Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Data
2.2.1. Remote Sensing Data and Processing
2.2.2. Field Survey Data and Processing
2.3. Method
2.3.1. Mapping Forest Cover from the Landsat Observations
2.3.2. Mapping Forest Cover from the Corona Data
2.3.3. Accuracy Assessment of the Forest Cover
2.3.4. Modelling Forest Spatial Process
2.3.5. Remote Sensing Predictor Variables for AGB Model
2.3.6. Random Forest Modeling and Variable Selection
2.3.7. Model Accuracy Assessment and Validation
3. Results
3.1. Accuracy Assessment for Ortho-Rectification and Forest Cover
3.2. Spatio-Temporal Dynamics of Forest Cover
3.3. Analysis of the Spatial Process of Forest Change
3.3.1. Effects of Forest Changes on Landscape Spatial Structure
3.3.2. Spatio-temporal Changes of Forest Spatial Processes
3.4. Evaluation of Ecosystem Function Based on AGB Dynamics
4. Discussion
4.1. Value and Suitability of Integrating Corona and Landsat Data
4.2. Assessments and Application of the Landscape Structure and Ecological Function
4.3. Research Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bian, Z.; Lei, S.; Inyang, H.I.; Chang, L.; Zhang, R.; Zhou, C.; He, X. Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining. Environ. Geol. 2009, 57, 131–142. [Google Scholar] [CrossRef]
- Linke, J.; McDermid, G.J. Monitoring landscape change in multi-use west-central Alberta, Canada using the disturbance-inventory framework. Remote Sens. Environ. 2012, 125, 112–124. [Google Scholar] [CrossRef]
- Zhang, J.; Rao, Y.; Geng, Y.; Fu, M.; Prishchepov, A.V. A novel understanding of land use characteristics caused by mining activities: A case study of Wu’an, China. Ecol. Eng. 2017, 99, 54–69. [Google Scholar] [CrossRef]
- Hodge, R.A. Mining company performance and community conflict: Moving beyond a seeming paradox. J. Clean. Prod. 2014, 84, 27–33. [Google Scholar] [CrossRef]
- Jozefowska, A.; Pietrzykowski, M.; Wos, B.; Cajthaml, T.; Frouz, J. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Lei, S.; Ren, L.; Bian, Z. Time-space characterization of vegetation in a semiarid mining area using empirical orthogonal function decomposition of MODIS NDVI time series. Environ. Earth Sci. 2016, 75, 516. [Google Scholar] [CrossRef]
- Wang, W.; Hao, W.; Sian, Z.; Lei, S.; Wang, X.; Sang, S.; Xu, S. Effect of coal mining activities on the environment of Tetraena mongolica in Wuhai, Inner Mongolia, China-A geochemical perspective. Int. J. Coal Geol. 2014, 132, 94–102. [Google Scholar] [CrossRef]
- Laurence, D. Establishing a sustainable mining operation: An overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Vintro, C.; Sanmiquel, L.; Freijo, M. Environmental sustainability in the mining sector: Evidence from Catalan companies. J. Clean. Prod. 2014, 84, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Bao, N.; Lechner, A.; Fletcher, A.; Erskine, P.; Mulligan, D.; Bai, Z. SPOTing long-term changes in vegetation over short-term variability. Int. J. Min. Reclam. Environ. 2014, 28, 2–24. [Google Scholar] [CrossRef]
- Huang, C.; Coward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; He, C.; Fang, X. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions. Landsc. Ecol. 2018, 33, 2061–2070. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; Yu, H.; Ji, C. Recognition of Landscape Key Areas in a Coal Mine Area of a Semi-Arid Steppe in China: A Case Study of Yimin Open-Pit Coal Mine. Sustainability 2020, 12, 2239. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Pang, J.; Qi, S.; Li, Y.; Han, C.; Liu, T.; Huang, L. Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environ. Earth Sci. 2009, 59, 783–791. [Google Scholar] [CrossRef]
- De Simoni, B.S.; Praca Leite, M.G. Assessment of rehabilitation projects results of a gold mine area using landscape function analysis. Appl. Geogr. 2019, 108, 22–29. [Google Scholar] [CrossRef]
- Wang, Z.; Lechner, A.M.; Yang, Y.; Baumgartl, T.; Wu, J. Mapping the cumulative impacts of long-term mining disturbance and progressive rehabilitation on ecosystem services. Sci. Total Environ. 2020, 717. [Google Scholar] [CrossRef]
