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Abstract: Percentile features derived from Landsat time-series data are widely adopted in land-cover
classification. However, the temporal distribution of Landsat valid observations is highly uneven
across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line
corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in
time-series data is usually not considered. In this paper, an improved percentile called the time-series
model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data.
The Landsat data were first modeled using three different time-series models, and the land-cover
changes were continuously monitored using the continuous change detection (CCD) algorithm.
The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data
without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random
forest classifications. The proposed methods were implemented on Landsat time-series data of
three study areas. The classification results were compared with those obtained using the original
percentiles derived from the original time-series data with gaps. The results show that the land-cover
classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall
accuracies than those obtained using the original percentiles. The proposed method was more
effective for forest types with obvious phenological characteristics and with fewer valid observations.
In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed
in this work can provide accurate characterization of land cover and improve the overall classification
accuracy based on such metrics. The findings are promising for percentile-based land cover
classification using Landsat time series data, especially in the areas with frequent cloud coverage.

Keywords: percentile feature; time-series model; land-cover classification; Landsat; continuous
change detection

1. Introduction

Earth observation data acquired by satellites are commonly utilized to map and monitor
land covers [1], which is essential for research on biological diversities [2], wetland ecosystems
management [3], and forest disturbances and recoveries [4,5]. Due to the long-term data record and
moderate spatial resolutions which can capture spatial pattern of land-covers at a detailed level [6],
images acquired by Landsat satellites are important dataset used to map land cover and monitor
change [7]. The statistical metrics that are extracted using Landsat time-series data over a single year
or consecutive years provide a novel spectro-temporal feature space for Landsat-based land-cover
classification. These spectro-temporal statistic measurements have been demonstrated as feasible tools
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for distinguishing land cover classes [8–10]. Their use in characterizing land-cover types began with
coarse spatial resolution imagery [8,11].

Recently, statistical metrics have been widely used as input features to classify land cover over
large areas based on Landsat data [12–15]. Statistical metrics, e.g., the percentile values for the specific
time span, are insensitive to the geographical location-induced phenological differences in the same
land-cover class because these metrics capture the magnitude of the changing reflectance instead of the
timing [14]. For example, the 10th, 25th, 50th, 75th, and 90th percentile composites were generated
using Landsat observations across four consecutive years to characterize land cover in Zambia [12].
The 20th, 50th, and 80th percentiles composites derived from monthly global Web-enabled Landsat
Data (WELD) were used for land-cover mapping of North America [14]. The 0th, 25th, 50th, 75th,
and 100th percentiles derived from the WELD monthly composites were included in the spectral inputs
that were used to generate the continuous field for land-cover classes of the United States [13].

Unlike coarse spatial resolution data, the characteristics of Landsat data are that the observation
counts are highly unequal due to the different Landsat acquisition strategies [16]. Furthermore,
the occurrence of cloud, cloud shadow, snow, and also the missing data resulting from the Landsat
7 ETM+ scan line corrector (SLC) failure to reduce the amount of data available in the single Landsat
scene. Consequently, the number and acquisition dates of available observations made over time varied
unpredictably by pixels [12]. The percentiles derived from such data may not help to normalize the
feature space, especially in the case of areas that are frequently cloudy. In addition, using consecutive
multiple years of Landsat data for generating percentile syntheses is likely to be helpful in gaining
spatial coverages; however, the inter- and intra-annual land cover changes (i.e., from one cover type
to another) have not been considered and this method also introduces some contamination into the
percentile composites derived from such data.

To accurately characterize land cover using percentile features, these issues need to be considered
more carefully. First, the missing observations caused by the SLC-off problem and cloud cover need to
be accurately estimated to increase the number of available observations from which the percentiles
features are derived, especially in the case of frequently cloud-covered areas. Secondly, changes in
land cover over time need to be detected before the Landsat time-series data are used to generate
percentile features. The land-cover changes mentioned here refer to abrupt changes—i.e., from one
cover type to another—rather than to seasonal land-surface changes that are due to, for example,
vegetation phenology. In the case of Landsat data, the temporal scales of change-detection algorithm
shift from the decennial [4] and annual scales [17,18] to sub-annual scales [7,19,20]. Sub-annual scales
can reveal more detailed changes that were missed at the decadal and annual scales. In contrast with
other sub-annual scale algorithms commonly employed for detecting forest changes, the continuous
change detection (CCD) algorithm [7,21] is able to continuously detect various land-cover changes
using all available Landsat images, and also has the ability to estimate any missing observation for any
given date.

