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Abstract: The number of intense tropical cyclones is expected to increase in the future, causing
severe damage to forest ecosystems. Remote sensing plays an important role in detecting changes
in land cover caused by these tropical storms. Remote sensing techniques have been widely used
in different phases of disaster risk management because they can deliver information rapidly to
the concerned parties. Although remote sensing technology is already available, an examination
of appropriate methods based on the type of disaster is still missing. Our goal is to compare the
suitability of three different conventional classification methods for fast and easy change detection
analysis using high-spatial-resolution and high-temporal-resolution remote sensing imagery to
identify areas with windthrow and landslides caused by typhoons. In August 2016, four typhoons
hit Hokkaido, the northern island of Japan, creating large areas of windthrow and landslides. We
compared the normalized difference vegetation index (NDVI) filtering method, the spectral angle
mapper (SAM) method, and the support vector machine (SVM) method to identify windthrow
and landslides in two different study areas in southwestern Hokkaido. These methodologies were
evaluated using PlanetScope data with a resolution of 3 m/px and validated with reference data
based on Worldview2 data with a very high resolution of 0.46 m/px. The results showed that all
three methods, when applied to high-spatial-resolution imagery, can deliver sufficient results for
windthrow and landslide detection. In particular, the SAM method performed better at windthrow
detection, and the NDVI filtering method performed better at landslide detection.

Keywords: windthrow; landslide; remote sensing; change detection; NDVI filtering; SAM;
SVM; planetscope

1. Introduction

Typhoons are the main natural hazard affecting forest ecosystems in eastern Asia [1], and strong
winds and heavy rains make forests vulnerable to damage [2,3]. Although projections under the
Intergovernmental Panel on Climate Change (IPCC) A1B scenario show that there will be a decrease
in the number of tropical cyclones globally due to climate change, the frequency of intense tropical
cyclones is expected to increase by the end of the twenty-first century [4], leading to an increase in
windthrow and landslide disturbances affecting forest ecosystems.

Remote sensing is a technology that is widely used in different phases of disaster
risk management [5,6] and rapidly delivers information to support planners, scientists,
and decision-makers [7,8]. One of the ways to obtain information on land cover change caused
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by natural disasters using remotely sensed data is through visual interpretation of satellite data by
manual digitalization of patches of change, which can be time-consuming and ambiguous in terms
of the necessary criteria, especially when large areas are disturbed [9,10]. Therefore, the automatic
classification of remotely sensed data is more suitable for identifying land cover changes, with some
caveats, such as the limited pattern recognition ability compared to that of the human brain [11].
Apart from an automatic classification process, the input data are of extreme importance for change
detection analysis. If the temporal resolution is low, it may not be possible to check the effects of certain
natural disturbances on land cover [12]. In contrast, higher-spatial-resolution images also reduce the
occurrence of mixels [13], improving the identification of damages in the final result.

The remote sensing community has also contributed to the rapid evolution of this application
by developing more accurate and efficient change detection techniques, such as deep learning using
very-high-resolution images [14], unmanned aerial vehicles for mapping [15], and postclassification
methods to improve accuracy [16]. Although all these technologies are available, an examination of
appropriate methods based on the type of disaster for fast and reliable land cover change detection is
still missing [17]. Additionally, the evolution of remote sensing has made this technology accessible
to a broader range of end-users [18,19], which do not necessarily have sufficient skill levels to apply
complex algorithms for change detection.

In 2016, four typhoons hit the island of Hokkaido, Japan, damaging a total of 9,000 ha of forest and
triggering two major types of damage: windthrow and landslides [20]. Images taken from before and
after the arrival of typhoons are used to compare the suitability of three different conventional change
detection methodologies to identify windthrow and landslide damage: the normalized difference
vegetation index (NDVI) filtering method, the spectral angle mapper (SAM) method, and the support
vector machine (SVM) method. This study selected PlanetScope imagery with high spatial and
temporal resolutions to ensure the reliability of the change detection analysis [21].

The methodologies were chosen based on their relative operational simplicity, fast processing,
and satisfactory results in previous studies. The NDVI filtering method presented by Tsai [22] was
used to preliminarily identify landslides and was able to effectively detect landslides in combination
with change vector analysis. For windthrow detection, the SAM classifier was considered fast and
relatively easy to apply, yielding satisfactory results in combination with multivariate alteration
detection postprocessing [17]. The SVM method, although more sophisticated than the other methods,
is implemented as part of the Google Earth Engine platform, which makes it easy to apply, and using
cloud computing delivers fast results [23].

