Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning
Abstract
:1. Introduction
2. Methodology
2.1. Dataset Acquisition and Reconstruction
2.2. Model Structures
2.3. Implementation Details
3. Results
4. Discussion
4.1. Accuracy Analysis and Comparison
4.2. Potential Application of the Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, S.-S.; Talukder, A. Automated cyclone discovery and tracking using multiple knowledge sharing in multiple heterogeneous satellite data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, MV, USA, 24–27 August 2009; pp. 928–936. [Google Scholar]
- Barnett, T.P. Variations in near global sea level pressure. J. Atmos. Sci. 1985, 42, 478–501. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, M.R. Objective identification of cyclones and their circulation intensity and climatology. Wea Forecast. 1997, 12, 595–612. [Google Scholar] [CrossRef]
- Pinto, J.G.; Spangehl, T.; Ulbrich, U.; Speth, P. Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteorol. Z. 2005, 14, 823–838. [Google Scholar] [CrossRef]
- Rudeva, I.; Gulev, S.K. Climatology of cyclone size characteristics and their changes during the cyclone life cycle. Mon. Wea. Rew. 2007, 135, 2568–2587. [Google Scholar] [CrossRef]
- Simmonds, I.; Burke, C.; Keay, K. Arctic climate change as manifest in cyclone behavior. J. Climate 2008, 21, 5777–5796. [Google Scholar] [CrossRef]
- Hanley, J.; Caballero, R. Objective identification and tracking of multicentre cyclones in the ERA-Interim reanalysis dataset. Q. J. R. Meteorol. Soc. 2012, 138, 612–625. [Google Scholar] [CrossRef]
- Theisel, H.; Sahner, J.; Weinkauf, T.; Hega, H.-C.; Seidel, H.-P. Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking. In Proceedings of the IEEE Visualization Conference, Minneapolis, MN, USA, 23–28 October 2005; pp. 631–638. [Google Scholar]
- Liu, S.-D.; Shi, S.-Y.; Liu, S.-K.; Fu, Z.-T.; Liang, F.-M.; Xin, G.-J. Vortex of fluid field as viewed from curvature. Commun. Theor. Phys. 2005, 43, 604–606. [Google Scholar]
- Okubo, A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abs. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 1991, 48, 273–294. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Garcia-Ladona, E.; Font, J. Identification of marine eddies from altimetric maps. J. Atoms. Ocean. Technol. 2003, 20, 772–778. [Google Scholar] [CrossRef]
- Morrow, R.; Birol, F.; Griffin, D.; Sudre, J. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett. 2004, 31, L24311. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; Garcia-Ladona, E.; Font, J. Vortices of Mediterranean Sea: An altimetric Prospective. J. Phys. Oceanogr. 2006, 36, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Henson, S.A.; Thomas, A.C. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Res. Pt. I 2008, 55, 163–176. [Google Scholar] [CrossRef]
- Xiu, P.; Chai, F.; Shi, L.; Xue, H.; Chao, Y. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res. 2010, 115, C03012. [Google Scholar] [CrossRef] [Green Version]
- Nan, F.; He, Z.; Zhou, H.; Wang, D. Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res. 2011, 116, C05002. [Google Scholar] [CrossRef]
- Yi, J.; Du, Y.; He, Z.; Zhou, C. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean. Sci. 2014, 10, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Post, F.H.; Vrolijk, B.; Hauser, H.; Laramee, R.S.; Doleisch, H. The state of the art in flow visualization: Feature extraction and tracking. Comput. Graph. Forum 2003, 22, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.-Y.; Yip, C.-L. Identifying centers of circulating and spiraling vector field patterns and its applications. Pattern Recogn. 2009, 42, 1371–1387. [Google Scholar] [CrossRef]
- Inatsu, M. The neighbor enclosed area tracking algorithm for extratropical wintertime cyclones. Atmos. Sci. Lett. 2009, 10, 267–272. [Google Scholar] [CrossRef]
- Zou, J.; Lin, M.; Xie, X.; Lang, S.; Cui, S. Automated typhoon identification from QuikSCAT wind data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4158–4161. [Google Scholar]
- Warunsin, K.; Chitsobhuk, O. Storm eye identification using fuzzy inference system. Int. J. Innov. Comput. Info. Control. 2016, 12, 1333–1349. [Google Scholar]
- Chelton, D.; Schlax, M.; Samelson, R.; de Szoeke, R. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atoms. Oceanic Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Williams, S.J.; Petersen, M.R.; Bremer, P.-T.; Hecht, M.W.; Pascucci, V.; Ahrens, J.; Hlawitschka, M.; Hamann, B. Adaptive extraction and quantification of geophysical vortices. IEEE T. Vis. Comput. Gr. 2011, 17, 2088–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.R.; Williams, S.J.; Maltrud, M.E.; Hecht, M.W.; Hamann, B. A three-dimensional eddy census of a high-resolution global ocean simulation. J. Geophys. Res. Ocean. 2013, 118, 1759–1774. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Zhang, J.; Yang, J.; Song, P.; Cui, W. A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering. Acta Oceanol. Sin. 2019, 38, 134–141. [Google Scholar] [CrossRef]
