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Abstract: During water stress, crops undertake adjustments in functional, structural, and biochemical
traits. Hyperspectral data and machine learning techniques (PLS-R) can be used to assess water
stress responses in plant physiology. In this study, we investigated the potential of hyperspectral
optical (VNIR) measurements supplemented with thermal remote sensing and canopy height (hc) to
detect changes in leaf physiology of soybean (C3) and maize (C4) plants under three levels of soil
moisture in controlled environmental conditions. We measured canopy evapotranspiration (ET),
leaf transpiration (Tr), leaf stomatal conductance (gs), leaf photosynthesis (A), leaf chlorophyll content
and morphological properties (hc and LAI), as well as vegetation cover reflectance and radiometric
temperature (TL,Rad). Our results showed that water stress caused significant ET decreases in both
crops. This reduction was linked to tighter stomatal control for soybean plants, whereas LAI changes
were the primary control on maize ET. Spectral vegetation indices (VIs) and TL,Rad were able to track
these different responses to drought, but only after controlling for confounding changes in phenology.
PLS-R modeling of gs, Tr, and A using hyperspectral data was more accurate when pooling data from
both crops together rather than individually. Nonetheless, separated PLS-R crop models are useful to
identify the most relevant variables in each crop such as TL,Rad for soybean and hc for maize under
our experimental conditions. Interestingly, the most important spectral bands sensitive to drought,
derived from PLS-R analysis, were not exactly centered at the same wavelengths of the studied VIs
sensitive to drought, highlighting the benefit of having contiguous narrow spectral bands to predict
leaf physiology and suggesting different wavelength combinations based on crop type. Our results
are only a first but a promising step towards larger scale remote sensing applications (e.g., airborne
and satellite). PLS-R estimates of leaf physiology could help to parameterize canopy level GPP or ET
models and to identify different photosynthetic paths or the degree of stomatal closure in response
to drought.
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1. Introduction

Irrigation for agriculture represents the most significant demand for freshwater uptake of around
70% of all water withdrawal [1,2]. This demand is growing due to climate change. Increases in the
intensity and frequency of droughts and heatwaves will affect soil water demand and supply of crops,
hindering crop production [3–5]. Crops such as maize and soybean, sensitive to droughts, are already
experiencing reductions in yields [6–8]. These staple crops are extensively grown for food production
worldwide, covering areas of 139 million ha for maize and 75.5 million ha for soybean crops [9].
Thus, further information of their responses to droughts at the farm level can improve the sustainability
of water use.

In response to soil drought, or water stress, plants react with various physiological, biochemical,
and morphological adjustments, observable early at the drought onset (fast changes) or after some time
(slow changes) [10,11]. Generally, as a result of soil drought, leaf water potential (ΨL) decreases and
stomata close, which limits transpiration (Tr) and photosynthesis (A) to different degrees depending
on plant type, life history and environmental factors [12–14]. Thus, stomatal conductance (gs) is
often used as an indirect proxy to detect plant water status and stress [12,15,16]. Cell enlargement
is also a very sensitive process to mild water stress [11,13], which it will be eventually reflected
in lower canopy heights (hc) or leaf area index (LAI) [7,17]. In addition, there are other delayed
responses in pigments such as reductions in chlorophyll content [7,10,13,18] or carotenoids [19].
Chlorophyll reduction caused by water stress can be attributed to chlorophyll degradation, pigment
photo-oxidation, and insufficient synthesis of chlorophyll [17]. However, in the assessment of crop
physiological responses to drought, it is not always easy to separate drought effects from phenology
and leaf age effects [20]. Accounting explicitly for different hydraulic and metabolic traits is necessary
to improve predictions to soil water stress. For example, maize plants have C4 photosynthetic pathway,
while soybean are classified as C3, being less efficient under warm temperatures as their photorespiration
is higher [21,22]. Soil water stress could lead to more substantial declines of gs in C3 species than C4,
due to metabolic limitations [23,24]. In addition, species with more anisohydric behavior, as reported
for maize [25] can delay stomatal closure, maintaining photosynthesis level. In contrast, more isohydric
plants will rapidly close stomata in response to water deficit, limiting water stress damage but
reducing CO2 assimilation [16]. Incorporation of some of these different traits or responses in models
(e.g., Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) [26–28], Light Use Efficiency Gross Primary
Productivity (LUE GPP) [26,29,30] and Soil Canopy Observation, Photochemistry and Energy fluxes
(SCOPE) [31]) is key for better predictions and crop management.

Remote sensing techniques have been widely used as a non-destructive approach to estimate
plant biochemical and morphological constituents that modify energy absorption and scattering in
different spectral wavelengths [20,32,33]. Relevant traits, such as hydraulic safety or photosynthetic
pathways, can be detected through optical or thermal features [10,34]. However, the use of remote
sensing to estimate plant function or physiology is very complex, as the mechanisms linking reflectance
and emission with plant functional gradients are not always explicit or known [35]. In remote sensing
applications, the most frequent method to monitor plant responses to soil water stress is using vegetation
indices (VIs) [10,15,35–37]. VIs can be associated to plant structural properties like LAI (e.g., normalized
difference vegetation index (NDVI) [38]) or pigment changes such as chlorophyll (e.g., transformed
chlorophyll absorption in reflectance index (TCARI) [39]) and carotenoids (e.g., pigment specific
normalized difference index (PSNDc) [40]). The photochemical reflectance index (PRI) is a more direct
estimate of plant physiology, tracking photosynthetic efficiency [41], but it is also affected by changes
in LAI or viewing geometry that might obscure the effects of drought [42,43]. Because leaf temperature
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usually increases rapidly under drought due to less transpiration cooling, thermal imaging has been
applied to monitor drought responses [37,44–47]. Nonetheless, canopy temperature is also influenced
by radiation budgets, atmospheric conditions, and leaf and canopy traits [13,48], which makes it
difficult to isolate the effect of soil water stress. Growth chambers provide the possibility to set
and control some of these factors such as air temperature, humidity, radiation, wind speed, and soil
moisture [49]. For example, thermal variation was observed between water stress and well-watered
maize plants at the seedling stage in a growth chamber [50], showing canopy temperature as a suitable
and leading indicators to detect water stress.

Combination of different spectral regions provides spatial and temporal data on crop water use [10],
which is essential to simulate crop productivity [46,51]. Synergies between different remote sensing
domains (e.g., visible (VIS), near-infrared (NIR), fluorescence, thermal, and microwave) have been
proven to better model and estimate water use efficiency (WUE), evapotranspiration (ET), and gross
primary productivity (GPP) [52]; detect water stress patterns [37,45–47]; and monitor crop yield [53].
Hyperspectral imaging sensors with contiguous narrow bands along the visible and near infrared
(VNIR) domain allow to apply spectroscopy and chemometrics techniques at high spatial resolution,
improving the accuracy and types of physiological variables retrieved [15,18,20,54]. In addition,
it explores new relations between spectral variables and plant function [34]. Machine learning
methods such as the partial least squares regression (PLS-R) can handle multiple and correlated
spectral bands, being more suitable for large datasets outperforming physiological estimates from
spectral indices [15,20,54,55]. Furthermore, from PLS-R models, we can identify the most relevant
wavelengths contributing to the model, which might not be necessarily those from commonly used
VIs [15]. PLS-R has been successfully used to predict physiological properties such as A [56,57],
gs [15,57], Tr [57], maximum Rubisco activity (Vcmax) [58–60], and ΨL [15]. PLS-R has been also applied
to model biochemical parameters such as chlorophyll content [56,61], carotenoids [56], and nitrogen
concentration [56,61,62], and morphological parameters (e.g., leaf mass per unit area [56,61,62] and
crop yield [53]). These studies have been conducted across species (e.g., wheat, vineyards, soybean,
maize, pasture, rice, and boreal trees) over Mediterranean to tropical climates and in greenhouse or
external field conditions.

Although using remote sensing to assess crop responses to drought is a very active topic of
research, most studies to date have focused on estimating drought responses looking at biochemical
and structural parameters. In this study, we aim to assess physiological responses to soil drought
for two crops with different photosynthetic pathways and water-use strategies, using hyperspectral
optical and thermal remote sensing under controlled conditions while separating phenology effects
during a vegetative period. Specific objectives for this study were to:

• Assess responses to soil water stress of soybean and maize physiology (canopy ET, leaf gs,
leaf Tr and leaf A), morphology (hc, LAI), biochemistry (chl), and remote sensing (TL,Rad and
reflectance) variables.

• Investigate PLS-R as a method to model leaf gs, Tr, and A using hyperspectral data and identify
the most relevant wavelengths contributing to the model as well as the model improvement when
incorporating TL,Rad and hc into the models.

The results from this study can be useful for applications in growth chambers and outdoors
at the farm level using unmanned aerial vehicles (UAVs) carrying hyperspectral, thermal cameras
and obtaining hc from structure from motion (SfM) photogrammetry or light detection and ranging
(LiDAR) sensors.

2. Materials and Methods

2.1. Experimental Design

The experiment was carried out between March and June of 2018 in a controlled growth chamber
at the Risø Environmental Risk Assessment Facility (RERAF) phytotron (Technical University of
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Denmark (DTU), Roskilde campus, Denmark), with a ground area of 24 m2 and height of 3.1 m
(e.g., [63,64]). Air temperature in the chamber was set to 25 ◦C for daytime and 19 ◦C for night-time.
The relative humidity (RH) was kept at 50% during day hours and 70% during night time. To promote
rapid growth, illumination conditions simulated 16 hours of daytime. Light racks were composed by
28 high-pressure mercury lamps (1000 W) and 14 halogen lamps (400 W). CO2 concentration was set
constant at 400 ppm, similar to the global average. Air temperature, relative humidity, light intensity,
and CO2 concentration were automatically recorded using a climate control computer.

