Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Lidar Data Acquisition
2.3. Ground Data Acquisition
3. Methods
3.1. Extraction of Lidar Height, Intensity, and Ratio Parameters
3.2. Plot-Dominant Species Classification
3.2.1. Selection of Explanatory Variables
3.2.2. Development and Assessment of Linear Discriminant Analysis
3.3. Plot Volume Estimation
3.3.1. Selection of Explanatory Variables
3.3.2. Development and Assessment of Linear Volume Models
4. Results
4.1. Plot-Dominant Species
4.1.1. Explanatory Variables for Plot-Dominant Species Classification
4.1.2. Evaluation of Plot-Dominant-Species Discrimination
4.2. Plot Volume
4.2.1. Explanatory Variables for Plot Volume
4.2.2. Evaluation of Plot-Volume Models
5. Discussion
5.1. Plot-Dominant Species Classification
5.2. Plot-Volume Estimation
6. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Jung, S.-E.; Kwak, D.-A.; Park, T.; Lee, W.-K.; Yoo, S. Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sens. 2011, 3, 2346–2363. [Google Scholar] [CrossRef] [Green Version]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Næsset, E.; McRoberts, R.E.; Pekkarinen, A.; Saatchi, S.; Santoro, M.; Trier, Ø.D.; Zahabu, E.; Gobakken, T. Use of local and global maps of forest canopy height and aboveground biomass to enhance local estimates of biomass in miombo woodlands in Tanzania. Int. J. Appl. Earth Obs. Geoinf. 2020. [Google Scholar] [CrossRef]
- Choi, S.; Kempes, C.P.; Park, T.; Ganguly, S.; Wang, W.; Xu, L.; Basu, S.; Dungan, J.L.; Simard, M.; Saatchi, S.S. Application of the metabolic scaling theory and water–energy balance equation to model large-scale patterns of maximum forest canopy height. Glob. Ecol. Biogeogr. 2016, 25, 1428–1442. [Google Scholar] [CrossRef]
- Ni, X.; Park, T.; Choi, S.; Shi, Y.; Cao, C.; Wang, X.; Lefsky, M.A.; Simard, M.; Myneni, R.B. Allometric scaling and resource limitations model of tree heights: Part 3. Model optimization and testing over continental China. Remote Sens. 2014, 6, 3533–3553. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Lee, W.-K.; Lee, J.-Y.; Byun, W.-H.; Kwak, D.-A.; Cui, G.; Kim, M.-I.; Jung, R.; Pujiono, E.; Oh, S. Forest plot volume estimation using national forest inventory, forest type map and airborne LiDAR data. For. Sci. Technol. 2012, 8, 89–98. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.; Acker, S.; Parker, G.G.; Spies, T.; Harding, D. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Kwak, D.-A.; Lee, W.-K.; Cho, H.-K.; Lee, S.-H.; Son, Y.; Kafatos, M.; Kim, S.-R. Estimating stem volume and biomass of Pinus koraiensis using LiDAR data. J. Plant Res. 2010, 123, 421–432. [Google Scholar] [CrossRef]
- Harding, D.; Lefsky, M.; Parker, G.; Blair, J. Laser altimeter canopy height profiles: Methods and validation for closed-canopy, broadleaf forests. Remote Sens. Environ. 2001, 76, 283–297. [Google Scholar] [CrossRef]
- Parker, G.A.; Smith, J.M. Optimality theory in evolutionary biology. Nature 1990, 348, 27–33. [Google Scholar] [CrossRef]
- Park, T.; Kennedy, R.E.; Choi, S.; Wu, J.; Lefsky, M.A.; Bi, J.; Mantooth, J.A.; Myneni, R.B.; Knyazikhin, Y. Application of physically-based slope correction for maximum forest canopy height estimation using waveform lidar across different footprint sizes and locations: Tests on LVIS and GLAS. Remote Sens. 2014, 6, 6566–6586. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Gong, P.; Baldocchi, D.; Tian, Y.Q. Estimating basal area and stem volume for individual trees from lidar data. Photogramm. Eng. Remote Sens. 2007, 73, 1355–1365. [Google Scholar] [CrossRef] [Green Version]
- Maltamo, M.; Suvanto, A.; Packalén, P. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation. For. Ecol. Manag. 2007, 247, 26–34. [Google Scholar] [CrossRef]
- Drake, J.B.; Dubayah, R.O.; Clark, D.B.; Knox, R.G.; Blair, J.B.; Hofton, M.A.; Chazdon, R.L.; Weishampel, J.F.; Prince, S. Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens. Environ. 2002, 79, 305–319. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1372. [Google Scholar]
