Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Flowchart of Technical Process
2.3.2. Indicators
2.3.3. Classification and Accuracy Assessment Methods
2.3.4. Quantitative Assessment of the Driving Mechanisms
3. Results
3.1. Quality Assessment
3.2. Change Patterns of Desertification
3.3. Impacts of Human Activities and Climate Change on Desertification
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Convention to Combat Desertifification (UNCCD). United Nations Convention to Combat Desertifification in Countries Experiencing Serious Drought and/or Esertifification, Particularly in Africa; United Nations: Paris, France, 1994. [Google Scholar]
- Collado, A.D.; Chuvieco, E.; Camarasa, A. Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina. J. Arid Environ. 2002, 52, 121–133. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, H. United Nations: Convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. Int. Legal. Mater. 1994, 33, 1328–1382. [Google Scholar]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbut, M.; Alexander, S. Land degradation as a security threat amplifier: The new global frontline. In Land Restoration; Academic Press: Cambridge, MA, USA, 2016; pp. 3–12. [Google Scholar]
- Johnson, P.M.; Mayrand, K.; Paquin, M. Governing Global Desertification: Linking Environmental Degradation, Poverty and Participation; Ashgate Publishing, Ltd.: Farnham, UK, 2006. [Google Scholar]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.J.; Luise, A.; Ratsimba, H.R.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- Fan, Z.; Bai, R.; Yue, T. Scenarios of land cover in Eurasia under climate change. J. Geogr. Sci. 2020, 30, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Fan, B.; Yue, T. Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Sci. China-Earth Sci. 2019, 62, 1607–1618. [Google Scholar] [CrossRef]
- Sternberg, T.; Rueff, H.; Middleton, N. Contraction of the Gobi desert, 2000–2012. Remote Sens. 2015, 7, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Del Valle, H.; Elissalde, N.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Land Res. Manag. 1998, 12, 95–121. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Tucker, C.J.; Dregne, H.E.; Newcomb, W.W. Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 1991, 253, 299–300. [Google Scholar] [CrossRef]
- Holm, A.M.; Cridland, S.W.; Roderick, M.L. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sens. Environ. 2003, 85, 145–158. [Google Scholar] [CrossRef]
- Geerken, R.; Ilaiwi, M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ. 2004, 90, 490–504. [Google Scholar] [CrossRef]
- Karnieli, A.; Bayarjargal, Y.; Bayasgalan, M.; Mandakh, B.; Dugarjav, C.; Burgheimer, J.; Khudulmur, S.; Bazha, S.; Gunin, P. Do vegetation indices provide a reliable indication of vegetation degradation? A case study in the Mongolian pastures. Int. J. Remote Sens. 2013, 34, 6243–6262. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Becerril-Pina, R.; Mastachi-Loza, C.A.; González-Sosa, E.; Díaz-Delgado, C.; Bâ, K.M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid Environ. 2015, 120, 4–13. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Zhao, X.-Y.; Zhou, R.-L.; Zhang, T.-H.; Drake, S. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J. Arid Environ. 2005, 62, 309–319. [Google Scholar] [CrossRef]
- Wang, X.; Hua, T.; Lang, L.; Ma, W. Spatial differences of aeolian desertification responses to climate in arid Asia. Glob. Planet. Chang. 2017, 148, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Tollefson, J.; Gilbert, N. Rio report card: The world has jailed to deliver on many of the promises it made 20 years ago at the Earth summit in Brazil. Nature 2012, 486, 20–24. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, J.Y.; Lee, W.K.; Lee, E.J.; Kim, M.; Lim, C.H.; Choi, H.A.; Kim, S.R. Assessment of land cover change and desertification using remote sensing technology in a local region of Mongolia. Adv. Space Res. 2016, 57, 64–77. [Google Scholar] [CrossRef]
- Ma, Z.; Xie, Y.; Jiao, J.; Wang, X. The Construction and Application of an Aledo-NDVI Based Desertification Monitoring Model. Procedia Environ. Sci. 2011, 10, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wang, S.J.; Bai, X.Y.; Liu, F.; Zhou, D.Q.; Tian, Y.C.; Luo, G.J.; Li, Q.; Wu, L.H.; Zheng, C.; et al. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 2019. [Google Scholar] [CrossRef]
- Xu, E.Q.; Zhang, H.Q.; Li, M.X. Object-based mapping of karst rocky desertification using a support vector machine. Land Degrad. Dev. 2015, 26, 158–167. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, B.; Shi, P.; Cudahy, T.; Zhang, J.; Xu, H. Satellite Monitoring the Spatial-Temporal Dynamics of Desertification in Response to Climate Change and Human Activities across the Ordos Plateau, China. Remote Sens. 2017, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Noyola-Medrano, C.; Martinez-Sias, V.A. Assessing the progress of desertification of the southern edge of Chihuahuan Desert: A case study of San Luis Potosi Plateau. J. Geogr. Sci. 2017, 27, 420–438. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.H.; Li, T.Y. Extracting desertification from Landsat TM imagery based on spectral mixture analysis and Albedo-Vegetation feature space. Nat. Hazards 2013, 68, 915–927. [Google Scholar] [CrossRef]