In the experiment, two types of crop seeds were sown: Zea mays cv. NK Arma (maize) and Glycine max
(L.) cv. Merr. Buenos (soybean), provided by SAGEA Centro di Saggio s.r.l. Integrated Solutions for
Sustainable Agriculture (https://www.sagea.com). These crops were selected as they are staple crops
produced under similar climatic conditions and present different photosynthetic pathways (C3 for soybean
and C4 for maize) and hydraulic strategies. Soybean seeds were sown on 23 March and maize seeds
on 9 April in 9 L pots with 4 kg of soil. Two plants were grown in each pot. Table 1 shows days after
sowing (DAS) and days of measurement (DoM) of each crop. Along with this document, DoM was
used for visually more precise figures and as reference for phenology. The soil used was a pre-fertilized
soil extracted from peat blocks and nutrient enriched (Pindstrup substrate no. 6, Pindstrup Mosebrug
A/S, Ryomgaard, Denmark, https://www.pindstrup.com). This soil type has been previously used in
other experiments in the same growth chamber [63,64] and presents a total water holding capacity
(WHC) of 0.625 kg water/kg soil. Three soil water levels were established to maintain: (i) 100% WHC
(control/wet), (ii) 70% WHC (mid), and (iii) 40% WHC (dry), later referred to as soil drought or water
stress. Irrigation was applied every three days until the 24 April and after that, every two days. For each
WHC group and crop, six replicates were arranged for a total of 36 pots (2 crops × 3 WHC × 6 replicates).

Table 1. Summary of data acquisition of soybean and maize during 2018. DAS = days after sowing
(DAS); DoM = days of measurement. Total of samples is calculated considering the number of replicates,
water groups and DoM (For soybean: 6 replicates × 3 WHC × 8 DoM = 144 samples and for maize:
6 replicates × 3 WHC × 7 DoM = 126 samples).

Date (2018) 15-Apr. 18-Apr. 21-Apr. 24-Apr. 26-Apr. 28-Apr. 30-Apr. 2-May Samples

Soybean DAS 23 26 29 32 34 36 38 40
144DoM 1 4 7 10 12 14 16 18

Date (2018) 21-Apr. 24-Apr. 26-Apr. 28-Apr. 30-Apr. 2-May 4-May Samples

Maize
DAS 12 15 17 19 21 23 25

126DoM 1 4 6 8 10 12 14

2.2. Gas Exchange and Plant Measurements

The gravimetric soil water content was measured by weighing each pot with an electronic balance
before and after irrigation. Canopy evapotranspiration (ET, mm day−1) was calculated from the water
balance to establish the amount of water to be dispensed during each irrigation.

Physiological, morphological, and biochemical measurements were conducted seven times for
maize plants and eight times for soybean plants (Table 1) during a time span of about 20 days
between 11:00 and 14:00 after irrigation. We measured gas exchange of CO2 and H2O at the leaf
level with the open photosynthesis system LI-6400 (Li-COR Biosciences Inc., Lincoln, NE, USA).
The system maintained the leaf chamber at the ambient temperature, at 400 µmol mol−1 CO2 level and
constant photosynthetic active radiation (PAR) of 1500 µmol m−2 s−1 (saturation point). Gas exchange
measurements were conducted on two randomly selected upper leaves, fully matured and light
exposed, to obtain parameters such as photosynthetic CO2 assimilation rate (A, µmol CO2 m−2 s−1),
transpiration rate (Tr, mmol H2O m−2 s−1), stomatal conductance (gs, mol H2O m−2 s−1), leaf vapor
pressure deficit (VPDleaf, KPa), intercellular CO2 concentration (Ci, µmol CO2 mol−1 moist air),
and water use efficiency (WUE = A/Tr, µmol CO2 mmol−1 H2O). We measured absolute chlorophyll
concentration (chl, µg cm−2) with the SPAD 502 Plus leaf chlorophyll meter (Konica Minolta Sensing

https://www.sagea.com
https://www.pindstrup.com
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Inc., Sakai, Osaka, Japan) in three randomly and fully expanded top leaves. In each leaf, we took the
average of three sampling points distributed over the leaf. Selected leaves for chl measurements were
not necessary the same as leaves selected for gas exchange measurements. We manually measured
canopy height (hc, m) with a meter from the soil surface to the highest point of each plant. hc was used
as a proxy for plant growth, as it can be associated to cell enlargement [7,17]. Gas exchange, chl and hc

measurements were averaged per pot.
Grouping pots by crop and soil water status, we measured leaf area index (LAI) three times with

the plant canopy analyzer LAI-2200C (Li-COR Biosciences Inc., Lincoln, NE, USA) on the last day of
the experiment (15 June 2018).

2.3. Remote Sensing Measurements

Hyperspectral images were obtained with the Cubert UHD 185 camera (UHD; Cubert GmbH,
Ulm, Germany, https://cubert-gmbh.com) with spectral bands between 450 and 950 nm (visible and
near infrared ranges, VNIR) along 125 channels with mean spectral resolution of about 10 nm in the
VIS, 20 nm in the red-edge, and 40 nm in the NIR region. The camera spatial resolution is 50 × 50 pixels.
The focal length of the lenses is 23 mm and the Field of View (FoV) in both directions is 15◦. The Cubert
also provides a panchromatic image of 1000 × 1000 pixels.

Thermal images were gathered from a FLIR Tau2 324 (FLIR Systems Inc., Wilsonville, OR, USA),
detecting longwave radiation between 7.5 µm to 13.5 µm. The spatial resolution is 324 × 256 pixels with a
focal length of 9 mm, which provides a FoV of 48.5◦ in the horizontal side and 39.1◦ in the vertical view.

Figure 1 shows the experiment setup. Both cameras were located approximately 2 meters above
the pots and connected to a computer triggered manually after gas exchange measurements, resulting
in a pixel size of 10.5 mm/px for the hyperspectral camera and 6.1 mm/px for the thermal sensor.
Cameras were positioned in a payload box usually carried by a UAV as shown in Wang et al. (2019) [52].
Due to instrumentation requirements and space management, the separation of cameras was about
18.6 and 3.7 cm in the horizontal axis.
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Figure 1. Camera set-up and crop overview inside the growth chamber. Two crops were cultivated:
soybean and maize, in three water holding capacity (WHC) groups: dry (40% WHC), mid (70% WHC),
and wet (100% WHC). For each set we grew six replicates. Images of plants were taken by moving
each crop under the box containing thermal and hyperspectral cameras. The wooden box was located
2 m above the pots. Dark blue dotted/dashed line shows the field of view (FoV) of the thermal Flir
camera while the red dashed line shows the FoV of the hyperspectral Cubert camera. Both cameras
were controlled with an external computer located inside the chamber. Light racks were composed by
28 high-pressure mercury lamps (1000 W) and 14 halogen lamps (400 W). Air temperature and RH
were automatically recorded using a climate control computer located outside the growth chamber.

https://cubert-gmbh.com
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2.3.1. Image Pre-Processing

Hyperspectral Images

A radiometric and spectral calibration of the Cubert hyperspectral camera was performed at
DTU photonics lab. The spectral response of each pixel was obtained using a monochromator from
430–1030 nm at 1 nm intervals. Subsequently, a radiometric calibration was performed using an
integrating sphere to obtain a calibration factor for each pixel in each specific band under nine different
illumination levels. The camera integration time was set from 0.5 to 19.9 ms (0.1 ms intervals) at nine
different illumination levels. In the growth chamber, we used a spectralon target to characterize the
average incoming spectral radiation from the lamps and its fluctuation. On five dates, we acquired a
hyperspectral image of the spectralon before measuring the crops. For the remaining dates, we used
the average irradiance of the growth chamber. The variance of lamp irradiance was relatively low over
time (coefficient of variation, CV ≈ 0.3). Pixel reflectance was calculated by the ratio between pixel
radiance and the average of spectralon pixels. We separated reflectance corresponding to vegetation
cover pixels from background pixels [58], using a threshold NDVI ≥ 0.6 and we calculated the average
of top canopy pixels for each pot (see Figure 2).
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Figure 2. Example of green area selected after pre-processing hyperspectral data using NDVI
threshold ≥ 0.6 and thermal data applying contour detection and histogram thresholding for
soybean and maize plants (images taken the 28 April 2018 of dry WHC, replica 4).

Thermal Images

The thermal camera was previously calibrated with a Landcal P80P black body radiation source
(Land Instruments, Leicester, United Kingdom), presenting an accuracy of 0.95 ◦C root mean square
deviation (RMSD) inside the RERAF at differing ambient and target temperatures. For more details,
refer to Köppl et al. 2016 and Wang et al. (2018) [65,66]. To extract leaf radiometric temperature (TL,Rad)
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in each pot, we pre-selected vegetation cover pixels with an automatic procedure, using leaf contour
detection for plant recognition, together with histogram thresholding (Figure 2). We then calculated
the average temperature for vegetated pixels. The results of the algorithm were validated with visually
photo interpreted leaf temperature from 15 thermal images. The images selected covered a full range
of temperature variability. For further details, refer to Gulyas et al. (2020) [67].

2.3.2. Spectral Indices to Predict Leaf Physiology

Due to soil water stress, plants adjust their physiology, morphology, and biochemistry. For instance,
on a general basis, under drought, leaves tend to close stomata limiting water vapor loss via transpiration,
which reduces photosynthetic carbon uptake and increases leaf temperature. In addition, leaf turgor
and chlorophyll content are reduced, affecting growth [13,22]. Note that chlorophyll, carotenoids
and anthocyanins provide vital details about plant physiology status, absorbing energy, harvesting
light, and protecting leaves from excessive light [68]. Thus, observable changes in leaf temperature
and vegetation indices (VI), related to structure, pigments, and photosynthetic efficiency can provide
valuable information about how leaf physiology is affected by drought. In our study, we calculated
leaf–air temperature difference (∆T) and a total of 13 narrow-band indices (Table 2), that have previously
shown sensitivity to soil water stress.

Table 2. Remote sensing indices with equation, definition and reference (ρ = reflectance in specific
wavelength, Max dρ = maximum value of the first derivative of reflectance, TL,Rad = leaf radiometric
temperature (◦C) and Tair = air temperature (◦C)).