- Dubayah, R.; Prince, S.; JaJa, J.; Blair, J.; Bufton, J.L.; Knox, R.; Luthcke, S.B.; Clarke, D.B.; Weishampel, J. The vegetation canopy lidar mission. In Land Satellite Information in the Next Decade II: Sources and Applications; ASPRS: Washington, DC, USA, 1997. [Google Scholar]
- Aardt, J.A.v.; Wynne, R.H.; Oderwald, R.G. Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis. For. Sci. 2006, 52, 636–649. [Google Scholar]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Korpela, I.S.; Tokola, T.E. Potential of aerial image-based monoscopic and multiview single-tree forest inventory: A simulation approach. For. Sci. 2006, 52, 136–147. [Google Scholar]
- Brandtberg, T. Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar. ISPRS J. Photogramm. Remote Sens. 2007, 61, 325–340. [Google Scholar] [CrossRef]
- Brandtberg, T.; Warner, T.A.; Landenberger, R.E.; McGraw, J.B. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 2003, 85, 290–303. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanner. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Korpela, I.; Ørka, H.O.; Maltamo, M.; Tokola, T.; Hyyppä, J. Tree species classification using airborne LiDAR–effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fenn. 2010, 44, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Naesset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Soininen, A. TerraScan User’s Guide; Terrasolid: Helsinki, Finland, 2004. [Google Scholar]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation; ScholarWorks@UTEP: Berkeley, CA, USA, 2018. [Google Scholar]
- Korean Forest Research Institute. Guideline for 5th National Forest Inventory; KFRI: Seoul, Korea, 2008. [Google Scholar]
- Korean Forest Research Institute. Volume, Biomass, and Yield Table; KFRI: Seoul, Korea, 2014. [Google Scholar]
- Lee, J.-K.; Hwang, C.-S.; Jung, S.-H. Analysis of accuracy for the control points using the GPS continuous stations. J. Korean Soc. Civ. Eng. 2003, 23, 401–409. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Maltamo, M.; Mustonen, K.; Hyyppä, J.; Pitkänen, J.; Yu, X. The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve. Can. J. For. Res. 2004, 34, 1791–1801. [Google Scholar] [CrossRef]
- Donoghue, D.N.; Watt, P.J.; Cox, N.J.; Wilson, J. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens. Environ. 2007, 110, 509–522. [Google Scholar] [CrossRef]
- Kwak, D.-A.; Cui, G.; Lee, W.-K.; Cho, H.-K.; Jeon, S.W.; Lee, S.-H. Estimating plot volume using LiDAR height and intensity distributional parameters. Int. J. Remote Sens. 2014, 35, 4601–4629. [Google Scholar] [CrossRef]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2002; Volume 5. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Lachenbruch, P.A.; Mickey, M.R. Estimation of error rates in discriminant analysis. Technometrics 1968, 10, 1–11. [Google Scholar] [CrossRef]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill Irwin: New York, NY, USA, 2005; Volume 5. [Google Scholar]
- Næsset, E.; Bjerknes, K.-O. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens. Environ. 2001, 78, 328–340. [Google Scholar] [CrossRef]
- Moffiet, T.; Mengersen, K.; Witte, C.; King, R.; Denham, R. Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species. ISPRS J. Photogramm. Remote Sens. 2005, 59, 289–309. [Google Scholar] [CrossRef]
- Schreier, H.; Lougheed, J.; Tucker, C.; Leckie, D. Automated measurements of terrain reflection and height variations using an airborne infrared laser system. Int. J. Remote Sens. 1985, 6, 101–113. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lukeš, P.; Homolova, L.; Hovi, A.; Pisek, J.; Mõttus, M. Spectral properties of coniferous forests: A review of in situ and laboratory measurements. Remote Sens. 2018, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.A.; Ustin, S.L.; Ogunjemiyo, S.; Greenberg, J.; Dobrowski, S.Z.; Chen, J.; Hinckley, T.M. Spectral and structural measures of northwest forest vegetation at leaf to landscape scales. Ecosystems 2004, 7, 545–562. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Carmona, P.L.; Kaufmann, R.K.; Lewis, P. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. USA 2013, 110, E185–E192. [Google Scholar] [CrossRef] [Green Version]