- Hu, Y.F.; Hu, Y. Land cover changes and their driving mechanisms in central asia from 2001 to 2017 supported by google earth engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Veron, S.; Paruelo, J.; Oesterheld, M. Assessing desertification. J. Arid Environ. 2006, 66, 751–763. [Google Scholar] [CrossRef]
- Sun, D.F.; Dawson, R.; Li, B.G. Agricultural causes of desertification risk in Minqin, China. J. Environ. Manage. 2006, 79, 348–356. [Google Scholar]
- Xu, H.L.; Ye, M.; Song, Y.D.; Chen, Y.N. The natural vegetation responses to the groundwater change resulting from ecological water conveyances to the lower tarim river. Environ. Monit. Assess. 2007, 131, 37–48. [Google Scholar] [CrossRef]
- Xie, L.; Zhong, J.; Chen, F.; Cao, F.; Li, J.; Wu, L. Evaluation of soil fertility in the succession of karst rocky desertification using principal component analysis. Solid Earth 2015, 6, 515. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.; Prince, S.; Reshef, I. Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J. Arid Environ. 2008, 72, 1940–1949. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Haberl, H. Human appropriation of net primary production as an environmental indicator: Implications for sustainable development. Ambio 1997. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Hua, T. Roles of climate changes and human interventions in land degradation: A case study by net primary productivity analysis in China’s Shiyanghe Basin. Environ. Earth Sci. 2011, 64, 2183–2193. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Ehrlich, P.R.; Ehrlich, A.H.; Matson, P.A. Human appropriation of the products of photosynthesis. BioScience 1986, 36, 368–373. [Google Scholar] [CrossRef]
- Xu, D.; Li, C.; Song, X.; Ren, H. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore III, B. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Markert, K.N.; Schmidt, C.M.; Griffin, R.E.; Flores, A.I.; Poortinga, A.; Saah, D.S.; Muench, R.E.; Clinton, N.E.; Chishtie, F.; Kityuttachai, K. Historical and operational monitoring of surface sediments in the lower mekong basin using landsat and google earth engine cloud computing. Remote Sens. 2018, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Nyland, K.E.; Gunn, G.E.; Shiklomanov, N.I.; Engstrom, R.N.; Streletskiy, D.A. Land cover change in the lower Yenisei River using dense stacking of landsat imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007. [Google Scholar] [CrossRef] [Green Version]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Duan, H.C.; Wang, T.; Xue, X.; Liu, S.L.; Guo, J. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China. Environ. Monit. Assess. 2014, 186, 6083–6096. [Google Scholar] [CrossRef]
- Wang, T.; Wu, W.; Xue, X.; Sun, Q.W.; Chen, G.T. Study of spatial distribution of sandy desertification in North China in recent 10 years. Sci. China Ser. D-Earth Sci. 2004, 47, 78–88. [Google Scholar] [CrossRef]
- Lieth, H. Evapotranspiration and primary productivity: CW Thornthwaite memorial model. Pub. Climatol. 1972, 25, 37–46. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Serrano, L.; Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Penuelas, J. Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Peng, F.; Fan, W.J.; Xu, X.R.; Liu, X.; IEEE. Analysis on temporal-spatial change of vegetation coveraga in hulunbuir steppe (2000–2014). In 2016 IEEE International Geoscience and Remote Sensing Symposium; IEEE: New York, NY, USA, 2016; pp. 4514–4517. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Mallet, C.; Bretar, F.; Roux, M.; Soergel, U.; Heipke, C. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS-J. Photogramm. Remote Sens. 2011, 66, S71–S84. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.F.; Liu, Z.; Zhan, Y.; Ni, K.; Zhang, Y.Z.; Ma, W.Z.; Shao, S.Z.; Lv, X.N.; Yuan, Y.W.; Rogers, K.M. Predictive geographical authentication of green tea with protected designation of origin using a random forest model. Food Control 2020, 107. [Google Scholar] [CrossRef]
- Gromski, P.S.; Correa, E.; Vaughan, A.A.; Wedge, D.C.; Turner, M.L.; Goodacre, R. A comparison of different chemometrics approaches for the robust classification of electronic nose data. Anal. Bioanal. Chem. 2014, 406, 7581–7590. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.M.; Li, J.; Yue, T.X.; Zhou, X.; Lan, A.J. Scenarios of land cover in Karst area of Southwestern China. Environ. Earth Sci. 2015, 74, 6407–6420. [Google Scholar] [CrossRef]
- Fan, Z.M.; Li, J.; Yue, T.X. Land-cover changes of biome transition zones in Loess Plateau of China. Ecol. Model. 2013, 252, 129–140. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.; Glassy, J.M.; Thornton, P.E. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17), Algorithm Theoretical Basis Document. University of Montana, SCF At-Launch Algorithm ATBD Documents. 1999. Available online: https://lpdaac.usgs.gov/documents/95/MOD17_ATBD.pdf (accessed on 20 September 2020).