Therefore, our goal in this study is to compare the suitability of these three different
conventional remote sensing methods when used separately for fast and easy change detection
analysis, taking advantage of high-spatial-resolution and high-temporal-resolution imagery to identify
windthrow and landslide areas resulting from typhoons.

2. Materials and Methods

2.1. Typhoons and The Study Area

In August 2016, four typhoons hit Hokkaido, the northernmost island of Japan: Chanthu (No. 7,
making landfall on 17 August), Mindulle (No. 9, making landfall on 23 August), Lionrock (No. 10,
passing very close to the study area on 30 to 31 August), and Kompasu (No. 11, making landfall on
21 August). The wind reached speeds up to 45.5 m/s and was accompanied by heavy rain [24] for
15 successive days, producing two major types of damage: windthrow and landslides [20]. In this
study, we focused on the detection of the windthrow and landslides present immediately after all four
typhoons had crossed the island of Hokkaido by 31 August 2016.

This study was conducted at two different study sites in the southeastern part of Hokkaido.
According to the local authorities, the outskirts of Setana town suffered from windthrow and landslide
damage caused by the typhoons. We defined the first study site, Setana North (42◦31’N, 139◦58’E),
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for windthrow detection and the second study site, Setana South (42◦22’N, 139◦58’E), for landslide
detection. Both study sites covered an area of approximately 150 km2 (Figure 1). Both regions included
flat plains and steep mountains varying from 0 m to 1300 m in elevation and were covered by natural
forests of Fagus crenata Blume, Betula ermanii Cham., and Acer pictum Thunb. and plantation forests of
Abies sachalinensis (F. Schmidt) Mast. and Larix kaempferi (Lamb.) Carrière.

Figure 1. Setana North and Setana South study area with PlanetScope data from 21 September, 2016.

2.2. Remote Sensing Dataset

For windthrow and landslide detection, pre and posttyphoon PlanetScope Analytic Product
images were acquired [25]. PlanetScope is a satellite constellation consisting of approximately
120 microsatellites delivering a near-daily temporal resolution. The images have a high spatial
resolution of 3 m per pixel, which is suitable according to a field survey performed prior to the
study, in four different spectral bands: blue (455–515 nm), green (500–590 nm), red (590–670 nm),
and near-infrared (780–860 nm).

The PlanetScope Analytic Product offers orthorectified images from which distortions caused
by terrain and perspective effects on the ground have been removed, thereby restoring the geometry
of a vertical shot, and data that have been radiometrically calibrated, which produces a surface
reflectance product.

For both test sites, we used pretyphoon images acquired on 27 August 2016, 3 days before the
Lionrock typhoon hit, and posttyphoon images acquired on 21 September 2016, 21 days after the
typhoons hit. The images from each date were mosaicked, and the urban areas and agricultural
fields were masked using forest data provided by the Japanese Ministry of Land Infrastructure
Transport and Tourism [26] that were adjusted to match the PlanetScope imagery. For cloud masking,
we considered the unusable data mask (udm) file included alongside the PlanetScope Analytic Product,
which provides information on unusable data, such as those affected by clouds. The mask did not
cover all clouds nor cloud shadows, and with the study area being relatively small, we additionally
manually masked the clouds and cloud shadows through visual interpretation of the data.
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The input for the SAM and SVM classification methods was a composite image created by layer
stacking the pre and posttyphoon mosaics. We layer-stacked the eight bands of the image in the
following order: 1. blue (posttyphoon), 2. green (posttyphoon), 3. red (posttyphoon), 4. near-infrared
(posttyphoon), 5. blue (pretyphoon), 6. green (pretyphoon), 7. red (pretyphoon), and 8. near-infrared
(pretyphoon). This step was essential for identifying only the changes that occurred between the two
dates by constituting a land cover change spectral signature. For the NDVI filtering method, the input
data were the NDVI values of the pre- and posttyphoon mosaics.

Additionally, RGB WorldView2 images from 20 August 2017, which were the closest images
available from Digital Globe after the typhoons hit, were used to support the digitalization of training
samples for the SAM and SVM classification methods. We visually defined the classes of each point
for accuracy assessment, as we explain later. This dataset was selected due to its very high spatial
resolution of 0.46 m/px, enabling the visual interpretation of the area [27].