- Zibret, G.; Gosar, M.; Miler, M.; Alijagic, J. Impacts of mining and smelting activities on environment and landscape degradation-Slovenian case studies. Land Degrad. Dev. 2018, 29, 4457–4470. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Kim, S.; Song, K.; Townshend, J.R.G.; Davis, P.; Altstatt, A.; Rodas, O.; Yanosky, A.; Clay, R.; Tucker, C.J.; et al. Assessment of Paraguay’s forest cover change using Landsat observations. Glob. Planet. Chang. 2009, 67, 1–12. [Google Scholar] [CrossRef]
- Song, D.-X.; Huang, C.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 103, 81–92. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.A. Corona: Success for space reconnaissance, a look into the Cold War, and a revolution in intelligence. Photogramm. Eng. Remote Sens. 1995, 61, 689–720. [Google Scholar]
- Narama, C.; Kaab, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (similar to 1970), Landsat (similar to 2000); ALOS (similar to 2007) satellite data. Glob. Planet. Chang. 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Li, S.; Yang, B. Introducing a new method for assessing spatially explicit processes of landscape fragmentation. Ecol. Indic. 2015, 56, 116–124. [Google Scholar] [CrossRef]
- Ren, X.; Lv, Y.; Li, M. Evaluating, differences in forest fragmentation and restoration between western natural forests and southeastern plantation forests in the United States. J. Environ. Manag. 2017, 188, 268–277. [Google Scholar] [CrossRef]
- Badreldin, N.; Sanchez-Azofeifa, A. Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada. Remote Sens. 2015, 7, 2832–2849. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Li, M.; Huang, C.; Wei, A. Quantifying Live Aboveground Biomass and Forest Disturbance of Mountainous Natural and Plantation Forests in Northern Guangdong, China, Based on Multi-Temporal Landsat, PALSAR and Field Plot Data. Remote Sens. 2016, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tang, G.G.; Xu, X.G. Studies on Flora of Mountain Mufu Nanjing. J. Nanjing For. Univ. 2006, 30, 38–42. (In Chinese) [Google Scholar]
- Li, M.; Huang, C.; Shen, W.; Ren, X.; Lv, Y.; Wang, J.; Zhu, Z. Characterizing long-term forest disturbance history and its drivers in the Ning-Zhen Mountains, Jiangsu Province of eastern China using yearly Landsat observations (1987–2011). J. For. Res. 2016, 27, 1329–1341. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, D.S.; Yan, C.H. Landscape Ecological Assessment and Planning of Mu-Yan Scenic Spot, Nanjing. Entia Geogr. Sin. 2005, 25, 113–118. (In Chinese) [Google Scholar]
- Altmaier, A.; Kany, C. Digital surface model generation from CORONA satellite images. ISPRS J. Photogramm. Remote Sens. 2002, 56, 221–235. [Google Scholar] [CrossRef]
- Galiatsatos, N. The Shift from Film to Digital Product: Focus on CORONA Imagery. Photogramm. Fernerkund. Geoinf. 2009, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Wang, Q.; Dai, L.; Su, D.; Wang, X.; Qi, G.; Ye, Y. Application of China’s National Forest Continuous Inventory Database. Environ. Manag. 2011, 48, 1095–1106. [Google Scholar] [CrossRef]
- Lei, X.D.; Tang, M.P.; Lu, Y.C.; Hong, L.X.; Tian, D.L. Forest inventory in China: Status and challenges. Int. For. Rev. 2009, 11, 52–63. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Zeng, W.-S. Research on Forest Biomass and Productivity in Yunnan. Contral South For. Inventory Plan. 2005, 4, 1–3. (In Chinese) [Google Scholar]
- Tappan, G.G.; Hadj, A.; Wood, E.C.; Lietzow, R.W. Use of Argon, Corona; Landsat Imagery to Assess 30 Years of Land Resource Changes in West-Central Senegal. Photogramm. Eng. Remote Sens. 2000, 66, 727–736. [Google Scholar]
- Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Assessing spatio-Temporal Changes in forest cover and fragmentation under urban expansion in Nanjing, eastern China, from long-term Landsat observations (1987–2017). Appl. Geogr. 2020, 117. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Rouse, J.; Hass, R.H.; Schell, J.A.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publication: Washington, DC, USA, 1973.