The objective of this study was to test the use of our new percentile feature approach for improving
land cover classification and examine their performance over three study areas and under different
levels of observation frequency. An improved percentile called the time-series model (TSM)-adjusted
percentile was proposed. For the given Landsat time-series data, the land-cover changes were first
detected using the CCD algorithm; the time-series observations between any two break points were
then estimated using three different time-series models to fill the gaps caused by SLC-off and cloud
cover. The TSM-adjusted percentiles that were derived from the synthetic time-series data without
gaps were then used for the land-cover classification. The classification results based on TSM-adjusted
percentile features were then compared with those based on the original percentile features that
were derived from the original time-series data with gaps. The difference in classification accuracy
between the two sets of results was comprehensively analyzed, and the impact of phenological
characteristics and frequency of valid observations on the percentile features before and after the
adjustment was discussed.
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2. Data and Study Area

2.1. Landsat Data

The Landsat 5 and 7 satellites have a revisit period of 16 days but this revisit cycle can be reduced
to 8 days via the complementarity of the two satellites [22,23]. The TM and ETM+ sensors, carried by
Landsat 5 and 7, respectively, have similar spectral band configurations, and their data are collected
using the Worldwide Reference System-2 (WRS-2) and defined in the Universal Transverse Mercator
(UTM) projection. In this paper, the images acquired by the two sensors were used together to achieve
higher temporal frequencies of Landsat observation.

All available Landsat TM/ETM+ surface reflectance (SR) images (with cloud cover less than
80%) acquired from 2000 to 2011 for selected study areas were exported from Google Earth Engine
(GEE). This platform provides massive satellite imagery combined with cloud computing service,
which makes satellite data access and processing fast and easy [24]. Landsat TM/ETM+ SR images
are atmospherically corrected with the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) [25], and include the clouds, cloud shadows, and snow mask band generated from
CFMASK [26,27]. Additionally, these images are geometrically aligned over time, meaning that it is
straightforward to use them in time-series applications. In this paper, all of our analysis later were
performed with the exported Landsat imagery using MATLAB codes in the personal computer (PC),
not within the GEE platform, because at time of review CCD is available within GEE, but it was not at
time of analysis.

In this study, all the exported SR images containing spectral bands stacked in the order Bands 1, 2,
3, 4, 5, 7, 6, and CFMASK were used as input data for a continuous change detection (CCD) algorithm,
which was used to develop a time-series model and continuously detect abrupt changes. In addition,
the Bands 1, 2, 3, 4, 5, 7, and Normalized Difference Vegetation Index (NDVI) were used for testing the
proposed land-cover classification method.

2.2. Reference Data

The National Land Cover Database (NLCD) is the well-established and commonly utilized sources
of information related to land covers [28]. The NLCD 2011 product provides a land-cover dataset
generated using Landsat data for three eras (2001, 2006, and 2011) at 30-m scale [29]. These products
were also exported from the GEE platform and utilized as the source of training and test data for
supervised classifications in this study. They were used because these products consist of various
land-cover types, have a high classification accuracy, and provide national wall-to-wall coverage of
the United States [30]. The NLCD 2011 product includes 16 land-cover classes together with ancillary
datasets such as the Natural Resources Conservation Service Soil Survey Geographic database “Hydric
Soils”, the National Agricultural Statistics Service Cropland Data Layer and the National Wetlands
Inventory [29]; these were used to assist in post-classification refinement for specific land cover types.
The overall accuracies of NLCD products are 82%, 83%, and 83% at Level II of the classification
hierarchy and 88%, 89%, and 89% at Level I, for 2011, 2006, and 2001, respectively [31].

In this study, the NLCD data were reprojected from the Albers Equal Area projection to a UTM
projection, and also resampled to have the same dimensions and same upper-left corner as Landsat
TM images, so as to make them geographically compatible and to facilitate class label subsampling
and spectral feature extraction.

2.3. Study Areas

The three study areas (see Figure 1) used in this research were covered by Landsat footprint WRS-2
path/row 027/027, 025/031 and 015/031, and located in Minnesota, Iowa, and New York in the United
States. We took a subset of the full Landsat scenes from each study area. These areas were selected
because (1) they have various land-cover types, including typical vegetation and non-vegetation
types, which was of benefit to testing the effectiveness of the proposed method for various cover
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types; (2) the land-cover changes in these areas affected a relatively small proportion of the study
areas; and (3) a considerable fraction of the Landsat time-series data that cover these areas were
missing, which helped in testing the robustness of the proposed method to changes in the number of
valid observations.
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Figure 1. Illustration of the 2011 Landsat TM (middle column) and National Land Cover Database
(NLCD) (right column) data of the three study areas. A subset of the full Landsat scenes was taken to
form each study area. The Landsat images are displayed as 3-2-1 TM band combinations. Landsat
data of Minnesota, Iowa, and New York study area were acquired on 11 September, 13 September,
and 21 July, respectively. Maps in the upper left corner show the location of the three study areas in
the United States.

Any individual study area we used contained approximately 240,000 to 310,000 30-m pixels.
We did not use the larger areas because the computational loads required for the time series models
estimation and continuous change detection increased greatly with the image’s spatial sizes. Table 1
summarizes the number of images from 2000 to 2011 used for developing the time-series models and
continuous change detection, the number of images from the target year 2011 used in the classification
experiments, and the geographic characteristics of the three study areas. Figure 1 illustrates the 2011
Landsat TM and corresponding NLCD data for the three study areas. The NLCD data are displayed with
the standard color legend that is available from the Multi-Resolution Land Characteristics Consortium
(MRLC) (https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legend).

https://www.mrlc.gov/data/legends/national-land-cover-database-2016-nlcd2016-legend
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Table 1. Summaries of the number of images from 2000 to 2011 used for continuous change detection, the number of images from the target year 2011 used for
classification, and the geographic characteristics of the three study areas.