2.3. Windthrow and Landslide Detection

To detect windthrow and landslides in each test site, we used three different classification methods:
the NDVI filtering method, SAM method, and SVM method (Figure 2).

Figure 2. Flowchart of the windthrow and landslide classification and assessment procedure.
Input features are identified in the gray boxes.

2.3.1. Normalized Difference Vegetation Index Filtering Method

The NDVI is an effective index used to measure the type and amount of vegetation by measuring
the difference between near-infrared and red bands, with values ranging between –1 and 1. This index
was first presented by Rouse et al. [28].

The NDVI filtering method for landslide detection shown by Tsai [22] identifies landslides through
the NDVI thresholds T1 and T2 using the NDVI filtering rule (Equation (1)).

NDVIbe f ore −NDVIa f ter > = T1̂ NDVIa f ter <= T2 (1)

where:
NDVIbe f ore = NDVI values obtained from the pretyphoon mosaic;
NDVIa f ter = NDVI values obtained from the posttyphoon mosaic;
T1 and T2 = Threshold value.
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To perform the NDVI filtering method, we used the Map Algebra Function of the Spatial Analyst
Package in ArcGIS 10.7, where threshold values were defined based on the NDVI values calculated
from the pre and posttyphoon images. Histograms of known damaged areas were created to support
the choice of threshold values along with the visual interpretation of the classified result. The threshold
values for Setana North were defined as T1 = −1 and T2 = 0.65, and those for Setana South were defined
as T1 = 0.1 and T2 = 0.6 (Figure 3).
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Figure 3. Histograms of damaged areas with the respective threshold values indicated in red.
The histogram in the upper left shows Setana North NDVIbe f ore −NDVIa f ter , and that in the top right
shows Setana North NDVIa f ter. Setana South NDVIbe f ore −NDVIa f ter is displayed in the lower left corner,
and Setana South NDVIa f ter is displayed in the lower right corner.

2.3.2. Spectral Angle Mapper Method

The SAM method is a spectral classification method that considers an n-dimensional angle to
match the pixel to a reference spectral signature. It calculates the angle between the spectral signature
of an image and the spectral signature of a training sample by treating them as vectors.
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This technique is insensitive to illumination and albedo effects when used on radiometrically
calibrated data. The angle θ was defined by Kruse [29] (Equation (2)):

θ(x, y) = cos−1


∑n

i = 1 xiyi(∑n
i = 1 x2

i

) 1
2
∗

(∑n
i = 1 y2

i

) 1
2

 (2)

where:
x = spectral signature vector of each pixel from the image;
y = spectral signature vector of the training sample;
n = number of bands.
The pixel matches the class that has the smallest angle (Equation (3)):

x ∈ Ck ⇔ θ(x, yk) < θ
(
x, y j

)
∀k , j and θ(x, yk) < T ( (3)

where:
Ck = class k;
yk = spectral signature of class k;y j = spectral signature of class j ;
T = threshold to exclude pixels greater than this value.
The SAM method was performed using the Semi-Automatic Classification Plugin [30] in QGIS

3.10 [31]. Based on composite layer stacked images used as input, training samples were defined by
digitized polygons in known damaged areas and checked using the pre and posttyphoon PlanetScope
data accompanied by the Worldview2 imagery, and the threshold T was defined.

To determine the optimal numbers of training samples and threshold values for windthrow and
landslide detection, we tested different numbers of training samples (1, 2, 4, 8, and 16) and different
threshold values (1, 4, 7, 10, 13, and 16) and compared the overall accuracies of all combinations
(Figure 4).

Figure 4. Comparison of combinations training sample numbers (x-axis) and threshold values according
to overall accuracy (y-axis).
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The criteria used to define the optimal values for classification were the highest overall
accuracy, using the fewest training samples, and visual interpretation of the final classification
result. For windthrow detection in Setana North, the number of selected training samples was 2, with a
threshold set at 7 (overall accuracy: 92.5%). Visual interpretation of the classified map revealed some
scattered false-positive misclassifications (the classified map defined the area as damaged, but the
reference map showed a nondamaged area), so the size and location of the training samples were
empirically adjusted to improve classification.

For landslide detection in Setana South, 8 training samples with the threshold value set at 7
delivered the highest overall accuracy (93.5%); however, visual interpretation of the classification
map revealed a large number of scattered false-positive misclassifications. Then, we selected the
combination of 4 training samples with a threshold set at 7 (overall accuracy, 93%), which presented
a better balance among the number of training samples, overall accuracy, and overall shape of the
final map.