- De Caceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. Estimating daily meteorological data and downscaling climate models over landscapes. Environ. Modell. Softw. 2018, 108, 186–196. [Google Scholar] [CrossRef]
- Saboori, M.; Torahi, A.A.; Bakhtyari, H.R.R. Combining multi-scale textural features from the panchromatic bands of high spatial resolution images with ANN and MLC classification algorithms to extract urban land uses. Int. J. Remote Sens. 2019, 40, 8608–8634. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Yu, S.N.; Zhang, X.K.; Zhang, X.L.; Liu, H.J.; Qi, J.G.; Sun, Y.K. Detecting and Assessing Nondominant Farmland Area with Long-Term MODIS Time Series Images. Remote Sens. 2020, 12, 2441. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Jamsranjav, C.; Fernández-Giménez, M.E.; Reid, R.S.; Adya, B. Opportunities to integrate herders’ indicators into formal rangeland monitoring: An example from Mongolia. Ecol. Appl. 2019, 29, e01899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Huang, J.P.; Yu, H.P.; Guan, X.D.; Wang, G.Y.; Guo, R.X. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Xu, D.Y.; Kang, X.W.; Zhuang, D.F.; Pan, J.J. Multi-scale quantitative assessment of the relative roles of climate change and human activities in desertification—A case study of the Ordos Plateau, China. J. Arid Environ. 2010, 74, 498–507. [Google Scholar] [CrossRef]
Data | Data Sources | Spatial Resolution | Temporal Resolution/Data Acquisition Dates | Data ID 1 |
---|---|---|---|---|
Landsat | http://landsat.usgs.gov/ | 30 m | 16 days/2000, 2015 | LANDSAT/LT05/C01/T1_SR; LANDSAT/LE07/C01/T1_SR; LANDSAT/LC08/C01/T1_SR |
SRTM3 | http://dwtkns.com/srtm30m/ | 30 m | —/— | USGS/SRTMGL1_003 |
LST | https://lpdaac.usgs.gov/products/mod11a2v006/ | 1000 m | 8 days/2000-2015 | MODIS/006/MOD11A2 |
ESA LC | http://maps.elie.ucl.ac.be/CCI/viewer/download.php | 300 m | 1 year/2000, 2015 | — |
MCD12Q1 | https://lpdaac.usgs.gov/products/mcd12q1v006/ | 500 m | 1 year/2000, 2015 | MODIS/006/MCD12Q1 |
Sentinel-2 | https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c | 10 m | 5 days/2015 | COPERNICUS/S2 |
VCF | https://lpdaac.usgs.gov/products/gfcc30tcv003/ | 30 m | —/2000, 2005, 2010, 2015 | GLCF/GLS_TCC |
Sand Content | https://www.openlandmap.org/ | 250 m | —/— | OpenLandMap/SOL/SOL_SAND-WFRACTION_USDA-3A1A1A_M/v02 |
Global Flux Tower | https://daac.ornl.gov/ | — | —/2000, 2015 | — |
NPP | https://lpdaac.usgs.gov/products/mod17a3hv006/ | 500 m | 1 year/2000-2015 | MODIS/006/MOD17A3H; |
WorldClim Rainfall | http://www.climatologylab.org/terraclimate.html | 2.5 arc minutes | 1 month/2000-2015 | IDAHO_EPSCOR/TERRACLIMATE |
PML | — | 500 m | 8 days/2000-2015 | projects/pml_evapotranspiration/PML/OUTPUT/PML_V1_8day |
GDP | http://sedac.ciesin.columbia.edu/data/collection/gpw-v4 | 30 arc-seconds | —/2000, 2005, 2010, 2015 | — |
GLDAS | http://ldas.gsfc.nasa.gov/gldas/ | 0.25 arc degrees | 3 h/2000–2015 | ASA/GLDAS/V021/NOAH/G025/T3H |
Desertification Status | Visual Interpretation | Land Cover Characteristics | Vegetation Coverage (%) |
---|---|---|---|
Non-desertification | Forests, cropland, and high coverage rate of grassland | >65 | |
Slight | Vegetation degradation; the growth of the original plant species was affected | 50–65 | |
Moderate | Degenerated plants, low shrub, and sand mounds | 10–50 | |
