photogrammetry. Remote Sens. 2016, 8, 786. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, T.N.; Midgley, N.G.; Graham, D.J.; Labadz, J.C. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology 2014, 226, 35–43. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the use of structure-from-motion photogrammetry in geomorphic research. Earth Surf. Process. Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Seier, G.; Sulzer, W.; Lindbichler, P.; Gspurning, J.; Hermann, S.; Konrad, H.M.; Irlinger, G.; Adelwöhrer, R. Contribution of UAS to the monitoring at the Lärchberg-Galgenwald landslide (Austria). Int. J. Remote Sens. 2018, 39, 5522–5549. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.S.; Fyffe, C.; Carbonneau, P.E. From manned to unmanned aircraft: Adapting airborne particle size mapping methodologies to the characteristics of sUAS and SfM. Earth Surf. Process. Landf. 2018, 43, 857–870. [Google Scholar] [CrossRef]
- Seier, G.; Wecht, M.; Sulzer, W. Erfassung von Veränderungen der Sedimentkörper eines Wildbaches (Krumeggerbach, Wölzer Tauern) mittels unbemanntem Luftfahrzeug. Publ. Dtsch. Ges. Photogramm. Fernerkund. Geoinf. e.V. 2019, 28, 587–596. [Google Scholar]
- Hemmelder, S.; Marra, W.; Markies, H.; de Jong, S.M. Monitoring river morphology & bank erosion using UAV imagery—A case study of the river Buëch, Hautes-Alpes, France. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 428–437. [Google Scholar] [CrossRef]
- Lieb, G.K.; Premm, M. Das Johnsbachtal—Werdegang und Dynamik im Formenbild eines zweigeteilten Tales. In Schriften des Nationalparks Gesäuse 3; Nationalpark Gesäuse, Ed.; Nationalpark Gesäuse: Weng im Gesäuse, Austria, 2008; pp. 12–24. [Google Scholar]
- Krenn, P. Kartierung und Evaluierung von Sedimenttransport-Prozessen in der Zwischenmäuerstrecke, Johnsbachtal. Master’s Thesis, Department of Geography and Regional Science, University of Graz, Graz, Austria, 2016. [Google Scholar]
- Schöttl, S. Das Potenzial von UAV-Daten zur Erfassung der Sedimentdynamik: Eine Fallstudie aus dem Nationalpark Gesäuse. Master’s Thesis, Department of Geography and Regional Science, University of Graz, Graz, Austria, 2017. [Google Scholar]
- Rascher, E.; Rindler, R.; Habersack, H.; Sass, O. Impacts of gravel mining and renaturation measures on the sediment flux and budget in an alpine catchment (Johnsbach Valley, Austria). Geomorphology 2018, 318, 404–420. [Google Scholar] [CrossRef]
- Rascher, E.; Sass, O. Evaluating sediment dynamics in tributary trenches in an alpine catchment (Johnsbachtal, Austria) using multitemporal terrestrial laser scanning. Z. Geomorphol. 2017, 61, 27–52. [Google Scholar] [CrossRef]
- Mosbrucker, A.R.; Major, J.J.; Spicer, K.R.; Pitlick, J. Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surf. Process. Landf. 2017, 42, 969–986. [Google Scholar] [CrossRef] [Green Version]
- Kraus, K. Photogrammetry: Volume 1, Fundamentals and Standard Processes; Dümmler: Bonn, Germany, 1993. [Google Scholar]
- Luhmann, T. Nahbereichsphotogrammetrie: Grundlagen, Methoden und Anwendungen; Wichmann: Heidelberg, Germany, 2000. [Google Scholar]
- Fraser, C.S. Network Design. In Close Range Photogrammetry and Machine Vision; Atkinson, K.B., Ed.; Whittles Publishing: Caithness, UK, 1996; pp. 256–281. [Google Scholar]
- Kneisel, C.; Hauck, C. Electrical methods. In Applied Geophysics in Periglacial Environments; Hauck, C., Kneisel, C., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 3–27. [Google Scholar]
- Everett, M.E. Near-Surf. Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107018778. [Google Scholar]
- EPOSA. EPOSA Echtzeitpositionierung Austria. Available online: https://www.eposa.at/ (accessed on 24 July 2020).