Acronym Indices Equation Reference

Structure

NDVI Normalized difference vegetation index (ρ800 − ρ670)/(ρ800 + ρ670) [38]

EVI Enhanced vegetation index 2.5*(ρ800 − ρ680)/(ρ800 + 6*ρ680 − 7.5*ρ450 + 1) [69]

OSAVI Optimized soil adjusted vegetation index (1 + 0.16)*(ρ800 − ρ670)/(ρ800 + ρ670 + 0.16) [70]

REIP Red-edge inflection point Max dρ (680 − 780) [71]

rNDVI Red-edge normalized difference
vegetation index (ρ750 − ρ705)/(ρ750 + ρ705) [72]

Pigments: Chlorophyll, Carotenoids, and Anthocyanin

TCARI Transformed chlorophyll absorption in
reflectance index 3*((ρ700 − ρ670) − 0.2*(ρ700 − ρ550)*(ρ700/ρ670)) [39]

TCARI/OSAVI Transformed chemical absorption reflectance
index/optimized soil adjusted vegetation index

(3*((ρ700 − ρ670) − 0.2*(ρ700 − ρ550)*(ρ700/ρ670)))/
((1 + 0.16)*(ρ800 − ρ670)/(ρ800 + ρ670 + 0.16)) [39]

R700/670 Ratio between reflectance at 700 and 670 nm ρ700/ρ670 [43]

PSNDc Pigment specific normalized difference index (ρ800 − ρ470)/(ρ800 + ρ470) [40]

mARI Modified anthocyanin reflectance index ((1/ρ550) − (1/ρ660)*ρ780 [68]

Photochemical Activity

PRI Photochemical reflectance index (ρ531 − ρ570)/(ρ531 + ρ570) [41]

sPRI Similar photochemical reflectance index (ρ560 − ρ510)/(ρ560 + ρ510) [73]

PRI(570–515) Modified photochemical reflectance index (ρ570 − ρ515)/(ρ570 − ρ515) [74]

Temperature

∆T Temperature difference TL,Rad − Tair

The normalized difference vegetation index (NDVI) is the most commonly used VI to predict
LAI, green biomass, fraction of photosynthetic active radiation, or fractional cover. However, because
NDVI saturates at high LAI, it is commonly replaced by the enhanced vegetation index (EVI) [42,69].
Another similar VI to NDVI is the optimized soil adjusted vegetation index (OSAVI), which also
reduces soil effects [70]. Because the red edge is close to the NIR region, it is sensitive to changes in cell
structure [75]. We used the red edge normalized difference vegetation index (rNDVI) [72,76] and the
maximum in the red edge (REIP) calculated from the first derivative [71], which have been proved to
provide information about structural changes due to soil drought.
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Indirect changes on chlorophyll content, related to reduced soil water, can be assessed by
calculating the ratio R700/670. This VI includes a chlorophyll absorption feature at 670 nm [42,43] and
the 700 nm band located at the red-edge region, which is sensitive to chlorophyll concentration [71,75].
VIs tracking chlorophyll content such as the transformed chlorophyll absorption in reflectance index
(TCARI) and the ration between TCARI and OSAVI have been successfully used to estimate water
stress [10,37]. In addition, TCARI/OSAVI reduces the effect due to changes on LAI and soil reflectance
under soil water stress [39,43]. The modified anthocyanin reflectance index (mARI) combine blue,
red, and NIR bands to predict changes on anthocyanin content [68]. At 470 nm (blue band), carotenoid
absorption can be detected [40] and this wavelength is used in the pigment specific normalized
difference index (PSNDc).

The photochemical reflectance index (PRI) is used to estimate photosynthetic activity [41,76].
Because PRI is sensitive to structural changes, pigment levels, soil background, illumination effects,
and viewing angles [42,43], other derivations have appeared such as the PRI(570–515) and the sPRI,
which have been proved to be more effective to detect water stress [43,76].

2.4. Statistical Analysis

2.4.1. Analysis of Variance and Post-Hoc Test

Two-way analysis of variance (ANOVA) was used to investigate the effect of varying soil water
and the effect of growth over time on the measured physiological, morphological, and biochemical
parameters, and remote sensing derived indices. ANOVA was applied using Python package
Pingouin [77]. From this analysis, we obtained the f-value. For better visualization, we also used
post-hoc test to perform pair-wise comparisons (t-test) between soil water levels and crops over
the seasonal average. Finally, p-value and the coefficient of determination (R2) were obtained to
explore the significant relationships between leaf physiology (A, gs, and Tr), SPAD chl and hc with
VIs and ∆T. During this study, we applied a significance level of 5%, hence we considered statistical
significance at p-value < 0.05. Note that in some cases significance level up to 0.1% was also reported
(p-value < 0.001).

2.4.2. Partial Least Squares Regression (PLS-R) Modeling

Partial least squares regression (PLS-R) is recently becoming popular in remote sensing
spectroscopy to predict plant traits [15,53,55–59,61,62,78]. PLS-R is a machine learning technique,
typically used to predict an outcome (y) from a set of predictors (x1, x2, . . . , xp). In addition, PLS-R can
handle highly correlated predictors. In a nutshell, PLS-R decomposes the predictor matrix (X) into
a set of loadings and scores with the objective of maximizing co-variance between the scores and y.
This is repeated for a given number of latent variables (LV) as the number of loadings and scores
necessary to explain sufficient variance in y. The optimal number of LV can be found by employing
cross validation [79,80].

We modeled leaf A, leaf gs, and leaf Tr using VNIR reflectance, TL,Rad and hc as predictors. In our
study, although hc was manually measured, it was defined as a predictor as it can be estimated by
photogrammetry techniques with UAVs [52] or from LiDAR sensors. In total, the number of samples
totaled 144 for soybean and 126 for maize (Table 1). To assess the synergies of using only hyperspectral
or adding other types of remote sensing information, we conducted PLS-R modeling multiple times:
(i) with only hyperspectral data (Hyper), (ii) adding TL,Rad, and (iii) including hc, for both crops
together, for only soybean and only maize data. PLS-R was implemented using the Python package
Scikit-learn [81,82].

PLS-R Preprocessing

Growth and spatial effects are often considered a challenge when using remote sensing and
physiology measurements [20]. To remove undesirable obstructive systematic variation, we carried
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out pre-processing of the spectral data. Standard normal variate (SNV) [83] was applied performing
mean and variance normalization for each observation using the equation

x̃i, j =
xi, j − µi

σi
, i = 1 . . . N, j = 1 . . . K (1)

where N accounts for the number of samples and K for the number of optical hyperspectral wavelengths.
µi and σi are the mean and standard deviation of spectral data in each sample, respectively. xi, j indicates
the value of the i’th number observation in the j’th predictor and x̃i, j is the corrected predictor after
using SNV with zero mean and unit variance. Standardization of the predictor data was subsequently
performed (Equation (2)) as suggested by Geladi and Kowalski (1986) [80] and also applied in other
remote sensing studies to predict crop function [15,53].

=
x i, j =

x̃i, j − µ j

σ j
(2)

where µ j and σ j are the mean and standard deviation of samples in each spectral wavelength,

respectively.
=
x i, j indicates the corrected predictor after standardization. Similarly, standardization of

response data was applied as

ỹi =
yi − µ

σ
(3)

where µ and σ are the mean and standard deviation of samples for the selected response variable,
respectively. ỹi indicates the corrected response after standardization.

PLS-R Selection and Assessment

The dataset was randomly split into calibration (70%) and validation (30%) sets [55,62]. Using the
same dataset, we applied PLS-R over 500 bootstrapped iterations to evaluate the uncertainty of PLS-R
models. Bootstrapping is a technique that generates random samples of calibration and validation
datasets. Bootstrapping has been found to be the most suitable strategy to validate predictability,
ensuring reproducibility and generalizability of the final model [84]. In order to avoid ‘over-fitting’
and find the optimal number of LV, we applied 10-fold cross validation over the calibration sets
by minimizing the corresponding mean squared error over 15 LV. The validation sets were used to
estimate generalizability and evaluate the predictive power of the final model. Model performance was
assessed using the coefficient of determination (R2), the normalized root mean squared error (NRMSE)
(Equation (4)), and the model bias (Equation (5)) of the calibrated and validated datasets, after pooling
replicates and the 500 iterations together while separating between crops, dates, and soil water groups.

NRMSE =

√∑S
i = 1(yi − yi)

2/S

ymax − ymin
(4)

bias =
1
S

S∑
i = 1

(yi − yi)

yi
(5)

where yi and yi are the known and predicted values, respectively. S is the total number of samples
corresponding to calibration or validation sets. ymax and ymin represent the maximum and minimum
known values.

From PLS-R, we assessed the contribution of each predictor to the response using the variable
importance of projection (VIP). VIP explains the contribution of individual wavelengths to the overall
fitted PLS-R model across components. VIP scores lower than the unit indicate that the contribution of
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that variable can be neglected. VIP scores were calculated according to Andersen and Bro (2010) [85]
as in Equation (6)

VIP j =

√√ ∑F
f = 1 w2

j f · SSY f · J

SSYtotal·F
(6)

where J represents the number of variables, F is the total number of components, w j f is the weight
of component f and variable j, SSY f is the sum of squares of explained variance for the specific
component f and SSYtotal outlines the total sum of squares explained by the response.

To identify wavelengths correlated to TL,Rad and hc in the latent variable space, we displayed the
loadings of the first and second individual variables in that subspace. The goal was to detect which of
the 138 VNIR bands provided similar information as TL,Rad and as hc.

3. Results

3.1. Physiological, Biochemical, and Morphological Responses

Figure 3 compares the sensitivity of seasonal canopy evapotranspiration (ET), leaf transpiration rate
(Tr), leaf photosynthetic CO2 assimilation rate (A), and leaf stomatal conductance (gs) towards changing
water availability based on the three water holding capacity (WHC) groups. Comparing among soil
water status from 100% (wet/control) to 40%, (dry) soybean showed significant decreases in season
average ET, Tr, A, and gs (p-value < 0.05). However, for maize the season average responses of leaf A,
gs, and Tr were not sensitive to soil drought, while they were significantly higher for canopy ET from
dry to wet soil water status. Maize A was significantly higher than in soybean plants for the same
soil water stress, consistent with higher efficiency of C4 metabolic path. Tr and gs were also higher in
maize than soybean, whereas maize ET at canopy level was significantly lower in each water group.

Separating the influence of soil drought (WHC) and phenology (days of measurement, DoM)
(Table 3), we saw significant differences for both treatments in soybean physiology (A, Tr, and gs) and
biochemistry (chl) at the leaf level, but not for their interaction. Maize leaf parameters only showed a
significant response to phenology, with similar variability (F-values) as in soybean parameters.

At canopy level, ET of both crops were sensitive to soil drought and phenology (Table 3 and
Figure 3), whereas hc only changed over time (Table 3 and Figure S1). In addition, phenology effects
on canopy level parameters (ET and hc), were more than 150 times higher than replicates variability
(F-values > 150) for maize, but not for soybean plants (Table 3).

Table 3. Two-way ANOVA test results of season physiological (ET = canopy evapotranspiration,
A = photosynthetic CO2 assimilation rate, Tr = transpiration rate, gs = stomatal conductance),
biochemical (chl = SPAD chlorophyll content) and morphological parameters (hc = canopy height and
LAI = leaf area index) for water holding capacity (WHC) groups and days of measurements (DoM).
Numbers indicate F-value and symbols p-value (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001
and ns = not significant).