Study Area

Number of Images
from 2000 to 2011

Used for Continuous
Change Detection

Number of Images from
Target Year 2011 Used

for Classification
Spatial Size (Pixels) Area (km2) Longitudinal Extent Latitudinal Extent

Minnesota 306 12 489 × 505 222.25 92.6687◦W to
92.4689◦W

47.4744◦N to
47.6056◦N

Iowa 318 14 545 × 562 275.66 91.1540◦W to
90.9542◦W

42.2589◦N to
42.4026◦N

New York 299 13 541 × 558 271.69 76.0972◦W to
75.8974◦W

41.9614◦N to
42.1057◦N
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3. Methodology

The proposed TSM-adjusted percentile method consisted of two major steps (Figure 2):
(1) development of the time-series models and continuous change detection, and (2) percentile
feature generation. In this study, the TSM-adjusted percentile features were then utilized to classify
land cover.
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3.1. Development of the Time-Series Model and Continuous Change Detection (CCD)

Clouds, cloud shadows, and ephemeral snow limit the availability of Earth observations acquired
by the Landsat series of satellites. Therefore, the number of clear observations (not contaminated by
clouds, cloud shadows, and ephemeral snow) across a certain time span varies from pixel to pixel.
For every pixel, Fmask [27,32] and Tmask algorithms [33] were first used to mask out the clouds, cloud
shadows, and ephemeral snow to obtain the time-series of clear observations. The surface reflectance of
different spectral bands were then estimated using three different time-series models—simple, advanced,
and full (Equations (1)–(3))—that included harmonic and trend components for the observations [21].
Which model was used depended upon the number of clear observations: 12 to 18 clear observations
were required for the simple model; the advanced model needed 18 to 24 clear observations; the full
model would be selected if there were more than 24 clear observations. Our ability to model the
intra-year variation of Landsat time-series observations was improved with a more complex model.
The least absolute shrinkage and selection operator (LASSO) regression technique was used for
estimating the coefficients of time-series models [34,35]. The LASSO technique can minimize the
sum of the squares of the residuals and has a constraint on the sum of the absolute values of the
coefficients [36]. This allowed a time-series model that did not have the problem of overfitting to be
developed [21].

ρ̂(i, x)simple = a0,i + a1,icos
(2π

T
x
)
+ b1,isin

(2π
T

x
)
+ c1,ix (1)

where

x—Julian day
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i—Landsat band i (i = 1, 2, 3, 4, 5, and 7)
T—number of days of the year (T = 365)
a0,i—constant term that represents the mean for Landsat band i
a1,i, b1,i—coefficients of intra-year variation components for Landsat band i
c1,i—coefficient of inter-year variation component (slope) for Landsat band i
ρ̂(i, x)simple—surface reflectance of Landsat band i on Julian day x obtained using the simple model.

ρ̂(i, x)advanced = ρ̂(i, x)simple + a2,icos
(4π

T
x
)
+ b2,isin

(4π
T

x
)

(2)

where

a2,i, b2,i—coefficients of the intra-year bimodal variation components for Landsat band i
ρ̂(i, x)advanced—surface reflectance of Landsat band i on Julian day x obtained using the advanced model.

ρ̂(i, x) f ull = ρ̂(i, x)advanced + a3,icos
(6π

T
x
)
+ b3,isin

(6π
T

x
)

(3)

where

a3,i, b3,i—coefficients of intra-year trimodal variation components for Landsat band i
ρ̂(i, x) f ull—surface reflectance of Landsat band i on Julian day x obtained using the full model.

Abrupt surface changes were detected based on comparisons of model-predicted values with real
observation data from Landsat. If the difference was larger than a given threshold on six consecutive
occasions, the pixel was identified as a changed pixel. To detect various surface change accurately,
a change was defined using all the spectral bands except for blue and TIR bands, because these
two spectral bands are quite sensitive to atmospheric effect and less sensitive to most of the surface
changes; and the change threshold was determined using root mean square error (RMSE) from the
time series model fit for each spectral band. If an abrupt surface change had occurred, a break would
occur in the time-series model and newly collected clear observations were added to fit to a new
time-series model. Figure 3 illustrates changed and stable pixels detected by the CCD. In this paper,
changed pixels were removed from further classification analyses, and labeled as “disturbed” in the
final classification maps. The time-series of stable pixels were used to generate the percentile features.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 25 
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Figure 3. Illustration of changed and stable pixels detected by CCD. The time-series models shown
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the vertical black dotted line represents the change that occurred in 2011. This pixel was labeled as
“disturbed” in the land-cover map for 2011. The right-hand panel illustrates the signal of a stable pixel;
the percentile features for this land-cover type were derived from time-series data such as these.
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3.2. TSM-Adjusted Percentile Features

3.2.1. Method Used for Calculating Percentiles

A temporal metric is the feasible conversion of time-series data over a given interval. Metrics
can summarize the multi-temporal feature space, which captures the prominent phenological features
regardless of the specified period of year [37]. Percentiles have been commonly used as the temporal
metric in land-cover classification. Method for calculating percentiles used in this study can be
formulated as follows (Equation (4)).