2.3.3. Support Vector Machine Method

The SVM is a classifier that separates different classes by a hyperplane in an n-dimensional space.
Support vectors are data points near the hyperplane that influence the position and orientation of the
hyperplane, trying to maximize the margin of the classifier [32].

The SVM model can handle outliers by creating a soft margin on the classifier; in other words,
the SVM allows a certain number of misclassifications to keep the margin as wide as possible so that
other points can be classified correctly.

In this study, the SVM method was applied using the Google Earth Engine platform [23].
The stacked and masked composite mosaics were uploaded to the platform, and classification
was performed using the SVM classifier with the linear kernel type due to its relatively simple
implementation and fast performance [33].

Training samples were created by digitizing polygons in the damaged area, and the cost parameter,
which defines the margin of the hyperplane, was set to the default value of 1 to deliver the best results
in both study areas. We applied the value after confirming that low values, such as 10−5, reduced the
overall accuracy of the final result.

For Setana North, two training samples for windthrow areas (1.0234 ha and 0.4005 ha), two training
samples for nonwindthrow areas (2.6990 ha and 0.9608 ha), and one training sample for water (5.1028 ha)
were selected. The water class was posteriorly merged with the nonwindthrow class. In Setana South,
we selected two training samples for landslides (0.01843 ha and 0.03507 ha) and two training samples
for nonlandslide areas (9.9478 ha and 26.4685 ha).

The code for classification is provided in Google Earth Engine (Supplementary information S1
and S2).

2.4. Assessment

Accuracy assessment permits the quantitative analysis of the product of a classifier algorithm
through an error matrix, which is a tabular layout that shows the performance of a classifier where
each row of the matrix represents the predicted class while the columns represent the actual class
(or vice versa). The error matrix can deliver different assessment values, including overall accuracy,
user accuracy, producer accuracy, and kappa values [34,35].

To generate stratified random points for assessing the accuracy of each classified map with each
standard error, we used the AcATaMA plugin [36] for QGIS 3.10, with 100 random points for each class
(damage and no damage) from the SVM method classified map, totaling 200 points for each study site.
This sampling method was found to be appropriate for simple two-class classification [7,37,38].

Then, each random point was visually interpreted, and the land cover class was defined by
visually interpreting the pre- and posttyphoon PlanetScope images with the very-high-spatial-resolution
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WorldView2 images to generate error matrices for each classified map. This process was also performed
to define the optimal values for the SAM method.

The error matrices reflected the trend of misclassification in the form of producer accuracy and user
accuracy and estimated accuracy in the form of the overall accuracy and kappa values. We analyzed
the misclassification trend among the classification methods, especially for the false-positive points of
misclassification. We visually identified the land cover type of each point and compared the spectral
signatures based on the land cover type to the points that were correctly classified as windthrow or
a landslide.

3. Results

3.1. Windthrow Detection

For all three classification methods, the damage was concentrated on the western side of the
Setana North study area (Figure 5). In a comparison of damage area, the SVM method classified 312.8
ha of windthrow, while the NDVI filtering method and SAM method classified 234.0 ha and 203.3 ha,
respectively (Table 1).
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Table 1. The error matrices of windthrow detection in Setana North.

Reference Accuracy Error

Damaged Nondamaged Total UA Area (ha) OA
Std ErrorKappa

a) Classified by NDVI
Filtering

Damaged 65 29 94 69.1% 234.0 84.0% 0.0159
Nondamaged 3 103 106 97.2% 13625.1 0.67

Total 68 132 200
PA 95.6% 78.0%

Damaged Nondamaged Total UA Area (ha) OA
Std ErrorKappa

b) Classified by SAM

Damaged 56 4 60 93.3% 203.3 92.0% 0.0234
Nondamaged 12 128 140 91.4% 13655.8 0.82

Total 68 132 200
PA 82.4% 97.0%

Damaged Nondamaged Total UA Area (ha) OA
Std ErrorKappa

c) Classified by SVM

Damaged 67 33 100 67.0% 312.8 83.0% 0.0098
Nondamaged 1 99 100 99.0% 13546.2 0.66