Crop Soybean Maize

Parameter WHC DoM WHC*DoM WHC DoM WHC*DoM

ET (mm day−1) 49.9 *** 38.2 *** 0.7 ns 58.5 *** 163.8 *** 2.3 *
A (µmol CO2 m−2 s−1) 6.6 ** 35.0 *** 1.2 ns 0.1 ns 45.5 *** 3.3 ***

Tr (mmol H2O m−2 s−1) 15.0 *** 18.2 *** 1.3 ns 2.2 ns 20.2 *** 1.1 ns
gs (mol H2O m−2 s−1) 23.0 *** 14.7 *** 1.1 ns 2.0 ns 9.0 *** 0.9 ns

chl (µg m−2) 39.3 *** 20.6 *** 1.5 ns 1.7 ns 18.4 *** 0.5 ns
hc (m) 1.1 ns 34.4 *** 0.4 ns 1.7 ns 192.8 *** 1.1 ns

LAI a (m2 m−2) 0.2 ns - - 19.8 ** - -
a Measurement during the last day of the experiment (15 June 2018) with LiCOR.
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regular plant behavior inside the growth chamber (Figure S3). Coefficients of determination were 
relatively high between ET and hc for both crops, which is reasonable due to the increases in LAI over 
time. Maize A, gs, and Tr also correlated with hc, in agreement with the ANOVA (Table 3), showing 
that variations in leaf physiology were significant across time. 
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For illustrative purposes Figure 4 displays spectra from soybean and maize plants, comparing 
both crops among soil water levels (Figure 4A,B) and days of measurements (DoM) (Figure 4C,D). 
The seasonal average reflectance of soybean was about 10% higher than maize in near infrared (NIR) 
bands (760–950 nm), which could indicate higher seasonal LAI for soybean than maize [42]. In the 
red-edge and NIR regions, reflectance was slightly lower for wet plants (100% WHC) for both crops 
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Figure 3. Comparison between soil water levels: wet/control (100% Water Holding Capacity, WHC),
mid (70% WHC), and dry (40% WHC) for each crop: soybean (blue boxes) and maize (dashed
reddish boxes) canopy evapotranspiration (ET), leaf transpiration (Tr), leaf photosynthesis (A), and leaf
conductance (gs). Dots in maize and crosses in soybean represent the seasonal average of the six
replicates for each crop. Boxplots contain six replicates. Boxes show the 25th and 75th percentiles of the
interquartile range (IQR), horizontal line represents the median of the data and whiskers extend from
the edges of box to show 1.96 IQR. Points outside this range are outliers. Different letters indicate that
differences are significant at p-value < 0.05 level.

Interestingly, comparing wet and dry plants at each day of measurement, soybean and maize ET
showed significant decrease since DoM 4. Besides that, soybean leaf chl significantly increased from
very early in the growth cycle. However, other parameters such as A, Tr, gs or hc were not sensitive in
most of the dates (Figure S2).

Physiological, biochemical, and morphological parameters (Figure S3) showed a normal
distribution over time among WHC groups and replicates. A strong relation was observed between
Tr and gs, showing p-value < 0.001 and coefficients of determination (R2) of 0.75 and 0.86 in soybean
and maize, respectively. gs and Tr vs. A for each crop revealed slightly lower relations (R2 between
0.56 and 0.63, p-value < 0.001). These correlations between physiological traits suggest adequate and
regular plant behavior inside the growth chamber (Figure S3). Coefficients of determination were
relatively high between ET and hc for both crops, which is reasonable due to the increases in LAI over
time. Maize A, gs, and Tr also correlated with hc, in agreement with the ANOVA (Table 3), showing
that variations in leaf physiology were significant across time.
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3.2. Remote Sensing Responses

For illustrative purposes Figure 4 displays spectra from soybean and maize plants, comparing
both crops among soil water levels (Figure 4A,B) and days of measurements (DoM) (Figure 4C,D).
The seasonal average reflectance of soybean was about 10% higher than maize in near infrared (NIR)
bands (760–950 nm), which could indicate higher seasonal LAI for soybean than maize [42]. In the
red-edge and NIR regions, reflectance was slightly lower for wet plants (100% WHC) for both crops
(Figure 4A). In the VIS, wet maize plants also showed lower NIR reflectance, while soybean plants
showed the opposite (Figure 4B). Over time, there was a marked increase in reflectance, especially for
maize plants and in NIR wavelengths (Figure 4C,D).
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Figure 4. (A) Seasonal average reflectance of soybean (blue continuous line) and maize (red dashed line)
plants for the three water holding capacity (WHC) groups: Wet/control (100% WHC), Mid (70% WHC),
and Dry (40% WHC) shown with different line thickness. Shaded area shows the 95% confidence
intervals. (B) Zooming of region between 500 and 680 nm of (A). (C) Reflectance comparison between
soybean (blue continuous line) and maize (red dashed line) for three days of measurement (DoM)
shown with different line thickness. Shaded area shows the 95% confidence intervals. (D) Zooming of
region between 500 and 680 nm of (C).

Analysis of seasonal responses to soil drought and phenology responses on remote sensing
variables is shown in Table 4, Figure 5, and Figure S1. Soybean TL,Rad was significantly lower between
dry (40% WHC) and wet (100% WHC) plants, while TL,Rad was not sensitive to water changes in maize
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(Figure 5 and Table 4). TL,Rad of both crops was also sensitive to phenology and its interaction with soil
water stress (Table 4). Since the air temperature (Tair) was practically constant, ∆T showed similar
outcome to TL,Rad for both crops (Figure S1 and Table 4).

Table 4. Two-way ANOVA test results of seasonal leaf radiometric temperature (TL,Rad), leaf–air
difference temperature (∆T), and vegetation indices (VI), calculated from the hyperspectral sensor
described in Table 2, for water holding capacity (WHC) groups and days of measurements (DoM).
Numbers indicate F-value and symbols p-value (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001,
and ns = not significant).

Crop Soybean Maize

Parameter WHC DoM WHC*DoM WHC DoM WHC*DoM

NDVI 2.5 ns 13.3 *** 0.9 ns 12.1 *** 120.7 *** 1.1 ns
EVI 5.0 ** 65.8 *** 0.9 ns 8.2 *** 245.5 *** 2.4 **

OSAVI 2.0 ns 19.8 *** 0.9 ns 9.2 *** 319.5 *** 1.5 ns
REIP 2.8 ns 45.0 *** 0.9 ns 7.5 *** 352.1 *** 2.1 *

rNDVI 25.4 *** 12.3 *** 0.6 ns 11.8 *** 170.1 *** 1.2 ns

TCARI 27.9 *** 16.3 *** 2.0 * 0.3 ns 64.0 *** 3.1 **
TCARI/OSAVI 29.5 *** 14.1 *** 1.8 * 1.8 ns 14.7 *** 2.6 **

R(700/670) 38.5 *** 1.3 ns 1.5 ns 6.9 ** 10.9 *** 1.2 ns
PSNDc 3.4 * 2.4 * 0.7 ns 5.4 ** 118.3 *** 1.0 ns
mARI 5.6 ** 17.1 *** 1.7 ns 13.1 *** 77.6 *** 1.0 ns

PRI 1.1 ns 13.7 *** 1.4 ns 0.1 ns 3.0 ** 0.3 ns
sPRI 38.5 *** 2.0 ns 1.4 ns 3.5 * 54.8 *** 1.1 ns

PRI(570–515) 34.1 *** 5.4 *** 2.1 * 3.1 * 70.3 *** 0.5 ns

TL,Rad (◦C) 9.9 *** 7.9 *** 2.0 * 1.7 ns 7.3 *** 2.8 **
∆T (◦C) 9.9 *** 5.1 *** 2.0 * 1.7 ns 6.7 *** 2.8 **

Mean differences due to soil drought for some VIs are displayed in Figure 5, while the rest are in
Figure S1. VIs used to predict structural changes such as changes in LAI (e.g., NDVI, EVI, OSAVI, and REIP)
were statistically significant between wet and dry soil water stratus for maize, but not for soybean.
In addition, they changed significantly with phenology for both crops, with higher variation on maize as
they showed notably higher F-values compared to other VIs (Table 4). rNDVI, a suitable index used to
detect water stress [76], showed significant increase with soil drought (Figure 5).

VIs used to detect concentrations of chlorophyll pigments (e.g., TCARI and R(700/670)), carotenoids
(PSNDc), and anthocyanins (mARI), and VIs related to photochemical efficiency (e.g., sPRI and
PRI(570–515)) significantly decreased with soil water stress in soybean plants (Figure 5 and Figure S1),
whereas in maize they showed higher variability along time (Table 4). In addition, it is worth noticing
that soybean R(700/670) and sPRI (calculated from 560 and 510 nm) did not significantly change over
time (Table 4).

Scatterplots shown in Figure 6 and Figure S4 between VIs with leaf physiology, hc and chl can
provide extra information about type of relation, the direction of change, linearity, and saturation of
VIs. For instance, both crops presented weak positive linear relations (R2 < 54%) between VIs with leaf
A, Tr, and gs (Figure 6 and Figure S4) and negative relationships between ∆T and leaf physiological
parameters (Figure 6).