Pi,k =


(
ρi,ascending(R) + ρi,ascending(R + 1)

)
/2,

ρi,ascending(dRe),
R ∈ N+

R < N+
(4)

where i denotes the ith Landsat band (i = 1, 2, 3, 4, 5, and 7); k is any number between zero and one
hundred; Pi,k denotes the kth percentile for the surface reflectance of the ith Landsat band over a given
temporal interval; ρi,ascending denotes the surface reflectance data in ascending order for the ith Landsat
band over the given temporal interval; and R is the rank of the kth percentile, which is computed as

R =
k

100
×N (5)

where N indicates the total number of clear observations for a given temporal interval. Specifically,
if the rank obtained using Equation (5) is a whole number, the kth percentile is the average of the
Rth and (R+1)th values in the surface reflectance data in ascending order; if the rank obtained using
Equation (5) is not a whole number, it is rounded up to the nearest whole number and the kth percentile
is then the dReth value in the surface reflectance data in ascending order.

3.2.2. Generation of TSM-Adjusted Percentile Features

Generally, percentile features are generated based on clear observations acquired during a given
temporal interval [13]. However, the gaps caused by clouds, cloud shadows, snow, and the SLC-off issue
lead to changes in the frequency of Landsat observations with time. According to Equations (4) and (5),
the values of percentiles are affected by the total number of clear observations and the surface reflectance
values over the given time interval. Therefore, the original percentiles features may vary for pixels
belonging to the same land-cover type but for which there are different numbers of clear observations
within the time interval. In this study, we proposed the TSM-adjusted percentile features with the
aim of characterizing land cover accurately and improving the classification accuracy substantially.
The time-series of surface reflectances were first estimated using the models based on clear observations
(detailed in Section 3.1). Next, percentile features based on synthetic time-series observations were
generated. For illustration purposes, we generated the 10th, 25th, 50th, 75th, and 90th percentile
features of a deciduous forest pixel over the period of a year based on both the original and synthetic
time-series of surface reflectances. The original percentiles were generated based on time-series of
clear observations that were temporally discrete due to the gaps resulting from the SLC-off issue and
cloud cover (see Figure 4B). The TSM-adjusted percentiles were generated based on time-series of
synthetic observations that were temporally continuous because the gaps had been estimated by the
time-series models (see Figure 4C). Therefore, the proposed TSM-adjusted percentiles completed the
total number of clear observations over a given time interval for the entire study area.
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3.3. Classification Experiment Methodology

The pixels that were stable over the chosen temporal interval were classified with supervised
random forest (RF) classifier and the changed pixels detected by CCD were labelled as “disturbed” in
land-cover maps. The percentile features, including the 10th, 25th, 50th, 75th, and 90th percentiles for
Landsat bands 1-5 and band 7, and the NDVI (i.e., 35 features in total), were used as input data for
the RF classifier. The RF classifier was an ensemble machine-learning algorithm which operates by
constructing sets of decision trees for classification during the training [38]. All the generated decision
trees were used to classify the newly unlabeled data, and the category receiving the largest number of
votes will be given to this data. The forest trees were generated by setting two parameters: in this study,
we set the number of trees to 500; in addition, the number of split variables was set to the defaults,
i.e., square root of the total number of input features. We chose RF classifier for use due to its superiority
in handling high-dimensional input features without dimension reduction, its robustness against
outliers, as well as the high classification accuracies achieved by the use of ensemble techniques [39].

The training and testing data for the classification were collected using 2011 NLCD land cover
maps of the three study areas. The four land-cover types related to impervious surfaces were spatially
merged into one type named “developed”. Spatio-temporal filtering methods were used to assist in
the selection of highly accurate class labels. The pixels in the 2011 NLCD data were selected only if the
following filtering criteria were met. First, the NLCD pixel values for 2001, 2006, and 2011 had to be
identical. The use of this temporal rule helped select the NLCD pixels having the identical land-cover
type between 2001 and 2011. Second, the 2011 NLCD pixel had to have the same value as the eight
pixels surrounding it. This spatial rule was used to help reduce 30-m pixel edge effects which may
produce apparent mix in land cover. The generated class labels used for training and testing were
illustrated in Supplementary Materials Figure S1.

The sampling technique adopted in this study is stratified random sampling; that is, each land
cover type is sampled independently and randomly. The number of samples collected for each type is
proportional to the area occupied by each type. Additionally, the effect of training-data balance was
also considered because an imbalanced sample size among classes would substantially decrease the
accuracies of rare class because of the very few extracted training samples [40]. A total of 3437, 1869,
and 2261 training pixels (see Table 2 for the number of training pixels of each land cover type) were
selected for the Minnesota, Iowa, and New York study areas, respectively; the remaining candidate
NLCD pixels are treated as testing data.
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Table 2. The number of training pixels for each land cover type in the three study areas.