- El-Sheimy, N.; Valeo, C.; Habib, A. Digital Terrain Modeling: Acquisition, Manipulation, and Applications; Artech House: Boston, UK, 2005; ISBN 1580539211 9781580539210. [Google Scholar]
- Petrie, G.; Toth, C.K. Introduction to Laser Ranging, Profiling, and Scanning. In Topographic Laser Ranging and Scanning; Shan, J., Toth, C.K., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–27. [Google Scholar]
- Riegl GmbH. LMS-Z260 Data Sheet, Product Description; Riegl Laser Measurement Systems GmbH: Horn, Austria, 2010. [Google Scholar]
- Rascher, E. Environmental Sedimentology of Mountain Regions—Human Impact on Sediment Dynamics in Unglaciated Alpine Catchments (Johnsbach Valley, Austria). Ph.D. Thesis, Department of Geography and Regional Science, University of Graz, Graz, Austria, 2020. [Google Scholar]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Brown, M.; Lowe, D.G. Unsupervised 3D object recognition and reconstruction in unordered datasets. In Proceedings of the 5th International Conference on 3D Digital Imaging and Modeling (3DIM’05), Ottawa, ON, Canada, 13–16 June 2005; pp. 56–63. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, V.; Seier, G. Long-term monitoring of glacier change at Gössnitzkees (Austria) using terrestrial photogrammetry. Remote Sens. Spat. Inf. Sci. 2016, 41, 495–502. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Cavalli, M.; Vericat, D.; Crema, S.; Llena, M.; Beinat, A.; Marchi, L.; Cazorzi, F. Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environ. Earth Sci. 2018, 77. [Google Scholar] [CrossRef]
- Woodget, A.S.; Dietrich, J.T.; Wilson, R.T. Quantifying below-water fluvial geomorphic change: The implications of refraction correction, water surface elevations, and spatially variable error. Remote Sens. 2019, 11, 2415. [Google Scholar] [CrossRef] [Green Version]
- Weidelt, P. Geoelektrik—Grundlagen. In Handbuch zur Erkundung des Untergrunds von Deponien und Altlasten; Knödel, K., Krummel, H., Lange, G., Eds.; Springer: Heidelberg, Germnay, 2005; pp. 71–100. [Google Scholar]
- Krautblatter, M.; Funk, D.; Günzel, F.K. Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space. Earth Surf. Process. Landf. 2013, 38, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Rode, M.; Sass, O.; Kellerer-Pirklbauer, A.; Schnepfleitner, H.; Gitschthaler, C. Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria. Cryosphere 2020, 14, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Burchfield, D.R.; Petersen, S.L.; Kitchen, S.G.; Jensen, R.R. sUAS-Based Remote Sensing in Mountainous Areas: Benefits, Challenges, and Best Practices. Pap. Appl. Geogr. 2020, 6, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Pepe, M.; Fregonese, L.; Scaioni, M. Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Eur. J. Remote Sens. 2018, 51, 412–435. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, S.; Yamano, H.; Oguma, H. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology 2016, 268, 64–71. [Google Scholar] [CrossRef]
- Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry. Earth Surf. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef] [Green Version]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Schwendel, A.C.; Milan, D.J. Terrestrial structure-from-motion: Spatial error analysis of roughness and morphology. Geomorphology 2020, 350, 106883. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Hetherington, D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf. Process. Landf. 2007, 32, 1657–1674. [Google Scholar] [CrossRef]
- Vázquez-Tarrío, D.; Borgniet, L.; Liébault, F.; Recking, A. Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology 2017, 285, 94–105. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J. Structure from Motion in the Geosciences; John Wiley & Sons, Ltd.: Chichester, UK, 2016; ISBN 9781118895818. [Google Scholar]