∆T was not sensitive to changes in maize gs, Tr, or A, while it was negatively correlated with
soybean gs and Tr, with a relatively high correlation for gs (R2 = 0.47 and p-value < 0.001) (Figure 6).
However, maize gs, Tr, or A were sensitive to most VIs, but not for soybean. Highest correlations
were shown for maize gs and Tr compared to all the structural indices in the following order rNDVI,
OSAVI, NDVI, EVI, and REIP. Photosynthetic efficiency indices such as sPRI and PRI(570–515); and some
VIs associated to pigments like TCARI, PSNDc, and mARI also presented correlations with similar
order of magnitude (R2 between 0.3 and 0.45 with p-value < 0.01) (Figure 6 and Figure S4).
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Figure 5. Comparison between soil water levels: Wet/control (100% Water Holding Capacity, WHC),
Mid (70% WHC) and Dry (40% WHC) for each crop: soybean (blue boxes) and maize (dashed reddish
boxes) TL,Rad, NDVI, TCARI, EVI, sPRI, rNDVI, R700/670 REIP. Dots in maize and crosses in soybean
represent the seasonal average of the six replicates for each crop. Boxplots contain six replicates.
Boxes show the 25th and 75th percentiles of the interquartile range (IQR), the horizontal line represents
the median of the data and whiskers extend from the edges of box to show 1.96 IQR. Points outside this
range are outliers. Different letters indicate that differences are significant at p-value < 0.05 level.
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Figure 6. Linear correlation between vegetation indices (VI) (Table 2) and leaf–air temperature difference
(∆T in ◦C) vs. leaf photosynthetic CO2 assimilation rate (A in µmol CO2 m−2 s−1), leaf stomatal
conductance (gs in mol H2O m−2 s−1), leaf transpiration rate (Tr mmol H2O m−2 s−1), SPAD chlorophyll
content (chl in µg m−2), and canopy height (hc in m) for soybean (blue crosses) and maize (red dots).
Points represent the average of six replicas. Coefficient of determination (R2) is shown and p-value is
represented with stars (* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001).
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Soybean hc was positively correlated with most of the VIs related with vegetation structure
such as REIP, EVI, and OSAVI (R2 between 0.4 and 0.6) and some chlorophyll indices like TCARI
and TCARI/OSAVI (R2 ~ 0.35, p-value < 0.01), while negatively correlated to PRI changes (R2 = 0.54).
Maize hc presented higher sensitivity than soybean hc to VIs with most R2 between 0.73 and 0.96
(Figure 6 and Figure S4). Note that TCARI and TCARI/OSAVI decrease are linked to chl increase [39,43].

In soybean, the strongest relations with VIs were found for chl with VIs used to detect pigment and
photosynthetic efficiency, while no correlations were found with any of the structural VIs, except for
rNDVI, which is also associated to water stress and REIP, which can estimate chlorophyll concentration.
Even though maize VIs were also sensitivity to chl, the relation was opposite from soybean (e.g., TCARI),
same as for R700/670 or PRI. Maize VIs related to structural changes were sensitive to most of the
variables (chl, hc, Tr, gs, and A), which was not the case for soybean (e.g., NDVI, EVI) (Figure 6 and
Figure S4).

3.3. Partial Least Squares Regression (PLS-R) to Predict Leaf Physiology

Before using PLS-R, a SNV pre-processing was applied to minimize growth and crops differences
(Figure 7 compared to Figure 4).
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 Soybean 0.79 0.67 12 15 2.9 3.4 8 

A (µmol CO2 m−2 s−1) Maize 0.87 0.79 8 10 1.1 1.4 5 
 Soybean + Maize 0.94 0.92 7 9 4.1 4.8 11 
 Soybean 0.71 0.54 14 18 3.5 4.2 8 
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Figure 7. Reflectance normalization after applying standard normal variate (SNV) pre-processing.
(A) Normalization of reflectance from Figure 3A, comparing between soybean (blue continuous line)
and maize (red dashed line) for the three WHC groups: control/wet (100% WHC), mid (70% WHC),
and dry (40% WHC) shown with different line thickness. (B) Normalization of reflectance selecting
canopy height as a measured of growth divided in three stages: plants lower than 0.3 m, between 0.3
and 0.6 m, and higher than 0.6 m (shown with different line thickness) for both crops: soybean (blue
continuous line) and maize (red dashed line).

Table 5 provides R2, NRMSE and bias from PLS-R to assess model performance differences
when using only hyperspectral data or when including TL,Rad and hc, pooling data from both crops
together or separated. Calibration NRMSE of 14% and below as well as test set NRMSE of 18% and
below indicated good model performance with 500 permutations. In addition, all the R2 values were
statistically significant (p < 0.001).

It is notable that the best model performance (both R2 and NRMSE) for the three physiological
variables studied (A, gs, and Tr) was found for joint crop models rather than separate crop models
(Table 5). This joint crop model (Figure 8), showed higher correlations between predicted and observed
data, and lower calibration and validation errors, especially for A (Rval

2 = 0.92 and NRMSEval = 8%),
followed by Tr (Rval

2 = 0.87 and NRMSEval = 11%), and gs (Rval
2 = 0.82, NRMSEval = 11%). This is

most likely due to the larger range of the leaf physiological variables and the increased number
of observations (Figure S3 and Figure 8). As previously shown in Figure 3, maize A, gs, and Tr

presented higher response values than soybean. Matthes et al. (2015) [55] also observed better PLS-R
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scores in pasture and rise gross primary productivity (GPP) and net ecosystem exchange (NEE) over
Mediterranean climate, using hyperspectral data (400–900 nm).

Table 5. Fit statistics for 500 bootstrapped PLS-R model for each crop and both crops (soybean + maize)
together when applying PLS-R for hyperspectral data (Hyper) only, including leaf radiometric
temperature (TL,Rad), and finally adding canopy height (hc). The coefficient of determination (R2),
normalized root mean squared error (NRMSE) and bias are provided for PLS-R Calibration fitting (cal)
during the PLS-R model development with 70% of the data and for PLS-R validation (val) with 30% of
the data. These metrics are calculated from bootstrapped data for the same crop, water group, date and
set. LV indicates the average of latent variables over 500 iterations, after using 10-fold cross validation
for each iteration.

Hyper Crop R2
cal R2

val
NRMSEcal

(%)
NRMSEval

(%)
Biascal

(%)
Biasval

(%) LV

Soybean 0.79 0.67 12 15 2.9 3.4 8
A (µmol CO2 m−2 s−1) Maize 0.87 0.79 8 10 1.1 1.4 5

Soybean + Maize 0.94 0.92 7 9 4.1 4.8 11

Soybean 0.71 0.54 14 18 3.5 4.2 8
gs (mol H2O m−2 s−1) Maize 0.65 0.58 13 15 1.3 1.5 2

Soybean + Maize 0.82 0.77 11 13 3.6 3.9 10

Soybean 0.82 0.68 12 15 2.6 3.9 9
Tr (µmol CO2 m−2 s−1) Maize 0.85 0.75 9 12 1.3 1.7 5

Soybean + Maize 0.89 0.86 10 11 2.9 3.6 10

Hyper + TL,Rad Crop R2
cal R2

val NRMSEcal NRMSEval Biascal Biasval LV

Soybean 0.78 0.68 13 15 3.0 3.6 8
A (µmol CO2 m−2 s−1) Maize 0.87 0.79 8 11 1.1 1.5 5

Soybean + Maize 0.94 0.92 7 8 4.1 4.9 11

Soybean 0.81 0.68 12 15 3.1 3.8 8
gs (mol H2O m−2 s−1) Maize 0.65 0.57 14 15 1.3 1.5 2

Soybean + Maize 0.86 0.82 10 11 3.3 3.9 10

Soybean 0.83 0.70 11 15 2.7 3.7 9
Tr (µmol CO2 m−2 s−1) Maize 0.83 0.74 10 12 1.4 1.9 5

Soybean + Maize 0.90 0.86 9 11 3.0 3.4 10

Hyper + TL,Rad + hc Crop R2
cal R2

val NRMSEcal NRMSEval Biascal Biasval LV

Soybean 0.79 0.66 12 16 2.9 3.7 7
A (µmol CO2 m−2 s−1) Maize 0.86 0.79 8 11 1.1 1.5 5

Soybean + Maize 0.94 0.92 7 8 4.1 4.7 11

Soybean 0.79 0.65 12 16 3.3 3.7 8
gs (mol H2O m−2 s−1) Maize 0.69 0.61 13 14 1.2 1.4 3

Soybean + Maize 0.86 0.82 10 11 3.4 3.9 10

Soybean 0.83 0.71 11 15 2.6 3.8 8
Tr (µmol CO2 m−2 s−1) Maize 0.91 0.81 7 10 0.8 1.2 7

Soybean + Maize 0.91 0.87 9 11 2.7 3.3 10

Comparing between crops, maize presented better predictions for Tr and A while gs was better
predicted in soybean (Table 5). The main improvement from adding TL,Rad to PLS-R models was found
in soybean models (Table 5), especially for gs. Soybean gs model including TL,Rad, increased about 25%
R2

val (13% R2
cal), decreased 13% NRMSEval (16% NRMSEcal), and reduced 10% biasval (13% biascal)

compared to just using hyperspectral data. Adding hc was mostly improving maize models, especially
Tr, reducing NRMSEval about 15% and biasval 30%. Maize gs and Tr models showed increased R2

calibration and validation values of about 10%.
VIP scores (Figure 9) higher than 1 indicate important waveband regions to predict A, gs, and Tr.

Overall, we observed the same bands contribution for soybean A, gs, and Tr, while in maize, the role of
specific narrow bands, was not so clear, presenting lower VIP scores and similar influence over wavelengths.
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validation (30%) with blue crosses. R2, normalized root mean square error (NRMSE) and bias are 
shown in the left upper corner for calibration (cal) and in the right lower corner for validation (val). 
Right figures show calibration data grouped by crop (soybean in blueish colors and maize in reddish 
colors) and WHC. Error bars present the variability of model performance pooling the 500 PLR-S 
iterations and replicates: the x-axis shows the standard deviation across iterations and y-axis for the 
six replicates. The diagonal is the 1:1 line. 

In maize A, gs, and Tr, we could highlight some important regions around the red edge and NIR, 
more specifically, at the beginning and end of the red edge slope with peaks around 700 and 770 nm. 
In the NIR of maize A VIP, some displaced regions were found compared to gs and Tr, which showed 
a peak at 843 nm. In addition, further in the NIR, different wavelengths were prominent for 
physiology, with some relations between A with gs and Tr. Maize gs and Tr VIP scores were also 
influenced by green bands (520 and 560 nm). 

For A, gs, and Tr in the studied crops, unimportant regions were observed in blue and yellow-
red bands from 450 to 500 nm and between 580 and 680 nm, respectively. In addition, VIPs for 
soybean and maize gs and Tr were very low around 900 nm. 

Figure 8. Measured vs. predicted values grouped by crop and water holding capacity (WHC) groups
after applying the 500 bootstrapped PLR-S model to predict leaf photosynthetic CO2 assimilation rate
(A in µmol CO2 m−2 s−1), leaf stomatal conductance (gs in mol H2O m−2 s−1), and leaf transpiration
rate (Tr in µmol CO2 m−2 s−1). Left figures show the values used for calibration (70%) with red dots
and validation (30%) with blue crosses. R2, normalized root mean square error (NRMSE) and bias
are shown in the left upper corner for calibration (cal) and in the right lower corner for validation
(val). Right figures show calibration data grouped by crop (soybean in blueish colors and maize in
reddish colors) and WHC. Error bars present the variability of model performance pooling the 500
PLR-S iterations and replicates: the x-axis shows the standard deviation across iterations and y-axis for
the six replicates. The diagonal is the 1:1 line.