Land Covers Minnesota Iowa New York

Open water (OW) 420 210 210
Developed (D) 245 140 280

Barren land (BL) 700 - -
Deciduous forest (DF) 350 350 630
Evergreen forest (EF) 182 49 140

Mixed forest (MF) 490 140 420
Shrub/scrub (S) 280 - -

Grassland/herbaceous (G) 140 70 -
Pasture/hay (P) - 350 420

Cultivated crops (CC) - 560 -
Woody wetlands (WW) 560 - 161

Herbaceous wetlands (HW) 70 - -

The NLCD class labels and the original and proposed TSM-adjusted percentile features were
extracted for each training sample. The original percentiles were also extracted in order to compare
the classification results obtained using the proposed TSM-adjusted percentiles with those obtained
using the original percentiles. The RF classification results were generated using the training data;
these results were then quantitatively assessed using the common classification accuracy metrics of
overall accuracy (OA), per-class producer’s accuracy (PA) and user’s accuracy (UA), which were
derived from the confusion matrices using the corresponding test data [41]. To apply the statistical
significance testing, the above classification experiment was conducted repeatedly 10 times. Paired
t-tests were used to determine if the differences in accuracy of the two sets of classifications were
significant at the 5% level. In addition, a final land cover classification was generated for the spatial
visualization using the most frequent category from the 10 individual ones.

In order to investigate the effect of valid observation frequency and training data sampling strategy
on classification results, some other experiments were performed, and the results were presented in
Sections 5.2 and 5.3. In Section 5.2, the classification accuracies of land cover types with different
numbers of valid observations were calculated. More specifically, for each independent classification
experiment, the test data for each land-cover type were stratified according to valid observation counts,
and then the accuracy for each layer was calculated by comparing the classified data against the
corresponding test data. More specifically in Section 5.3, in addition to the sampling strategy used in
previous experiments, i.e., random sampling across valid observation frequency stratums for each
class, another two sampling strategies were used, i.e., random sampling from the pixels with low (high)
observation frequencies for each class. The experiments were designed to test the robustness of the
proposed TSM-adjusted percentiles to the sampling strategies of training data.

4. Results

4.1. Classification of Percentiles Derived from Multispectral Reflectance and NDVI Time Series

The original and TSM-adjusted percentiles that were respectively derived from the original and
synthetic Landsat 6-bands reflectances and NDVI time-series for April to October of the climatological
year 2011 were classified. A comparison of the classification results obtained using the original
percentiles with those obtained using the proposed TSM-adjusted percentiles provided insights
into whether using the TSM-adjusted percentiles led to improved classification results. The overall
accuracies of original and TSM-adjusted percentiles-based classification results are summarized in
Table 3. The overall accuracies derived from the TSM-adjusted percentiles are significantly higher than
those derived from the original percentiles in any single selected test area. This indicates that compared
to original percentiles, the proposed TSM-adjusted percentiles have the improved overall classification
performance. In addition, the standard deviations in the OA for the TSM-adjusted percentiles-based
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classification are smaller than those for the original percentiles-based classification for all three study
areas. This result suggests that the former yielded more stable results than the latter. The original
percentiles for training and test pixels randomly selected each time might exhibit some degree of
variability in the repeatedly performed experiments, because the uneven temporal distribution of
valid observations exist in the original time series from which the original percentiles were derived.
In contrast, the TSM-adjusted percentiles are produced from the synthetic time-series observations
without gaps resulting from clouds, cloud shadows, snow, and missing data. Thus, the uncertainty in
the temporal distribution of observations for training and test data can be alleviated.

Table 3. Overall classification accuracies achieved by the use of original percentiles and TSM-adjusted
percentiles for the three study areas. The average values and standard deviations (in parentheses)
of the overall accuracies were derived from ten independent classification experiments. Note that the
upward arrows indicate that the overall accuracies obtained using the TSM-adjusted percentiles are
significantly (at the 5% level) higher than that obtained using the original percentiles.

Study Area Original Percentiles-Based Classification TSM-Adjusted Percentiles-Based Classification

Minnesota 81.98% (0.35%) 82.82%↑(0.33%)
Iowa 93.53% (0.63%) 94.31%↑(0.38%)

New York 85.99% (0.41%) 90.05%↑(0.39%)

Table 4 summarizes the user’s and producer’s accuracies of each land cover class for original
percentiles-based classification, and the counterpart for TSM-adjusted percentiles-based classification
are given in Table 5. User’s accuracy of one land cover class is the ratio of the number of pixels
correctly classified as that class to the total number of pixels classified as that class; the relative higher
user’s accuracy indicates fewer commission errors. Producer’s accuracy of one land cover class is the
ratio of the number of pixels correctly classified as that class to the total number of pixels specified
as that class in the reference data; the relative higher producer’s accuracy indicates fewer omission
errors. The significant difference of UA and PA between the two sets of classification was reported
in Table 5. This result indicated that the improvements obtained using the proposed method were
different between specific land cover classes, and also between producer’s and user’s accuracies for
the same class. Further, these results also varied across the three study areas. In order to discuss the
difference in improvements obtained from the proposed method between specific land cover classes
and across the three study areas, we chose five different land cover types (i.e., open water, developed,
deciduous forest, evergreen forest, and mixed forest) as examples for analysis in Sections 4.1, 5.1 and 5.2
because they can be found in all three study areas.

Table 4. Average producer and user accuracies of the classifications derived from original percentiles
(see Table 3 for the associated overall accuracies). Ten independent classification experiments in total
were carried out.