- Eltner, A.; Sofia, G. Structure from motion photogrammetric technique. Dev. Earth Surf. Process. 2020, 23, 1–24. [Google Scholar] [CrossRef]
- Tomsett, C.; Leyland, J. Remote sensing of river corridors: A review of current trends and future directions. River Res. Appl. 2019, 35, 779–803. [Google Scholar] [CrossRef]
Acquisition Date | 31.07.2015 | 22.09.2015 | 22.10.2015 | 09.08.2019 | 17.10.2019 |
---|---|---|---|---|---|
Unmanned aerial system | TwinHex v1 (hexacopter) | TwinHex v1 (hexacopter) | TwinHex v1 (hexacopter) | DJI Phantom 4 (quadrocopter) | DJI Phantom 4 (quadrocopter) |
Area covered and analyzed (m2) | ≈14,900 | ≈14,900 | ≈20,191 | ≈35,443 | ≈35,443 |
Camera | Ricoh GXR | Ricoh GXR | Ricoh GXR | DJI camera | DJI camera |
No. of images | 60 | 70 | 31 | 101 | 190 |
Flight altitude above ground (m) | ≈82 | ≈79 | ≈111 | ≈85 | ≈94 |
Ground sampling distance (m) | ≈0.02 | ≈0.02 | ≈0.03 | ≈0.03 | ≈0.04 |
Stereo base (m) | ≈13 | ≈13 | ≈18 | ≈13 | ≈20 |
(m) 1 | ≈0.04 | ≈0.04 | ≈0.05 | ≈0.06 | ≈0.06 |
(m) | ≈0.08 | ≈0.07 | ≈0.10 | ≈0.12 | ≈0.10 |
Date | Code | Length (m) | Spacing (m) | Min (Ωm) | Max (Ωm) | RMS (%) |
---|---|---|---|---|---|---|
11.11.2019 | ERT19-L1 | 196 | 4 | 695.7 | 48,657.0 | 3.8 |
ERT19-S1 | 98 | 2 | 962.7 | 79,418.4 | 3.9 | |
15.05.2020 | ERT20-S1 | 98 | 2 | 1254.0 | 77,442.7 | 3.5 |
06.06.2020 | ERT20-L2 | 196 | 4 | 738.9 | 78,467.4 | 3.1 |
ERT20-S2 | 98 | 2 | 1103.4 | 43,858.0 | 8.9 |
Measure | Subarea A | Subarea B | Subarea C |
---|---|---|---|
Mean (m) | 0.02 | 0.07 | 0.08 |
Standard Deviation (m) | 0.04 | 0.02 | 0.03 |
Min (m) | −0.3 | −0.22 | −0.10 |
Max (m) | 0.2 | 0.18 | 0.21 |
Area (m2) | 589 | 250 | 342 |
July 2015–September 2015, Lower Reach | July 2015–August 2019, Lower Reach | October 2015–October 2019, Upper Reach | August 2019– October 2019, Entire Study Area | |
---|---|---|---|---|
Deposition area (m2) | ≈14,284 | ≈11,930 | ≈13,444 | ≈11,053 |
Erosion area (m2) | ≈616 | ≈2970 | ≈6747 | ≈24,390 |
Total area (m2) | ≈14,900 | ≈14,900 | ≈20,191 | ≈35,443 |
Deposition volume (m3) | ≈2622 | ≈9402 | ≈10,123 | ≈1668 |
Erosion volume (m3) | ≈62 | ≈1140 | ≈3216 | ≈1521 |
Acquisition Date | 31 July 2015 1 | 22 September 2015 2 | 22 October 2015 3 | 09 August 2019 4 | 17 October 2019 5 |
---|---|---|---|---|---|
(theoretical estimate) (m) | ≈0.08 | ≈0.07 | ≈0.10 | ≈0.12 | ≈0.10 |
Relative precision ratios | ≈1:1053 | ≈1:1093 | ≈1:1045 | ≈1:703 | ≈1:978 |
RMSEs of GCPs (m) | ≈0.04 | ≈0.05 | ≈0.07 | ≈0.03 | ≈0.03 |
Accuracy ratios | ≈1:2050 | ≈1:1580 | ≈1:1585 | ≈1:2656 | ≈1:2686 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seier, G.; Schöttl, S.; Kellerer-Pirklbauer, A.; Glück, R.; Lieb, G.K.; Hofstadler, D.N.; Sulzer, W. Riverine Sediment Changes and Channel Pattern of a Gravel-Bed Mountain Torrent. Remote Sens. 2020, 12, 3065. https://doi.org/10.3390/rs12183065
Seier G, Schöttl S, Kellerer-Pirklbauer A, Glück R, Lieb GK, Hofstadler DN, Sulzer W. Riverine Sediment Changes and Channel Pattern of a Gravel-Bed Mountain Torrent. Remote Sensing. 2020; 12(18):3065. https://doi.org/10.3390/rs12183065
Chicago/Turabian StyleSeier, Gernot, Stefan Schöttl, Andreas Kellerer-Pirklbauer, Raphael Glück, Gerhard K. Lieb, Daniel N. Hofstadler, and Wolfgang Sulzer. 2020. "Riverine Sediment Changes and Channel Pattern of a Gravel-Bed Mountain Torrent" Remote Sensing 12, no. 18: 3065. https://doi.org/10.3390/rs12183065
APA StyleSeier, G., Schöttl, S., Kellerer-Pirklbauer, A., Glück, R., Lieb, G. K., Hofstadler, D. N., & Sulzer, W. (2020). Riverine Sediment Changes and Channel Pattern of a Gravel-Bed Mountain Torrent. Remote Sensing, 12(18), 3065. https://doi.org/10.3390/rs12183065