Based on VIP threshold score and loading weights (Figure 9), the most influential regions for
soybean A, gs, and Tr were the green band in the VIS (peak around 516 nm), at the beginning (691 nm)
and end (780–783 nm) of the red-edge slope and in the NIR plateau region (peaks at 831 and 850 nm).
Furthermore, gs and Tr showed a spike in another green band (540 nm), especially important in gs VIP
curve, presenting the second highest value. In soybean gs and Tr, the highest VIP score was given by
TL,Rad contribution. In maize, however, hc played more essential role as shown in Table 5. For A of
both crops, these two added predictors did not seem to add much information. Note that hc was also
important for predicting soybean Tr.
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are shown with black crosses for soybean and black dots for maize. Vertical grey shaded area 
represents the full width at half maximum (FWHM) of each peak and the threshold VIP = 1 is 
represented by a straight black line. 

To assess the correlation between hyperspectral, thermal, and hc data, we plotted the predictors 
PLS-R mean loadings of the 500 bootstrapped iterations for the first and second LVs (Figure 10), 
highlighting important wavelengths from the VIP analysis (Figure 9). From Figure 10, we observed 
that most of the noteworthy bands from VIP analysis were positively or negatively correlated with 
hc and TL,Rad for both crops, especially for soybean plants. 

From Figure 10, In soybean A, gs, and Tr, we found that wavelengths corresponding to 
absorption of chlorophyll b (516 nm) and NIR plateau (850 nm) were the closest to TL,Rad and in the 
same quadrant. Opposite trends to TL,Rad were shown by red-edge (780–783 nm) and NIR canopy 
moisture (831 nm) bands. Similarly occurred with the green band at 540 nm for soybean gs and Tr. 
Interestingly in three soybean physiological parameters, the chlorophyll a absorption band (691 nm) 
was near to hc. 

In maize A, gs, and Tr, wavelengths at the end of the red edge slope (760–780 nm) were the most 
related to hc. Also correlated with hc but with negative LV1, bands at the beginning of the red-edge 
(698–706 nm) and NIR regions (930–950 nm were highlighted. Note that in accordance with previous 
findings, TL,Rad was not considerably contributing to maize physiological modeling. 

Figure 9. Variable importance of projection (VIP) scores for maize (red dashed line) and soybean (blue
continuous line) for leaf photosynthetic CO2 assimilation rate (A in µmol CO2 m−2 s−1), leaf stomatal
conductance (gs in mol H2O m−2 s−1), and leaf transpiration rate (Tr in µmol CO2 m−2 s−1), where peaks
are shown with black crosses for soybean and black dots for maize. Vertical grey shaded area represents
the full width at half maximum (FWHM) of each peak and the threshold VIP = 1 is represented by a
straight black line.

In maize A, gs, and Tr, we could highlight some important regions around the red edge and NIR,
more specifically, at the beginning and end of the red edge slope with peaks around 700 and 770 nm.
In the NIR of maize A VIP, some displaced regions were found compared to gs and Tr, which showed a
peak at 843 nm. In addition, further in the NIR, different wavelengths were prominent for physiology,
with some relations between A with gs and Tr. Maize gs and Tr VIP scores were also influenced by
green bands (520 and 560 nm).

For A, gs, and Tr in the studied crops, unimportant regions were observed in blue and yellow-red
bands from 450 to 500 nm and between 580 and 680 nm, respectively. In addition, VIPs for soybean
and maize gs and Tr were very low around 900 nm.

To assess the correlation between hyperspectral, thermal, and hc data, we plotted the predictors
PLS-R mean loadings of the 500 bootstrapped iterations for the first and second LVs (Figure 10),
highlighting important wavelengths from the VIP analysis (Figure 9). From Figure 10, we observed
that most of the noteworthy bands from VIP analysis were positively or negatively correlated with hc

and TL,Rad for both crops, especially for soybean plants.
From Figure 10, In soybean A, gs, and Tr, we found that wavelengths corresponding to absorption

of chlorophyll b (516 nm) and NIR plateau (850 nm) were the closest to TL,Rad and in the same quadrant.
Opposite trends to TL,Rad were shown by red-edge (780–783 nm) and NIR canopy moisture (831 nm)
bands. Similarly occurred with the green band at 540 nm for soybean gs and Tr. Interestingly in three
soybean physiological parameters, the chlorophyll a absorption band (691 nm) was near to hc.

In maize A, gs, and Tr, wavelengths at the end of the red edge slope (760–780 nm) were the most
related to hc. Also correlated with hc but with negative LV1, bands at the beginning of the red-edge
(698–706 nm) and NIR regions (930–950 nm were highlighted. Note that in accordance with previous
findings, TL,Rad was not considerably contributing to maize physiological modeling.



Remote Sens. 2020, 12, 3182 20 of 32
Remote Sens. 2020, 12, x FOR PEER REVIEW 20 of 32 

 

 
Figure 10. PLS-R mean loadings of the 500 bootstrapped iterations for the predictor variables: VNIR 
wavelengths (color bar from blue to red colors with increasing nm), TL,Rad (black star), and hc (black 
triangle) for the first latent variable (LV, x-axis) and the second LV (y-axis) comparing photosynthetic 
CO2 assimilation rate (A), leaf stomatal conductance (gs), and transpiration rate (Tr) of soybean (left 
figures) and maize (right figures). Important wavelengths from VIP analysis are marked with a black 
dot and the corresponding nm number. Wavelengths near to TL,Rad and hc as well as wavelengths in 
the opposite quadrant to these two predictors have similar explanator power. 

  

Figure 10. PLS-R mean loadings of the 500 bootstrapped iterations for the predictor variables:
VNIR wavelengths (color bar from blue to red colors with increasing nm), TL,Rad (black star),
and hc (black triangle) for the first latent variable (LV, x-axis) and the second LV (y-axis) comparing
photosynthetic CO2 assimilation rate (A), leaf stomatal conductance (gs), and transpiration rate (Tr) of
soybean (left figures) and maize (right figures). Important wavelengths from VIP analysis are marked
with a black dot and the corresponding nm number. Wavelengths near to TL,Rad and hc as well as
wavelengths in the opposite quadrant to these two predictors have similar explanator power.
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4. Discussion

4.1. Physiological, Biochemical, Morphological, and Remote Sensing Responses under Water Stress

Changes in leaf physiology are the result of plant-level regulation, and therefore changes in gs,
Tr, and A associated with soil drought have to be interpreted by looking at transpiration responses of
the overall canopy. After 4–7 DoM, leaves were practically covering the full soil surface, especially in
soybean plants. Thus, soil evaporation could be neglected, assuming canopy transpiration similar to
ET. Our data showed that for a 60% soil water reduction, both crops experienced a significant reduction
about the same order of magnitude in average canopy transpiration (around 23% for maize and 35%
for soybean) (Figure 3). However, maize and soybean plants presented different responses in Tr and gs

at the leaf level.
For soybean, a proportional decline of leaf gs (≈34%) and leaf Tr (≈24%) was observed after the

reduction of 35% ET (Figure 3). This suggests that the strategy of soybean plants to cope with drought
is through tight stomatal control, also shown by the significant rise of leaf vapor pressure deficit
(VPDleaf ≈ 13%) (Figure S1) and TL,Rad (≈3%) (Figure 3). From this study, we found that TL,Rad is a key
remote sensing index to track drought responses in soybean plants, as it captures the warming effect
from less cooling from lower Tr and gs (Figure 3). Furthermore, ∆T was the only index significantly
correlated with soybean gs and Tr (Figure 6). Similar response in gs of soybean plants has been
also shown by others [17,19,86]. Thigh stomatal control could be associated to soybean plants not
acclimating well to soil water stress due to lack of adjustment in leaf hydraulic conductance [87].
Thus, to avoid hydraulic failure, it tends to close stomata. As in soybean plants, most of the reduction
in ET can be linked to reductions in leaf Tr, water stress impacts on growth (i.e., LAI decreases) did not
seem to play a big role (Table 3). The main support for this argument relies on LAI measurements
at the end of the season with not significant differences between wet and dry soil water levels
(Table 3 and Figure S5). In addition, remote sensing indices traditionally associated with LAI such as
NDVI [42,53,88], OSAVI [37,39,85], and REIP [75,88], were not significantly affected by changes in soil
water (Table 4, Figure 5 and Figure S1). It is possible that, as VIs were calculated only from vegetation
pixels (Figure 2), their ability to detect decrease in LAI might be reduced. However, it can be seen
that hc, a proxy for cell enlargement and associated to growth [7,17], did not suffer significant changes
due to drought (Table 3). Because VIs were obtained from average pixels of top vegetation cover from
a high resolution camera (10.5 mm/px), we assumed that most of the detected reflectance by the sensor
was coming from top of canopy leaves and it is not considered as a composite plant-canopy reflectance.
However, some of the pixels might incorporate reflectance of several overlapping leaves (Figure 2)
and leaf scattering effects might be observed on the NIR part of the spectrum [32], which can be also
related with changes in leaf angle due to drought effects [10,32,89]. By removing soil background pixels
(Figure 2), we eliminated most of the reflectivity from soil, supported by similar behavior between
NDVI and OSAVI, which minimizes soil effects [70], with significant differences for soybean but not
for maize (Table 3). Thus, we could infer that soil brightness effects were low. Nevertheless, for further
improvements on reflectance measurements, ‘bare soil’ reflectance for each soil water level can provide
useful information to reduce soil brightness effects [90].