OW D BL DF EF MF S G WW HW

Minnesota UA 95.13% 32.51% 96.78% 63.89% 17.72% 78.26% 83.71% 23.95% 81.86% 51.84%
PA 95.86% 77.42% 93.03% 72.18% 75.32% 78.74% 89.31% 83.28% 67.53% 62.89%

OW D DF EF MF G P CC
Iowa UA 64.09% 9.90% 96.08% 84.43% 5.05% 4.56% 55.10% 99.33%

PA 90.58% 71.41% 90.75% 90.00% 73.33% 37.66% 86.02% 94.35%
OW D DF EF MF P WW

New York UA 99.24% 67.36% 94.46% 19.29% 70.29% 84.43% 20.43%
PA 99.53% 74.27% 87.60% 61.28% 75.30% 92.46% 57.56%
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Table 5. Average producer and user accuracies of the classifications derived from TSM-adjusted
percentiles (see Table 3 for the associated overall accuracies). Ten independent classification experiments
in total were carried out. Note that the upward (downward) arrows indicate that the accuracies obtained
using the TSM-adjusted percentiles are significantly (at the 5% level) higher (lower) than that obtained
using the original percentiles. Figure without arrow behind it represents that there is no significant
difference between the two sets of classification.

OW D BL DF EF MF S G WW HW

Minnesota UA 94.96% 31.57% 96.12%↓ 65.84%↑ 21.14%↑ 82.25%↑ 74.90%↓ 23.20% 83.02%↑ 32.17%↓
PA 95.73% 79.80%↑ 91.84%↓ 75.60%↑ 82.71%↑ 76.16%↓ 84.36%↓ 66.94%↓ 73.67%↑ 52.47%↓

OW D DF EF MF G P CC
Iowa UA 60.70%↓ 9.57% 96.54% 83.84% 5.37% 3.24%↓ 60.79%↑ 99.29%

PA 90.53% 64.93%↓ 91.37%↑ 91.33% 80.00%↑ 43.13%↑ 84.53%↓ 95.31%↑
OW D DF EF MF P WW

New York UA 99.17% 64.87%↓ 97.07%↑ 26.58%↑ 83.64%↑ 88.05%↑ 17.88%↓
PA 98.97%↓ 81.90%↑ 91.77%↑ 79.01%↑ 83.12%↑ 91.73%↓ 75.75%↑

More specifically, the accuracies of open water had no significant difference, but it had lower UA in
Iowa and lower PA in New York. The improvement of developed was seen in terms of PA in Minnesota
and New York, but its PA was lower in Iowa and its UA was lower in New York. The accuracies
of deciduous forest were significantly improved across all three study areas except the UA in Iowa.
Evergreen forest had higher UA and PA in Minnesota and New York but had no significant difference
in classification accuracy in Iowa. The PA of Mixed forest was improved in Iowa and New York but
was decreased in Minnesota; the UA of it was improved in Minnesota and New York, but have no
significant difference in Iowa.

4.2. Spatially Explicit Classification Results

This section provides a spatial visualization of the classification results obtained using the original
and TSM-adjusted percentiles (see Figure 5). An individual final classification result of any single test
area is produced instead of examining the 10 random independent classification results (see Tables 3–5
for a summary of the associated classification accuracy metrics). The final classification results were
obtained by assigning the most frequent category in the 10 random forest classifications to each pixel.
The land-cover changes detected by the CCD algorithm for 2011 were labeled as “disturbed” in the
final classification results.
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Figure 5. Spatially explicit classifications of the three study areas for the target year 2011. Left-hand
column: the final classifications generated using 10 independent random forest (RF) supervised
classification results of original percentiles. Right-hand column: the final classifications generated
using 10 independent RF supervised classification results of proposed TSM-adjusted percentiles.
Top: Minnesota classification results, middle: Iowa classification results, and bottom: New York
classification results. Colors correspond to those used in Figure 1 except for the “Developed” class,
which is rendered in light pink. White shows the pixel locations where land-cover changes occurred:
these pixels were labeled as belonging to the “disturbed” class.
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5. Discussion

5.1. Effect of Phenological Characteristics

The mechanisms producing the changes in surface reflectance over time varied according to
the land-cover type. For example, the reflectance of deciduous forest changed over time due to the
phenological characteristics. For cover types that have no seasonal features, such as open water,
changes in illumination geometry led to the changes in surface reflectance (due to, for example,
the bidirectional reflectance distribution function (BRDF) effect). Nevertheless, the magnitude of the
changes caused by the illumination geometry was much smaller than that caused by phenological
characteristics. Figure 6 illustrates the changes in Landsat band-4 reflectance in 2011 for the deciduous
forest and open water cover types. It is evident that the band-4 reflectance reached its peak during the
growing season for deciduous forest and that for open water it did not vary significantly during the
whole year.
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Figure 6. Illustration of Landsat band-4 time-series for open water and deciduous forest in 2011.