High | The vegetation land starts to convert into wildland in some areas; the grass is mixed with sandy plants in the grassland area | 1–10 | |
Severe | Bare land, sandy land, and the Gobi desert | <1 |
Spectral Indices | Equation 1 |
---|---|
NDVI | |
FVC | |
MSAVI | |
NDWI | |
TGSI | |
Albedo | |
BSI |
Model’s Name | Model Mechanisms |
---|---|
Classification and regression tree (CART) | The target variables (desertification degrees) and the test variables (desertification indicators) of the training sample set can be divided into two groups to form a binary tree model. |
Support vector machine (SVM) | In the feature space of the training dataset, SVM is based on the kernel function to find the support vector with a large distinguishing function and construct the classifier, so as to maximize the distance of desertification degrees in the sample. |
Random forest (RF) | Based on the statistical theory, RF uses a bootstrap sampling method to extract multiple sample sets from the original sample set and then adopts a decision tree for each sample set, which can combine multiple decision trees for prediction, and finally obtains the prediction results through voting. |
Albedo-NDVI | Utilizing the negative correlation between Albedo and NDVI, the normalized NDVI and Albedo values are constructed into the Albedo-NDVI feature space scatter diagram, and then the linear relationship between them is determined to attain the desertification difference index (DDI) 1. |
Desertification Status | Scenarios | Sp | SH | Definition |
---|---|---|---|---|
reversion | Scenario 1 | >0 | >0 | The driving force of climate change is 100% |
Scenario 2 | <0 | <0 | The driving force of human activities is 100% | |
Scenario 3 | >0 | <0 | The driving force of desertification reversion partly results from climate change (i.e., ), while the driving force of human activities is the remaining part of the total. | |
Scenario 4 | <0 | >0 | The scenario is defined as an “Error” area where the actual vegetation growth is getting better, but the impact of climate change and human activities are causing more land degradation. | |
Expansion | Scenario 1 | <0 | <0 | The driving force of climate change is 100% |
Scenario 2 | >0 | >0 | The driving force of human activities is 100% | |
Scenario 3 | <0 | >0 | The driving force of desertification expansion partly results from climate change (i.e., ), while the driving force of human activities is the remaining part of the total. | |
Scenario 4 | >0 | <0 | The scenario is defined as an “Error” area where the actual vegetation status is degrading, but the impact of climate change and human activities benefited better vegetation growth. |
Algorithms | Non-Desertification | Slight | Moderate | High | Severe | OA | Kappa | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |||
CART | 95.7 | 95.5 | 58.6 | 77.5 | 70 | 77.5 | 75 | 37.5 | 83.4 | 85.7 | 85 | 0.754 |
SVM | 82.2 | 86.3 | 17.1 | 21.2 | 40 | 75 | 75 | 18.1 | 10 | 75 | 58.75 | 0.396 |
RF | 88.5 | 92 | 34.2 | 39.3 | 50 | 62.5 | 100 | 41.4 | 90 | 100 | 75 | 0.602 |
Albedo-NDVI | 87.5 | 91.9 | 0 | 0 | 100 | 50 | 100 | 100 | 100 | 100 | 85 | 0.722 |
Severe | High | Moderate | Slight | Non-Desertification | |||
---|---|---|---|---|---|---|---|
Total | 2000 | Area | 538,358 | 441,703 | 168,064 | 719,685 | 4,557,603 |