Total 68 132 200
PA 98.5% 75.0%

PA: producer accuracy, UA: user accuracy, OA: overall accuracy

Based on the overall accuracy in the error matrices, the SAM method was superior (overall accuracy
of 92.0% with a standard error of 0.0234, followed by the other two methods’ overall accuracies: 84.0%
for the NDVI filtering method with a standard error of 0.0159 and 83.0% for the SVM method with a
standard error of 0.0098). The kappa values of the SVM and NDVI filtering methods were over 0.65,
which was considered a “substantial level of agreement”, while the SAM method had a value of 0.82,
which was considered an “almost perfect level of agreement” [39]. Despite the highest overall accuracy,
the SAM method presented the lowest producer accuracy value for damaged areas (82.4% : 56/68),
while the NDVI filtering method and the SVM method presented higher numbers (95.6% : 65/68 and
98.5% : 67/68, respectively). The lowest producer accuracy for the SAM method reflected the largest
number of false-negative points (the classified map defined the area as not damaged, but the reference
map showed that the area was damaged). On the other hand, the SAM method delivered the highest
user accuracy of damaged areas (93.3% : 56/60), elevating its overall accuracy.

In terms of false positives, the SAM method misclassified only 4 points (forest areas), while the
NDVI filtering method and the SVM method misclassified 29 and 33 points, respectively, especially in
grassland areas (Table 2). The misclassification from both methods occurred basically at the same points.
The spectral signatures between all misclassified points and windthrow area (Figure 6) presented
similar shapes. The variation in each band of the misclassified points was wider than the variation in
the windthrow area, mainly in the near-infrared bands (B4 and B8).

3.2. Landslide Detection

The largest number of landslides was identified in the west-central portion of the Setana South
study area (Figure 7). The NDVI filtering method identified 22.0 ha of landslides, while the SAM
method and SVM method identified 17.6 ha and 4.7 ha, respectively (Table 3).

Table 2. False-positive misclassified points of windthrow detection in Setana North.

Bare Forest Grassland Total

NDVI filtering method 13 4 12 29
SAM method 0 4 0 4
SVM method 13 5 15 33
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Figure 6. Spectral signature for windthrow taken from the entire windthrow area (upper left: N = 5723)
and all different misclassified points of bare land (upper right: N = 14), grassland (lower left: N = 15),
and forest (lower right: N = 6). The red line shows the spectral signature from the median values of the
data distribution of each landcover type.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 18 
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Table 3. The error matrices of landslide detection in Setana South.

Reference Accuracy Error

Damaged Nondamaged Total UA Area (ha)
OA

Std ErrorKappa

a) Classified by
NDVI Filtering

Damaged 69 7 76 90.8% 22.0 96.0% 0.0080
Nondamaged 1 123 124 99.2% 8039.0 0.91

Total 70 130 200
PA 98.6% 94.6%

Damaged Nondamaged Total UA Area (ha) OA
Std ErrorKappa

b) Classified by SAM

Damaged 63 7 70 90.0% 17.6 93.0% 0.0198
Nondamaged 7 123 130 94.6% 8043.2 0.85

Total 70 130 186
PA 90.0% 94.6%

Damaged Nondamaged Total UA Area (ha) OA
Std ErrorKappa

c) Classified by SVM

Damaged 69 31 100 69.0% 4.7 84.0% 0.0099
Nondamaged 1 99 100 99.0% 8056.1 0.66

Total 70 130 200
PA 98.6% 75.0%

PA: producer accuracy, UA: user accuracy, OA: overall accuracy

The NDVI filtering method was significantly superior, with an overall accuracy of 96.0% and a
standard error of 0.008. The producer accuracy and the user accuracy of the damaged areas also had
values over 90% (Table 3).

The SAM method had the second best results (93.0% overall accuracy with a standard error of
0.0198), while the SVM method had the lowest overall accuracy of 84.0% with a standard error of
0.0099. The SAM method presented a lower producer accuracy percentage in damaged areas (90.0% :
63/70), while the SVM and NDVI filtering methods had a value of 98.6% (69/70).

The NDVI filtering method had the best results in all aspects, with an overall accuracy of 96.0%,
a producer accuracy of 98.6%, and a user accuracy of 90.8%.

The lowest producer accuracy for the SAM method reflected the largest number of false-negative
points. In contrast, compared to the SVM method, the SAM method had a higher user accuracy (90.0%
: 63/70), and the SVM method had the lowest accuracy (69.0% : 69/100). The kappa values of the NDVI
filtering method (0.91) and the SAM method (0.85) reflected an “almost perfect level of agreement”,
followed by that of the SVM method (0.66), which represented a “substantial level of agreement”.