Figure 7 illustrates the differences in PA and UA between the TSM-adjusted and original
percentiles-based classifications for the three study areas to show how the improvement in classification
accuracies using the proposed TSM-adjusted percentiles varied by cover type and across different
study areas. As expected, the improvement both in UA and PA for deciduous forest, evergreen forest,
and mixed forest were consistently observed across all the three study areas (except for the slightly
lower PA of mixed forest in Minnesota); the improvement was most significant in New York study
area, followed by Minnesota and least significant in Iowa. On the other hand, higher PA for forest
types with less improvement in UA would indicate lower rates of omission (more of what is forest
in the reference data is captured as such by the adjusted percentile feature classification), but similar
rates of commission (the adjusted percentile feature classification still misclassifies other classes as
forest at the same levels). There is no noteworthy improvement in classification accuracy for open
water across the three study areas using the proposed method (except for the slightly lower UA of
open water in Iowa). These results can be interpreted by considering that the percentiles capture the
magnitude of time-series reflectances. The gaps in time-series observations that are used to generate
percentile features have little impact on open water, where there is little change in reflectance over time.
However, these gaps have a great impact in the case of deciduous, evergreen and mixed forest where
there are great changes in reflectance over time due to phenological characteristics; this is especially
true in frequently cloud-covered areas—i.e., the areas with fewer valid observations. Thus, the original
percentiles derived from pixels with fewer valid observations might be not as much reliable to produce
accurate classification results as that derived from pixels with a good number of valid observations.
In contrast, the proposed TSM-adjusted percentiles could normalize the number of valid observations
for pixels using time series models. As a result, compared to using original percentiles, the use of
TSM-adjusted percentiles can significantly improve the classification accuracy for forest with obvious
phenological characteristics. The developed class exhibited a certain degree of uncertainty in accuracy
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variation across the three study areas, due to the complex spectral heterogeneity of the developed type.
For example, the developed type in NLCD consists of four sub-types with different levels of mixture of
constructed materials and vegetation. Therefore, the seasonal and non-seasonal spectral variation both
exist in developed type.
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5.2. Effect of the Frequency of Valid Observations

Missing data resulting from clouds, cloud shadows, snow, and the SLC-off problem is normal in
Landsat observation time-series. Although the implementation of percentile compositing can alleviate
the impact of missing data, the more missing data there are, the less reliable the resulting percentile
bands. Generally the distribution of missing satellite observations is not even over time [42–44]
and, consequently, the number and acquisition date of valid observations varied by pixels. Figure 8
illustrates the spatial patterns in the frequency of valid observations for the three study areas in 2011.
The corresponding histograms of the valid observations frequency for each study area were shown in
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Figure S2. In addition, the level of time series models (simple, advanced, and full) used for surface
reflectance estimation in 2011 for each pixel of each study area were provided in Figure S3.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 25 
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Figure 8. Spatial patterns in the number of valid observations in 2011 for the three study areas.
(left): Minnesota; (middle): Iowa; and (right): New York.

As can clearly be seen from Figure 9, the profiles of the original reflectance time-series of deciduous
forest samples with different numbers of valid observations are different; however, the profiles of the
synthetic reflectance time-series estimated by the time-series models are similar for all of the deciduous
forest samples regardless of valid observation counts. In fact, the percentile values were affected by
the number and magnitude of the time-series data, according to the formulae given in Section 3.2.1.
Therefore, it was expected that the proposed TSM-adjusted percentiles derived from the synthetic
time-series were less influenced by valid observation frequency, and that they would show less variation
and be more accurate than those obtained using original time-series in characterizing land-cover.
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Figure 9. Illustration of Landsat band-4 time-series of deciduous forest samples with different numbers
of valid observations during the year 2011. (The black dots indicate original time-series observations
and blue curves indicate synthetic time-series).

The effect of valid observation frequency (i.e., the number of valid observations) was examined by
calculating the classification accuracies of land cover types with different numbers of valid observations.
Figures 10–12 illustrate the responses of the classification accuracies for each land cover class to valid
observation counts in the three study areas. As evident, for open water and developed types, there is
no obvious difference between the accuracies obtained using the TSM-adjusted percentiles and those
obtained using the original percentiles regardless of the number of valid observations, except for UA
curve of open water in Iowa and PA curve of developed in New York. By contrast, for deciduous
forest in all three study areas and evergreen forest in Minnesota and New York study areas, the PA
obtained by using the TSM-adjusted percentiles are much better than those obtained using the original
percentiles especially when the number of valid observations is lower; the PA difference between the
two sets of results becomes smaller as the number of valid observations increases. Interestingly, except
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for evergreen forest in Iowa and mixed forest in Minnesota and New York study areas, UA curves
for forest types showed no obvious difference in performance between original percentiles-based
and TSM-adjusted percentiles-based classification across the different number of valid observations
in the three study areas. It was worth noting that, compared to using original percentiles, the use
of the TSM-adjusted percentiles can greatly improve the PA for deciduous forest types, especially
when the number of valid observations was fewer. Additionally, the accuracy differences between the
TSM-adjusted and original percentiles are smaller for open water and developed types regardless of
the frequency of valid observations.
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in Minnesota study area. Note that the black circles indicate that the accuracies obtained using the
TSM-adjusted percentiles are significantly (at the 5% level) different from the accuracies obtained using
the original percentiles.
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Figure 12. The average PA and UA of each land cover type against the number of valid observations
in New York study area. Note that the black circles indicate that the accuracies obtained using the
TSM-adjusted percentiles are significantly (at the 5% level) different from the accuracies obtained using
the original percentiles.