Percentage | 8.24 | 6.76 | 2.57 | 11.01 | 69.73 | ||
2015 | Area | 465,269 | 398,478 | 154,157 | 947,999 | 4,431,883 | |
Percentage | 7.12 | 6.10 | 2.36 | 14.50 | 67.81 | ||
2000–2015 | Area | −73,089 | −43,225 | −13,907 | 228,314 | −125,720 | |
Percentage | −13.58% | −9.79% | −8.27% | 31.72% | −2.76% | ||
China | 2000 | Area | 362,888 | 196,807 | 124,393 | 310,998 | 170,692 |
Percentage | 13.29 | 7.21 | 4.56 | 11.39 | 62.53 | ||
2015 | Area | 272,208 | 193,098 | 95,898 | 401,396 | 172,054 | |
Percentage | 9.93 | 7.04 | 3.50 | 14.64 | 62.75 | ||
2000–2015 | Area | −90,680 | −3709 | −28,495 | 90,398 | 1362 | |
Percentage | −24.99% | −1.88% | −22.91% | 29.07% | 0.80% | ||
Mongolia | 2000 | Area | 171,887 | 226,925 | 42,866 | 301,878 | 363,434 |
Percentage | 15.50 | 20.46 | 3.87 | 27.22 | 32.78 | ||
2015 | Area | 190,895 | 190,513 | 54,897 | 400,772 | 269,648 | |
Percentage | 17.22 | 17.18 | 4.95 | 36.14 | 24.32 | ||
2000–2015 | Area | 19,008 | −36,412 | 12,031 | 98,894 | −93,786 | |
Percentage | 11.06% | −16.05% | 28.07% | 32.76% | −25.81% | ||
Russia | 2000 | Area | 3583 | 17,971 | 804 | 106,810 | 248.73 |
Percentage | 0.13 | 0.67 | 0.03 | 3.96 | 92.20 | ||
2015 | Area | 2167 | 14,867 | 3363 | 145,831 | 244.17 | |
Percentage | 0.08 | 0.55 | 0.13 | 5.43 | 90.93 | ||
2000–2015 | Area | −1416 | −3104 | 2559 | 39,021 | −5 | |
Percentage | −39.52% | −17.27% | 318.28% | 36.53% | −1.83% |
Significant Expansion | Expansion | No Conversion | Reversion | Significant Reversion | ||
---|---|---|---|---|---|---|
Total | Area | 82,143 | 550,516 | 5,288,340 | 393,120 | 221,775 |
Percentage | 1.26 | 8.42 | 80.91 | 6.01 | 3.39 | |
China | Area | 40,218 | 194,653 | 2,107,904 | 233,211 | 153,514 |
Percentage | 1.47 | 7.13 | 77.23 | 8.54 | 5.62 | |
Mongolia | Area | 36,920 | 281,681 | 603,662 | 126,108 | 60,490 |
Percentage | 3.33 | 25.40 | 54.44 | 11.37 | 5.46 | |
Russia | Area | 5005 | 74,182 | 2,576,774 | 33,801 | 7771 |
Percentage | 0.19 | 2.75 | 95.52 | 1.25 | 0.29 |
Climate Change | Human Activities | Error | |||||
---|---|---|---|---|---|---|---|
Reversion | Expansion | Reversion | Expansion | Reversion | Expansion | ||
Total | Area | 381.16 | 8.29 | 151.60 | 396.65 | 21.24 | 164.32 |
Percentage | 68.80 | 1.46 | 27.37 | 69.68 | 3.83 | 28.87 | |
China | Area | 269.88 | 0.58 | 78.09 | 144.91 | 0.36 | 65.62 |
Percentage | 77.48 | 0.27 | 22.42 | 68.64 | 0.10 | 31.09 | |
Mongolia | Area | 97.10 | 0.01 | 70.81 | 188.27 | 0.28 | 98.62 |
Percentage | 57.73 | 0.00 | 42.10 | 65.62 | 0.16 | 34.38 | |
Russia | Area | 14.18 | 2.90 | 2.69 | 63.47 | 20.60 | 0.08 |
Percentage | 37.84 | 4.37 | 7.19 | 95.52 | 54.97 | 0.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Li, S.; Fang, H. Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sens. 2020, 12, 3170. https://doi.org/10.3390/rs12193170
Fan Z, Li S, Fang H. Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sensing. 2020; 12(19):3170. https://doi.org/10.3390/rs12193170
Chicago/Turabian StyleFan, Zemeng, Saibo Li, and Haiyan Fang. 2020. "Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data" Remote Sensing 12, no. 19: 3170. https://doi.org/10.3390/rs12193170
APA StyleFan, Z., Li, S., & Fang, H. (2020). Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sensing, 12(19), 3170. https://doi.org/10.3390/rs12193170