In terms of false-positive points, visual interpretation of the random assessment points with
WorldView2 imagery revealed that misclassification occurred in bare areas (Table 4); the total number
of points misclassified by the SVM method was 31, while the total number of points misclassified by
the NDVI filtering method and the SAM method was only 7 (and they were the same points). The bare
areas mainly included old landslide areas that occurred before the typhoon event.

Table 4. False-positive misclassified points of landslide detection in Setana South.

Bare Total

NDVI filtering method 7 7
SAM method 7 7
SVM method 31 31

The reflectance of the correctly classified points was slightly higher than that of the misclassified
points, and the variation in the spectral signature of the posttyphoon points was larger than that of the
misclassified points (Figure 8). Band B4 (near-infrared) presented higher values for landslides than for
misclassified points, generating a slight difference in the spectral signatures between them.
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Figure 8. Spectral signature for the entire landslide area (left: N = 156) and all different misclassified
bare points (right: N = 31). The red line shows the spectral signature from the median values of the
data distribution of each landcover type.

4. Discussion

We detected the area damaged by windthrow and landslides after the typhoons hit with
PlanetScope data. The posttyphoon images were collected 21 days after the typhoons hit, and no
cloud-free images were available during these 21 days. The high temporal resolution of the PlanetScope
data increased the chances of obtaining cloud-free images. Although these data have a relatively
low spectral resolution of only four bands, the results showed that they were suitable for detecting
windthrow and landslides using the chosen methodologies.

4.1. Windthrow Detection

For windthrow detection, the SVM method classified 312.0 ha of windthrow, 78.0 ha more than the
NDVI filtering method and 109.0 ha more than the SAM method. According to visual interpretation
of each classified map, the SVM method and the NDVI filtering method classified windthrow in less
detail than the SAM method. The SAM method could differentiate some parts of the road crossing the
windthrow area, while the NDVI filtering method and the SVM method classified the whole area as
windthrow, increasing the total area classified as being damaged (Figure 9). All three methods identified
the main area of damage on the western side of the Setana North study area. The differences in damage
size occurred in areas on the northern and eastern sides of the study area and were also scattered in small
areas throughout the study area, and these differences were generated by misclassification (Figure 5).

Figure 9. Comparison of windthrow delineations by three methods in Setana North. The SAM method
could distinguish some parts of the road crossing the area (the light-colored line in the RGB image)
from windthrow.
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Misclassification occurred with all three methods but occurred at a larger proportion with the
NDVI filtering method and the SVM method. Even though the placement of the misclassified
points was almost the same for the NDVI filtering method and the SVM method, the hypotheses
for misclassification by the two methods were different. Windthrow areas usually consist of tree
foliage, trunks, roots, and soil; the energy reflected from those areas has a similar spectral signature
to forest, grassland, and bare area classes (Figure 6). The broad reflectance variation in each band
from the misclassified points increased the complexity of windthrow detection for the SVM method,
which in this study used the linear kernel type, limiting the performance of the algorithm even with
different cost values. SVMs are not optimized for noisy data, which are commonly found in remotely
sensed datasets [40]. On the other hand, the NDVI filtering method is based only on NDVI values;
as vegetation remained on the site, the values obtained by the NDVI filtering method could be similar
to the values of grasslands and bare areas that had some amount of vegetation. The difference between
the pre- and posttyphoon NDVI values (Equation (1)) did not contribute to the detection of windthrow,
and the final classification was based only on the value of the threshold T2. For the detection of
windthrow in Setana North, the SAM method had the highest overall accuracy (92%) and kappa value
(0.82) when using two training samples and a threshold value set at 7 due to its ability to compare
spectral similarity between the image and the reference training sample [41]. The threshold value also
helped improve the classification results by not classifying pixels if the spectral angle distance was
greater than the T value [30] and eliminating classification noise throughout the area by limiting the
angle distance.