- Ashkezari, M.D.; Hill, C.N.; Follett, C.N.; Forget, G.; Follows, M.J. Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett. 2016, 43, 12.234–12.241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-P.; Zhang, L.-F.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geo. Remote Sens. M. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geo. Remote Sens. M. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Luus, F.P.S.; Salmon, B.P.; van den Bergh, F.; Maharaj, B.T. Multiview deep learning for land-use classification. IEEE Geo. Remote Sens. Lett. 2015, 12, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Karalas, K.; Tsagkatakis, G.; Zervakis, M.; Tsakalides, P. Deep learning for multi-label land cover classification. In Proceedings of the SPIE Remote Sensing, Toulouse, France, 21–24 September 2015; pp. 9643–9657. [Google Scholar]
- Almeida, J.; Pedronette, D.C.G.; Alberton, B.C.; Morellato, L.P.C.; Torres, R.D.S. Unsupervised distance learning for plant species identification. IEEE J. Sel. Topics App. Earth Obs. Remote Sens. 2016, 9, 5325–5338. [Google Scholar] [CrossRef]
- Fan, S.; Li, Y.; Yan, Z.; Guo, L.; Wang, X. Vegetation recognition based on deep learning with feature fusion. In Proceedings of the International Conference on Advances in Image Processing, Bangkok, Thailand, 25–27 August 2017; pp. 19–23. [Google Scholar]
- Liu, L.; Silva, E.A.; Wu, C.Y.; Wang, H. A machine learning-based method for the large-scale evaluation of the qualities of the urban environment. Comput. Environ. Urban. Syst. 2017, 65, 113–125. [Google Scholar] [CrossRef]
- Ye, N.; Wang, B.; Kita, M.; Xie, M.; Cai, W. Urban commerce distribution analysis based on street view image and deep learning. IEEE Access 2019, 7, 162.841–162.849. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle detection in satellite image by hybrid deep convolutional neural networks. IEEE Geo. Remote Sens. Lett. 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.-B.; Zhao, B. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geo. Remote Sens. 2014, 53, 1174–1185. [Google Scholar] [CrossRef]
- Lee, R.S.T.; Liu, J. Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques. IEEE Trans. Neural Networks 2000, 11, 680–689. [Google Scholar] [CrossRef]
- Jaiswal, N.; Kishtawal, C.N. Automatic determination of center of tropical cyclone in satellite-generated IR images. IEEE Geo. Remote Sens. Lett. 2011, 8, 460–463. [Google Scholar] [CrossRef]
- Xu, X.; Liu, C.; Liu, J. A novel algorithm for the objective detection of tropical cyclone centres using infrared satellite images. Remote Sens. Lett. 2016, 7, 541–550. [Google Scholar] [CrossRef]
- Bai, X.; Wang, C.; Li, C. A streampath-based RCNN approach to ocean eddy detection. IEEE Access 2019, 7, 106.336–106.345. [Google Scholar] [CrossRef]
- Ho, S.-S.; Talukder, A. Automated cyclone identification from remote QuikSCAT satellite data. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–9. [Google Scholar]
- Ho, S.-S.; Talukder, A. Automated cyclone tracking using multiple remote satellite data via knowledge transfer. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2009; pp. 1–7. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster-RCNN: Towards real-time object detection with region proposal networks. In Proceedings of the Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 265–283. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve Restricted Boltzmann machines. In Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Kudlur, M.; Devin, M.; Ghemawat, S. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating System Design and Implementation (OSDI), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
True Positive Rate (TPR) | True Negative Rate (TNR) | False Positive Rate (FPR) | False Negative Rate (FNR) | |
---|---|---|---|---|
Cyclone | 0.9130 | 0.8795 | 0.1215 | 0.0870 |
Anticyclone | 0.9324 | 0.9176 | 0.0824 | 0.0676 |
TPR | TNR | FPR | FNR | |
---|---|---|---|---|
Faster- region with convolutional neural network (faster-RCNN) | 0.9130 | 0.8795 | 0.1215 | 0.0870 |
Support vector machine (SVM) [44] | 0.8759 | 0.7002 | 0.2998 | 0.1241 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Li, Y.; Cao, K. Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning. Remote Sens. 2020, 12, 3111. https://doi.org/10.3390/rs12193111
Xie M, Li Y, Cao K. Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning. Remote Sensing. 2020; 12(19):3111. https://doi.org/10.3390/rs12193111
Chicago/Turabian StyleXie, Ming, Ying Li, and Kai Cao. 2020. "Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning" Remote Sensing 12, no. 19: 3111. https://doi.org/10.3390/rs12193111
APA StyleXie, M., Li, Y., & Cao, K. (2020). Global Cyclone and Anticyclone Detection Model Based on Remotely Sensed Wind Field and Deep Learning. Remote Sensing, 12(19), 3111. https://doi.org/10.3390/rs12193111