In maize, all the leaf physiological variables (gs, Tr, and A) (Figure 3) as well as VPDleaf

and intercellular CO2 concentration (Ci) (Figure S1) were very similar among WHC groups.
Nonetheless, such differences in Tr and A were enough to result in a significantly lower water use
efficiency (WUE ≈ 10%) with 60% reduced soil water availability (Figure S1). Therefore, the detected
23% drop of ET under soil water stress (Figure 3) must be mostly driven by a reduction in LAI,
as morphological adjustments are an effective mechanism to cope with water stress in maize plants [8].
Our results support this hypothesis, where measurements of LAI performed at the end of the experiment
were significantly lower with water stress for maize but not for soybean (Table 3 and Figure S5).
Moreover, structural related VIs such as NDVI, rNDVI, OSAVI, EVI, and REIP showed significant
effects between soil water levels (Table 4) and significantly positive relations between these VIs with
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gs and Tr (Figure 6 and Figure S4). In recent studies, structural VIs have also successfully been
used to predicted water stress proxies (e.g., gs, leaf water content, and leaf water potential) in maize
plants [91,92]. In our study, the effect of growth through these VIs is shown by the high sensitivity
of phenology (DoM), lack of significance with soil drought (WHC) (Table 4), and the strong positive
correlations with hc (R2 > 0.86) (Figure 6 and Figure S4). In addition, maize reflectance presented
higher reflectance over time than soybean (Figure 4C,D), which indeed could imply more variability
due to growth, as changes in LAI can be detected in the NIR region close to the red-edge [56,75].
In contrast to soybean, maize TL,Rad was not sensitive to drought (Table 4) and ∆T did not vary with
phenology. In addition, ∆T was the only remote sensing variable not related to any maize parameter
(gs, Tr, A, hc, and chl) (Figure 6). Unlike our results, others studies of greenhouse maize plants have
been successful in detecting drought through thermal imaging, likely due to higher air temperature
(27–28 ◦C) increasing soil water stress [50,93].

Despite of such a large mean reduction in soybean gs from wet (100%) to dry (40%) WHC,
soybean plants significantly increased about 15% their WUE (Figure S1) as they only experienced
a small decrease in A (≈12%) relative to the reduction in transpiration at canopy and leaf levels
(Figure 2). These could be explained by a 16% mean increase in top leaves chl concentration, measured
with SPAD (Figure S1). Zhang et al. (2016) [19] also found increased chlorophyll content as well
as decreased gs, Tr, and A in greenhouse soybean plants with soil water reductions of about 40%.
However, they reported declines in WUE of about 45%. Wijewardana et al. (2019) [17] have interpreted
WUE increases as an adaptive mechanism to drought due to transpiration decline under soil moisture
stress in soybean plants. However, in their experiment, they observed a 24% decrease on chlorophyll
content of soybean plants with 38% increase in carotenoids. Explanations to differences among studies
might be associated to experimental design. For instance, plants in Wijewardana et al. (2019) [17]
were exposed to higher radiation and temperatures (29 ◦C) than in our experiment, with a longer
cycle, which would increase soil water stress. Cultivar types also present different morphological and
physiological adjustments to drought [7,86].

Moreover, VIs used to detect changes in chlorophyll concentration (TCARI, TCARI/OSAVI,
and R700/670) can track responses to soil drought across different dates, especially for R700/670 (Table 4,
Figure 6 and Figure S4). Unlike soybean, maize leaf chl did not change across soil water levels (Table 3),
reflected also in the lack of significance in TCARI and TCARI/OSAVI indices. However, this was not
the case for R700/670 (p-value < 0.01) (Table 4), likely because this VI does not minimize LAI variations as
TCARI and TCARI/OSAVI [39]. Differences on chl response between crops can be related to decreased
soybean reflectance in the VIS with soil drought (up to around 640 nm), whereas maize reflectance
increased (Figure 4A,B). Similarly, Feng et al. (2013) [94] found greater maize reflectance under soil
water stress in this region. VIs linked to photosynthetic efficiency like PRI are often used to detect
soil moisture changes [37,41,43,45,76]. However, PRI is also quite sensitive to structural changes,
pigment levels, soil background, illumination effects, and viewing angles [42,43]. As the experiment
was conducted in a growth chamber with high-pressure mercury and halogen lamps (peak at 538 nm),
some of the PRI results might not be like in field conditions (Figure 3). However, variations of PRI
calculated with other bands as sPRI (510 nm and 560 nm) and PRI570–515 were significantly reduced
presenting less photosynthetic activity with drought (Table 4), especially for soybean plants (C3) as
they are less efficient than C4 species (maize) [21,22]. Note that soybean sPRI as well as R700/670 were
not influenced by changes across time (Table 4), making them attractive to detect drought in soybean
plants, likely subtracting growing effects. Unlike soybean, not a single maize VI was only significant
across water groups (Table 4).

One area of interest is the possibility to use remote sensing to detect isohydric and anisohydric
behavior, which is concept related to leaf water potential (ΨL) [95]. Leaf water content can be retrieved
from optical (between 800 nm and 2500 nm) and microwave radiation [10]. In our experiment,
because our hyperspectral camera only covers the VNIR region (400–900 nm), we did not measure
ΨL. However, if reductions in gs are linked to reductions in ΨL as shown by Wijewardana et al.
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(2019) [17], it could be inferred that soybean plants behaved more as isohydric crop compared to our
type of maize plants. This could also be associated with the type of photosynthetic pathway as C3

species such as soybean tend to exhibit more considerable reductions in gs than their C4 relatives
under drought [23]. Nevertheless, according to Costa et al. (2013) [48], gs is better indicator of soil
water stress in isohydric plants, enabling thermal imaging to better detect drought, as we observed
in our results (Figure 6). In addition, Konings et al. (2017) [25] also identified a maize cultivar as
anisohydric. Still, the concept of iso/anisohydric appears more complex than can be represented as
a binary factor, and could instead occur as a response to environmental thresholds or occur along a
continuum [95,96]. Therefore, discrepancies in this classification are found for soybean [48,97] and
maize crops [16,48,97–99].

4.2. Synergies of Optical, Thermal, and Canopy Height Observations for PLS-R Modeling

In response to drought severity and duration, crops undertake different adjustments in plant
physiology, morphology, and biochemistry. Some of those changes are noticeable from the drought
onset (fast changes), while others are noticeable only after some time, also referred as slow changes [10].
For example, stomatal closure occurs practically instantaneous under water stress, while effects
on chlorophyll content and structure tend to be visible after longer periods of time [10,11,13].
Our study showed that for soybean plants TL,Rad was a faster indicator of physiological adjustments
than VIS indices such as NDVI and PRI (Figure 6 and Figure S4) as shown also by [45,100,101]).
Nonetheless, improved detection of water stress can be achieved by combining thermal and optical
imaging [37,46,47,102], as the energy balance is affected by drought. The temperature is the result
of the balancing of several processes, including transpiration cooling and absorption of radiation.
For example, maize plants were warmer than soybean plants (Figure 5), despite presenting higher Tr for
any soil moisture condition (Figure 3). Figure 4A shows how maize wet plants reflected less energy than
wet soybean in the VNIR wavelengths, indicating more energy absorption, translated in significantly
higher thermal emission. From the point of view of plant physiology, although hc is a parameter at the
canopy level, it integrates leaf level processes in response to stress: e.g., cell enlargement has been
shown very sensitive to water stress [11,13], and hc reduction could be associated with decrease on
cell enlargement [7,17]. For this reason, hc was used as predictor for water stress. In addition, hc is
a growth indicator easily obtained from remote sensing [52], that provided valuable information to
model gs, Tr, and A (Figure 9).

PLS-R is not only a tool to model crop physiology parameters, but the VIP scores can inform
of the more relevant wavelengths and variables responding to soil drought. In fact, the highest
VIP scores for gs and Tr correspond to TL,Rad in soybean and hc in maize (Figure 9), reflecting the
dominant effects of soil drought: stomatal closure on soybean and plant growth on maize plants.
Moreover, model improvements were appreciated in soybean gs model when including TL,Rad predictor,
and in maize Tr model when adding hc (Table 5). A curious fact when looking at hyperspectral band
contribution was that soybean crops shared importance on similar wavelengths among A, gs, and Tr,
whereas maize response varied between traits with low VIP signal (Figure 8). From this, we can
speculate that soybean processes are more interdependent than maize mechanisms.

Because part of the information obtained from the new variables (TL,Rad and hc) could be implicit
in some of the 138 bands of the hyperspectral sensor, we looked into the relation between LV1 and
LV2 for all predictors (Figure 10). Overall, we found that most of the bands showing high VIP scores
(Figure 9) were correlated with TL,Rad and hc (Figure 10). These correlations could explain why model
performance did not improve remarkably by adding the two new predictors (Table 5). For soybean
gs, Tr, and A peaks with VIP scores above one were found in regions that correspond to absorption
of chlorophyll b (516 nm), chlorophyll a (691 nm), red edge (780–783 nm), and the NIR plateau
(831 and 850 nm) (Figure 9). Most of these bands clearly overlap the ones used in the VIs studied
(Table 2), but they are not exactly centered at the same wavelength, highlighting the importance of
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using hyperspectral remote sensing with contiguous narrowband. Further research would be needed
to confirm this finding across different illumination sources and conditions.

Regions around 515 nm and 700 nm have been reported to be very suitable to estimate A and
indirectly gs due to their ability to detect chlorophyll changes [42,75]. Similar to our result for
soybean, Matthes et al. (2015) [55] found maximum VIP scores between 670 and 680 nm when using
PLS-R to predict GPP and NEE in pasture and rise sites under Mediterranean climate. In addition,
a recent study concluded, based on PLS-R VIP analysis, that most important bands to predict wheat
gs, Tr, and A from hyperspectral data were mainly placed in the VIS and red-edge regions [57].
Wavelengths around 780 nm presented one of the highest VIP values in soybean gs, Tr, and A,
in agreement with mARI being sensitive to Tr. Note that narrow wavebands (831 and 850 nm),
often combined with water absorption bands in SWIR to obtain water and moisture indices [42],
were not used in VI calculations. In Figure 9, soybean Tr and gs VIP showed also a spike centered
at the green band 540 nm, which might be partly due to artifacts caused by artificial illumination
sources (Figure 4). Nonetheless, Rapaport et al. (2015) [15] also found that this band was one of
the bands contributing the most to estimate leaf water potential to detect water stress under solar
irradiance conditions.

In relation to artifacts caused by the lamps (Figure 4), to some extent, they should be removed
when calculating reflectance by the normalization with incoming irradiance and the normalization prior
to PLSR processing. Even though it is possible that some of these artifacts could be related to temporal
changes in the lamp’s irradiance caused by voltage oscillations, other authors have found similar effects
in reflectance due to lamps irradiance spikes. Schuerger & Richards (2006) [103] investigated reflectance
of healthy and water stressed pepper plants under seven artificial illumination sources and they found
that high pressure sodium and metal halide lamps, with irradiance spikes similar to those in our high
pressure mercury and halogen lamps, introduced spikes in the reflectance spectra. Thus, peaks in the
spectral irradiance distribution of the lamps, compared to the solar irradiance, may modify mostly
plants reflection while the absorbed light might not be affected in the same proportion, and, therefore,
plants release the extra light. Nevertheless, these small reflectance artifacts do not seem to show an
inconvenient to effectively detect plant changes in reflectance due to water stress under these type of
lamps [103].