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 3, 256–263. [Google Scholar] [CrossRef]
- Byrne, G.F.; Crapper, P.F.; Mayo, K.K. Monitoring land-cover change by principal component analysis of multitemporal landsat data. Remote Sens. Environ. 1980, 10, 175–184. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, L.Z.D.; Xulu, S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability 2019, 11, 6916. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Z.; Hu, X.; Wang, J.; Wang, D.; Qin, P. The ecological potential of a restored abandoned quarry ecosystem in Mt. Mufu, Nanjing, China. Ecol. Eng. 2011, 37, 833–841. [Google Scholar] [CrossRef]
- Liu, G.H.; Shu, H.L.; Zhang, J.C. Niche of Broussonetia papyrifera Population and Main Associated Species Naturally Revegetabled in Mine Spoil Nanjing Mufu Mountains. Res. Soil Water Conserv. 2007, 14, 184–185. (In Chinese) [Google Scholar]
- Diao, J.; Feng, T.; Li, M.; Zhu, Z.; Liu, J.; Biging, G.; Zheng, G.; Shen, W.; Wang, H.; Wang, J.; et al. Use of vegetation change tracker, spatial analysis; random forest regression to assess the evolution of plantation stand age in Southeast China. Ann. For. Sci. 2020, 77, 27. [Google Scholar] [CrossRef]
- Masek, J.G.; Hayes, D.J.; Hughes, M.J.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Li, M.; Wei, A. Spatio-temporal variations in plantation forests’ disturbance and recovery of northern Guangdong Province using yearly Landsat time series observations (1986–2015). Chin. Geogr. Sci. 2017, 27, 600–613. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Moisen, G.G.; Healey, S.P.; Cohen, W.B. Adding value to the FIA inventory: Combining FIA data and satellite observations to estimate forest disturbance. In Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium 2012; Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012. [Google Scholar]
- Zhao, F.; Huang, C.Q.; Zhu, Z.L. Use of Vegetation Change Tracker and Support Vector Machine to Map Disturbance Types in Greater Yellowstone Ecosystems in a 1984–2010 Landsat Time Series. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1650–1654. [Google Scholar] [CrossRef]
- Nita, M.D.; Munteanu, C.; Gutman, G.; Abrudan, I.V.; Radeloff, V.C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sens. Environ. 2018, 204, 322–332. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, L.C.; Zhang, Y. Assessment of restoration effects of abandoned mininglands in mufushan mountain based on ecosystem value. Res. Soil Water Conserv. 2019, 26, 180–186. (In Chinese) [Google Scholar]
Source | Mission | Resolution (m) | Date/type |
---|---|---|---|
USGS | KH-4A | 2.74 | 19670802 |
KH-4B | 1.83 | 19700525 | |
TM | 30 | 19870921, 19880705, 19900711, 19910831, 19921020, 19930617, 19940722, 19951013, 19970831, 19980615, 19990618, 20020712, 20030731, 20051008, 20060520, 20070726, 20091003, 20100819, 20110518 | |
ETM+ | 30 | 20000916, 20010717 | |
OLI | 30 | 20130811, 20140611, 20150902, 20160429, 20170721, 20180606, 20190913 | |
NASA | SRTM | 90 | DEM |