5.3. Effect of Training Data Sampling

In this section, the effect of training data sampling on overall classification accuracy obtained using
percentile features was investigated. In addition to the sampling strategy of training data (i.e., random
sampling across valid observation frequency stratums for each class) used in the previous experiment,
another two sampling strategies were adopted: one is random sampling of training pixels limited to
locations with high observation frequencies, another is random sampling of training pixels limited to
locations with low observation frequencies. Due to the spatially random intersection of land cover and
valid observation frequency stratums, the superior percentile features should be robust to sampling
strategies of training data.

Figure 13 illustrated the overall classification accuracy provided by original and TSM-adjusted
percentiles using the three different sampling strategies in the three study areas. All the overall
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accuracies obtained using TSM-adjusted percentiles were consistently significantly higher (at the 5%
level) than that obtained using original percentiles. The great variation of OA arising from different
sampling strategies for original percentiles demonstrated that the pixel-wise uncertainty of valid
observation frequency leads to a certain level of bias in original percentile features. In contrast,
the OA variation induced by sampling strategy for TSM-adjusted percentiles was less than that for
original percentiles; this result suggested that the proposed TSM-adjusted percentiles were robust to
different sampling strategies. It is mainly because the valid observation frequencies, from which the
TSM-adjusted percentiles were derived, for the entire classified study area were harmonized using
time series model estimation. The greatest improvement with the proposed method was seen in the
scenarios of the first and third sampling strategies. This also could be supported by some close-ups
illustrated in Figure 14. As shown in Figure 14, the spatial patterns of classification results derived
from TSM-adjusted percentiles were consistent regardless of the sampling method used. In contrast,
the original percentiles-based classifications obtained using different sampling strategies have obvious
difference. Based on the visual consistency with the reference data of NLCD and Landsat, the largest
improvement using the proposed TSM-adjusted percentiles in Iowa study area could be observed
from the third scenario, followed by the first scenario, and the second scenario was least. This result
suggests that the large range of variation in valid observation frequency for the training and test data
provides more opportunities for the robustness to missing observations provided by the TSM-adjusted
percentiles to become evident. In addition, it was worth noting that the OA difference between the
two sets of classification was substantially reduced using the second strategy. It is demonstrated that
the random sampling across valid observation frequency stratums for each land cover class could
slightly compensate for the bias of original percentile features caused by pixel-wise uncertainty of
valid observation frequency.
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Figure 13. Sensitivity of the overall classification accuracy to different sampling strategies of training
data in Minnesota (a), Iowa (b), and New York (c) study area. Left column: random sampling of
training pixels limited to locations with low observation frequencies. Middle column: random sampling
across valid observation frequency stratums for each class (used in this paper). Right column: random
sampling of training pixels limited to locations with high observation frequencies.
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6. Conclusions

Due to gaps resulting from clouds, cloud shadows, snow, and the SLC-off problem in Landsat
time-series, the temporal distribution of valid observations is highly uneven across different pixels.
Therefore, the percentile features derived from such time-series data may not provide the accurate
characterization of land covers. The intent of this study was to propose the TSM-adjusted percentile to
enhance the performance of original percentiles in characterizing land covers, and then improve the
accuracy of land cover classification based on these metrics.

The proposed method was implemented in time-series of Landsat data covering three study
areas wherein time-series had a considerable amount of missing data. The classification results were
compared with those obtained using the original percentiles. According to the experimental results,
the main findings of the work were highlighted:
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(i) The land-cover classifications obtained using the proposed TSM-adjusted percentiles had
significantly higher overall accuracies than those obtained using the original percentiles.

(ii) The TSM-adjusted percentile features were more effective for forest types with obvious
phenological characteristics and with less valid observations.

(iii) The performance of TSM-adjusted percentiles was robust to the training data sampling strategy.
The performance difference between the two sets of results was alleviated when using the random
sampling across valid observation frequency stratums for each land cover class.

The proposed method also has limitations. First, the continuous change detection algorithm based
on all available Landsat data was computationally complicated, the out of memory or computation time
out problems may occur for the large area application although CCD algorithms are available within
GEE platform. Second, future work could focus on using the cross-platform images (for example,
Landsat and Sentinel-2 together). An increase number of valid observations benefit from the combined
using of multi-platform data would minimize the issue of the original percentiles, although the
Sentinel-2 data are only available after the year 2015.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/3091/s1,
Figure S1: Maps with only pixels can be selected for training/testing. Black indicated the pixels which were
removed from NLCD data using spatio-temporal filtering methods. Left: Minnesota study area; middle: Iowa
study area; and right: New York study area, Figure S2: Histograms showing observations of each study area.
Left: Minnesota study area; middle: Iowa study area; and right: New York study area, Figure S3: Maps showing
the time series models used for surface reflectance estimation in 2011. White shows the pixel locations where
land-cover changes occurred. Left: Minnesota study area; middle: Iowa study area; and right: New York
study area.
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