4.2. Landslide Detection

For landslide detection in Setana South, the visual interpretation showed that the NDVI filtering
method classified the whole landslide area, while the other two methods did not (Figure 10). In contrast
to windthrow, landslides usually remove all vegetation, facilitating detection based on NDVI values.
Even though the majority of vegetation was removed, the spectral signature of landslides of the
reference training samples showed small amounts of remnant vegetation in those areas. Therefore,
the SAM method could not correctly classify the areas where the spectral signature showed no
vegetation, in turn classifying areas of actual landslides as nonlandslide areas. Although the SVM
method could classify the areas with a no-vegetation spectral signature, it struggled to identify
the borders of landslides, leading to a higher probability of classifying areas with a higher level of
vegetation as nonlandslide areas.
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Figure 10. Comparison of landslide delineations by three methods in Setana South. While the normalized
difference vegetation index (NDVI) filtering method (blue) classified all areas as landslides, the SAM
method (yellow) could not detect some areas (top area of the center landslide), and the SVM method
(red) did not classify the borders of the landslide area.

The SVM method identified the smallest landslide area and resulted in the largest number
of misclassifications, 31 points, which may have been caused by the same problems presented for
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windthrow detection due to the similarity of spectral signatures between landslide and bare areas
and overfitting. As in windthrow detection, we used the default settings for the SVM method of the
Google Earth Engine, with the linear kernel, using visually interpreted training samples. We tried to
increase the number of training samples, but this did not improve the final result, and cross-validation
is recommended to improve the final classification [42].

The SAM method misclassified 7 points, the same ones misclassified by the NDVI filtering method.
As mentioned before, although the SAM method classified the smallest landslide area due to the
difference in spectral signatures, the algorithm had adequate performance for landslide detection.
Compared to the SVM method, this method delivered a higher user accuracy, which represents the
probability that the landslide pixel is actually represented on the ground. On the other hand, the SVM
method performed better for the no-damage class, elevating its overall accuracy.

The landslide areas were visually completely washed out and did not contain remnant vegetation,
but the spectral signature showed that vegetation was present. Although bare areas have a different
spectral signature, the reflectance variation in the bands of the posttyphoon landslide spectral signature
contributed to the misclassification. One simple way to improve the final classification would be
masking the bare areas that were present before the typhoon event.

The NDVI filtering method had the best overall accuracy and kappa values for landslide detection,
which was expected due to the characteristics of the NDVI used to distinguish different amounts of
vegetation. The histograms of the landslide areas conveyed clear information to define the threshold
values (Figure 3). This result confirms Danneels’ [43] statement about landslide classification based on
the NDVI producing the best results.

The results obtained from both study sites, combined with the high spatial resolution and
horizontal accuracy of the PlanetScope data [44], showed that even with some caveats, all methods
were suitable for overall windthrow and landslide detection.

The PlanetScope dataset played an important role in this research, and a resolution of 3 meters
provided enough information for the methods to identify the damage without being too detailed
(where more processing time and tuning of parameters would be necessary) or too rough (where the
spatial resolution mixes different landcover classes together). It is recommended to conduct further
studies on datasets with different resolutions.

Overall, the SAM method and the NDVI filtering method were the most reliable for measuring
windthrow and landslides, respectively.

In contrast, the SVM method results, processed in Google Earth Engine, performed below our
expectations despite being generated by the most sophisticated algorithm. Even though the SVM
classifier working with the linear kernel delivered a “substantial level of agreement”, the usage of a
different kernel could improve accuracy but would increase the processing time.

5. Conclusions

The evolution of remote sensing is introducing new techniques for acquiring more rapid and
accurate data, and this innovation has resulted in easier workflows that different end-users can take
advantage of. Although multiple techniques are available, examinations of the appropriate method
according to disaster type are missing. In this study, we compared three different conventional
remote sensing classification methodologies using high-resolution imagery to identify windthrow and
landslides using a simple workflow.

The high temporal and spatial resolution of the imagery played an important role in land cover
change detection, in addition to the methodologies applied to identify windthrow and landslides.
This result was confirmed by the fact that all three conventional methods, namely, the NDVI filtering
method, the SAM method, and the SVM method, combined with the high-resolution imagery were
suitable for windthrow and landslide detection, judging from kappa values that had a “substantial
level of agreement” and an “almost perfect level of agreement”. One aspect to consider in further
studies is the use of different-resolution datasets.
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For windthrow, the SAM method performed best due to its high capacity to identify damage
even if the spectral signatures of the classes were similar. The NDVI filtering method, although not
fully suitable for windthrow detection, performed best in landslide detection. The capability of the
NDVI to distinguish different amounts of vegetation facilitated the distinction between areas with and
without vegetation.

Even though the SVM method had lower performance than the other methods for windthrow
and landslide detection, it delivered satisfactory results. The usage of different kernel types could
potentially improve its performance.
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