Crown Density | Subcompartment (No.) | Minimum AGB (t/ha) | Maximum AGB (t/ha) | Mean AGB (t/ha) | Standard Deviation AGB (t/ha) | |
---|---|---|---|---|---|---|
2006 | ≤0.5 | 48 | 10.95 | 23.7 | 23.38 | 11.19 |
0.6–0.7 | 52 | 16.10 | 110.07 | 66.06 | 31.15 | |
0.8–0.9 | 4 | 34.97 | 115.11 | 77.51 | 38.54 | |
2017 | ≤0.5 | 13 | 17.05 | 39.87 | 27.83 | 7.73 |
0.6–0.7 | 140 | 29.38 | 143.46 | 67.01 | 33.34 | |
0.8–0.9 | 34 | 44.31 | 199.15 | 85.37 | 34.07 |
Value | Class Description in the VCT Model | Reclassification |
---|---|---|
0 | Background | Non-forest |
1 | Persistent non-forest | Non-forest |
2 | Persistent forest | Forest |
4 | Persistent water | Non-forest |
5 | Probable forest with recent disturbance | Forest |
6 | Disturbed in this year | Non-forest |
7 | Post-disturbance | Non-forest |
Type | Variable | Equation |
---|---|---|
Surface reflectance | Blue, red, green, near-infrared (NIR), shortwave infrared 1(SWIR1), shortwave infrared 2 (SWIR2) | |
Spectral Indices | NDVI | (NIR − Red)/(NIR + Red) |
EVI | 2.5 × (NIR − Red)/(NIR + 6× Red − 7.5 × Blue + 1) | |
SAVI | (1 + 0.5) × (NIR − Red)/(NIR + Red + 0.5) | |
Tasseled cap transformations | Tasseled cap brightness (TCB), tasseled cap greenness (TCG), tasseled cap wetness (TCW) | |
Texture analysis | Mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, correlation | |
PCA | PCA1, PCA2 (the first and second principal components containing the most image information) |
Year | Number of GCPs | RMSE x (m) | RMSE y (m) | Total RMSE (m) |
---|---|---|---|---|
1967 | 11 | 3.94 | 2.14 | 4.70 |
1970 | 11 | 3.76 | 3.01 | 4.82 |
Year | Class | Producer Accuracy (%) | User Accuracy (%) | Overall Accuracy (%) |
---|---|---|---|---|
2006 | forest | 94.0 | 98.2 | 94.8 |
non-forest | 97.6 | 84.8 | ||
2017 | forest | 98.1 | 93.3 | 93.0 |
non-forest | 74.4 | 91.4 |
Category | Annual Forest Loss | Category | Annual Forest Recovery |
---|---|---|---|
perforation | 0.47 | infilling | 0.52 |
attrition | 0.58 | increment | 0.79 |
shrinkage | 0.92 | branch | 0.89 |
subdivision | 0.96 | bridge | 0.91 |
Minimum AGB (t/ha) | Maximum AGB (t/ha) | Mean AGB (t/ha) | Total AGB (t) | |
---|---|---|---|---|
2006 | 13.84 | 85.92 | 48.38 | 20,173.35 |
2017 | 30.92 | 124.78 | 73.4 | 31,035.77 |
1998–2006 | Increased AGB (t/ha) | 2006–2017 | Increased AGB (t/ha) |
---|---|---|---|
infilling (4.86 ha) | 47.68 | infilling (3.6 ha) | 54.25 |
branch (11.34 ha) | 41.69 | branch (18.72 ha) | 56.78 |
bridge (76.14 ha) | 31.85 | bridge (61.29 ha) | 41.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sens. 2020, 12, 3191. https://doi.org/10.3390/rs12193191
Zhang Y, Shen W, Li M, Lv Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sensing. 2020; 12(19):3191. https://doi.org/10.3390/rs12193191
Chicago/Turabian StyleZhang, Yali, Wenjuan Shen, Mingshi Li, and Yingying Lv. 2020. "Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019" Remote Sensing 12, no. 19: 3191. https://doi.org/10.3390/rs12193191
APA StyleZhang, Y., Shen, W., Li, M., & Lv, Y. (2020). Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sensing, 12(19), 3191. https://doi.org/10.3390/rs12193191