Unlike soybean, the contribution of wavelengths to maize gs, Tr, and A PLS-R modeling was
more spread over the whole spectra with lower VIP scores (Figure 9). Nonetheless, there were a few
common regions with spikes at two red-edge wavelengths (around 700 and 760–780 nm). Note that
bands around 770 nm were near to hc, explaining similar trend. This was not the case for 700 nm
presenting negative loading in the first LV (Figure 10). These bands are closely related to the rNDVI
(705 and 750 nm), which relate to structural changes to detect drought [76]. Bands at 705 nm and
700–740 nm relate to water stress while 760 nm accounts for water absorption [42]. In line with this and
using PLS-R, strong relations were found between red-edge bands and Vcmax (correlated to A) in nine
agricultural crops [58]. In Figure 9, green bands (around 520 and 560 nm) for predicting maize gs and Tr

showed important contribution, but not same information as hc (Figure 10). These bands were not used
in VI calculations, despite being close to PRI and its variants (Table 2). Thus, they could be potential
wavelengths to predict maize gs and Tr under water stress. NIR band (843 nm) was also important
(Figure 9). hc has been previously related with near infrared bands [42], associated with LAI and leaf
scattering [32]. Maize A VIP was substantially higher at around 890 and 920–950 nm, while Tr VIP was
prominent at 952 nm and gs VIP at 935 nm (Figure 9). In the NIR spectral bands, water absorption
features are identified around 900 and 970 nm (water index) [104]. Although our hyperspectral sensor
detected changes related to water absorption between 870 nm and 960 nm, these wavelengths were
more noisy than VIS bands with wider full width at half maximum (Figure 9). Thus, the models might
not detect high signals in water bands. According to Taylor et al. (2011) [23], in C4 species, drought
effects in A and Tr might be more visible in the whole plant rather in specific leaf compared with
C3 plants.
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Finally, it is worth mentioning that this study was conducted during a short vegetative period
of two crops under specific controlled environmental conditions, presenting certain limitations.
Thus, to assure the reproducibility of these results, further research will be required in more species,
repeating and testing the method in a larger dataset as recommended by Matthes et al. (2015) [55].
In addition, a step further will be to apply this study under external ambient conditions as similarly
done by Rapaport et al. (2015) [15].

5. Conclusions

In this study, we showed that changes in the function of soybean and maize under water stress
are expressed in various reflectance and emission traits, according to their different photosynthetic
pathways (C3 and C4) and water use strategies. In a controlled environment, we demonstrated the
joint power of optical hyperspectral (VNIR), thermal (TL,Rad), and canopy height (hc), to predict three
key physiological variables regulating water and carbon assimilation: leaf stomatal conductance (gs),
leaf transpiration (Tr), and leaf photosynthesis (A) during a vegetative growth season.

Under a 60% reduction in soil water content, canopy transpiration of both soybean and maize
decreased significantly (35% and 23%, respectively). In soybean (C3), the reduction of canopy
transpiration was achieved by a tighter leaf stomatal control, suggesting a more isohydric behavior,
while for maize (C4), gas exchange parameters were not significantly affected, which could indicate
a more anisohydric tendency. For maize, the reduction of canopy transpiration was caused by
structural changes, with leaf area index (LAI) and hc significantly reduced by the end of the season.
These very different responses were readily picked by some narrowband vegetation indices (VIs)
and the leaf–air temperature difference (∆T), but only after drought responses were separated from
variations in phenology.

Although well-known VIs are useful to point out some of the plants potential mechanisms to
cope with water stress, almost none of the studied VIs just responded to water stress. In addition,
the VI variance explained individually in relation to water stress was not enough to estimate leaf gas
exchange processes. Machine learning methods such PLS-R enable identification and exploitation of
other wavelengths and variables without any prior assumption about the exact mechanisms involved
in order to predict the studied physiological parameters. However, PLS-R requires a large number
of samples and range of variation, which could explain why a joint crop model (R2

val ≈ 0.77–0.92,
NRMSEval < 13%) performed better than individual crop models (R2

val ≈ 0.54–0.81, NRMSEval < 18%),
even though maize and soybean presented quite distinct functioning for the sole purpose of predicting
leaf gas exchange. Nonetheless, separated PLS-R crop models were useful to identify the most relevant
variables in each crop, such as TL,Rad for soybean and hc for maize according to our experimental
conditions. Interestingly, the most important spectral bands sensitive to drought, derived from PLS-R
analysis, were not exactly centered at the same wavelengths of the studied VIs sensitive to drought,
highlighting the benefit of having contiguous narrow spectral bands to predict leaf physiology and
suggesting different wavelengths combinations based on crop type. Additionally, PLS-R VIP results
showed that soybean relevant wavelengths were similar for A, gs, and Tr, whereas maize response
varied between physiological parameters with lower VIP scores, suggesting higher interdependence of
processes in soybean than maize.

The results from this study are only a first but a promising step towards larger scale applications,
using airborne or satellite remote sensing. PLS-R estimates of leaf-level parameters such as gs

could help to parameterize canopy level GPP and ET models, recognize different photosynthetic
paths, or identify the degree of stomatal closure in response to drought, which could be linked to
isohydric/anisohydric behavior.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/19/3182/s1,
Figure S1. Comparison between soil water levels: Wet/control (100% WHC), Mid (70% WHC) and Dry (40% WHC)
for each crop: soybean (blue boxes) and maize (dashed reddish boxes) hc, chl, Ci, WUE, leaf temperature from LI-6400
(Tleaf), VPDLeaf, ∆T, radiometric leaf standard deviation temperature (TL,Rad,std), OSAVI, mARI, TCARI/OSAVI,
PSNDc, PRI(570–515), and PRI. Dots in maize and crosses in soybean represent the seasonal average of the six
replicates for each crop. Boxplots contain six replicates. Boxes show the 25th and 75th percentiles of the
interquartile range (IQR), horizontal line represents the median of the data and whiskers extend from the edges
of box to show 1.96 IQR. Points outside this range are outliers. Different letters indicate that differences are
significant at p-value < 0.05 level. Figure S2. Time series plot per day of measurement (DoM) of wet (100%
WHC) and dry (40% WHC) soybean (bluish lines in left figures) and maize (reddish lines in right figures)
ET, Tr, gs, A, hc, Ci, chl, and VPDleaf. Asterisks (*) indicate significant differences between wet (control) and
dry plants at 5% significance level. Figure S3. Scatter plots between different variables including physiology
(canopy evapotranspiration = ET in mm day−1, leaf photosynthesis = A in µmol CO2 m−2 s−1, leaf stomatal
conductance = gs in mol H2O m−2 s−1 and leaf transpiration = Tr in mmol H2O m−2 s−1), biochemistry at leaf
level (chlorophyll content = chl in µg m−2) and morphology (canopy height = hc in m). Soybean (blue crosses) and
maize (orange dots) are separated with their respective coefficient of determination (R2) and p-value indicated with
stars (* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001). The diagonal shows the distribution of each parameter
for both crops. Figure S4. Linear correlation between vegetation indices (VIs) (Table 2) vs. A (µmol CO2 m−2 s−1),
gs (mol H2O m−2 s−1), Tr (mmol H2O m−2 s−1) and chl (µg m−2) at leaf level and hc (m) for soybean (blue crosses)
and maize (red dots). Points represent the average of six replicas. Coefficient of determination (R2) is shown and
p-value is represented with stars (* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001). Figure S5. Comparison
between soil water levels: wet/control (100% WHC), mid (70% WHC), and dry (40% WHC) for each crop: soybean
(blue boxes) and maize (dashed reddish boxes) leaf area index (LAI) measured with the plant canopy analyzer
LAI-2200C. Dots in maize and crosses in soybean represent the average of the three replicates for each crop
measured the last day of the experiment. Boxes show the 25th and 75th percentiles of the interquartile range (IQR),
horizontal line represents the median of the data and whiskers extend from the edges of box to show 1.96 IQR.
Points outside this range are outliers. Different letters indicate that differences are significant at p-value < 0.05 level.
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Abbreviations

A Leaf photosynthetic CO2 assimilation rate (µmol CO2 m−2 s−1)
chl Chlorophyll content from SPAD (µg cm−2)
Ci Intercellular CO2 concentration (µmol CO2 mol−1 moist Air)
DAS Days after sowing
DoM Days of measurement
Dry Soil water content corresponding to 40% water holding capacity
DTU Denmark technical university
ET Evapotranspiration at canopy level (mm day−1)
EVI Enhanced vegetation index
FoV Field of view
GPP Gross primary productivity
gs Leaf stomatal conductance (mol H2O m−2 s−1)
hc Canopy height (m)

http://www.mdpi.com/2072-4292/12/19/3182/s1


Remote Sens. 2020, 12, 3182 27 of 32

IQR Interquartile range
LAI Leaf area index
LiDAR Light detection and ranging
LUE Light use efficiency
LV Latent variable
mARI Modified anthocyanin reflectance index
Mid Soil water content corresponding to 70% water holding capacity
NDVI Normalized difference vegetation index
NIR Near infrared
OSAVI Optimized soil adjusted vegetation index
PAR Photosynthetic active radiation
PLS-R Partial least squares regression
PRI Photochemical reflectance index
PSNDc Pigment specific normalized difference index
PT-JPL Priestley-Taylor Jet Propulsion Laboratory
R700/670 Ratio between reflectance at 700 and 670 nm
REIP Red-edge inflection point
RERAF Risø environmental risk assessment facility
RH Relative humidity
rNDVI Red-edge normalized difference vegetation index
SCOPE Soil Canopy Observation, Photochemistry, and Energy fluxes
SfM Structure from motion
sPRI Similar photochemical reflectance index
SWIR Short-wave infrared
Tair Air temperature (0C)
TCARI Transformed chemical absorption reflectance index
TL,Rad Radiometric leaf temperature from thermal camera (0C)
Tr Leaf transpiration rate (mmol H2O m−2 s−1)
UAV Unmanned aircraft vehicle
Vcmax Maximum Rubisco activity
VI Vegetation index
VIS Visible
VNIR Visible near infrared
VPD Vapor pressure deficit (KPa)
Wet Soil water content corresponding to 100% water holding capacity
WHC Water holding capacity
WUE Water use efficiency
∆T Leaf–air temperature difference (◦C)
ΨL Leaf water potential
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