Independent Variables | ||
---|---|---|
Height Parameters Based on Canopy Returns | Intensity Parameters Based on Canopy Returns | Ratio Parameters Based on Integrated Canopy and Ground Returns |
HEI,i, I = 10, 20, … , 100 percentile height | INT,mean, mean of intensity | NumT, number of total returns |
HEI,mean, mean of height | INT,max, maximum of intensity | NumC, number of canopy returns |
HEI,max, maximum of height | INT,min, minimum of intensity | CRR, canopy return ratio |
HEI,min, minimum of height | INT,med, median of intensity | INT,TSum, sum of total intensity |
HEI,med, median of height | INT,mode, mode of intensity | INT,CSum, sum of canopy intensity |
HEI,mode, mode of height | INT,std, standard deviation of intensity | CIR, canopy intensity ratio |
HEI,std, standard deviation of height | INT,cv, coefficient of variation of intensity | |
HEI,cv, coefficient of variation of height | INT,se, standard error of mean of intensity | |
HEI,se, standard error of mean of height | INT,kurt, kurtosis of intensity distribution | |
HEI,kurt, kurtosis of height distribution | INT,skew, skewness of intensity distribution | |
HEI,skew, skewness of height distribution | INT,range, range of intensity | |
HEI,range, range of height |
Significantly Different Species by Tukey’s HSD Test | ||||||
---|---|---|---|---|---|---|
Selected Variable | Larix kaempferi (LK) | Pinus densiflors (PD) | Quercus spp. (Qs) | Wilks λ | F | p-Value |
HEI,80 | PD, Qs | LK, Qs | LK, PD | 0.467 | 32.56 | <0.001 |
HEI,90 | PD, Qs | LK, Qs | LK, PD | 0.409 | 41.10 | <0.001 |
HEI,std | Qs | ∙ | LK | 0.893 | 3.42 | <0.039 |
INT,mean | Qs | LK | LK | 0.892 | 3.46 | <0.038 |
INT,mode | PD, Qs | LK | LK | 0.715 | 11.34 | <0.001 |
INT,std | PD | LK, Qs | PD | 0.534 | 24.87 | <0.001 |
INT,cv | PD | LK, Qs | PD | 0.665 | 14.34 | <0.001 |
INT,skew | PD | LK | ∙ | 0.724 | 10.86 | <0.001 |
CRR | Qs | ∙ | ∙ | 0.836 | 5.58 | <0.006 |
Accuracy (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. (AE1, AE2) | Variable Combination (RD1, RD2) | Number of Variables | Original Grouped | Cross Validated | ||||||||
1 (86.3, 67.4) | HEI,80 (4, 4) | HEI,90 (3, 7) | HEI,std (6, 8) | INT,mean (2, 2) | INT,mode (9, 6) | INT,std (5, 3) | INT,cv (1, 1) | INT,skew (7, 5) | CRR (8, 9) | 9 | 95.0 | 93.3 |
2 (81.7, 53.3) | HEI,80 (4, 3) | HEI,90 (1, 6) | HEI,std (5, 7) | INT,mean (3, 5) | INT,mode (6, 4) | INT,cv (2, 1) | INT,skew (7, 2) | 7 | 93.3 | 90.0 | ||
3 (85.4, 60.1) | HEI,80 (5, 5) | HEI,90 (3, 7) | HEI,std (4, 8) | INT,mean (1, 2) | INT,mode (8, 4) | INT,std (6, 3) | INT,cv (2, 1) | CRR (7, 6) | 8 | 93.3 | 90.0 | |
4 (84.8, 64.2) | HEI,90 (3, 5) | HEI,std (4, 8) | INT,mean (1, 2) | INT,mode (7, 6) | INT,std (5, 3) | INT,cv (2, 1) | INT,skew (8, 4) | CRR (6, 7) | 8 | 93.3 | 90.0 | |
5 (76.2, 50.8) | HEI,90 (1, 4) | INT,mode (4, 3) | INT,std (2, 6) | INT,cv (3, 1) | INT,skew (6, 2) | CRR (5, 5) | 6 | 91.7 | 90.0 | |||
6 (81.7, 66.7) | HEI,80 (3, 5) | HEI,std (4, 7) | INT,mean (1, 2) | INT,mode (6, 6) | INT,std (7, 3) | INT,cv (2, 1) | INT,skew (8, 4) | CRR (5, 8) | 8 | 91.7 | 90.0 | |
7 (84.8, 59.6) | HEI,90 (3, 5) | HEI,std (4, 7) | INT,mean (1, 2) | INT,mode (7, 4) | INT,std (5, 3) | INT,cv (2, 1) | CRR (6, 6) | 7 | 90.0 | 90.0 | ||
8 (83.2, 67.1) | HEI,80 (4, 4) | HEI,90 (3, 6) | HEI,std (6, 8) | INT,mean (2, 2) | INT,mode (8, 7) | INT,std (5, 3) | INT,cv (1, 1) | INT,skew (7, 5) | 8 | 96.7 | 88.3 | |
9 (81.2, 62.4) | HEI,90 (3, 5) | HEI,std (4, 7) | INT,mean (1, 2) | INT,mode (5, 6) | INT,std (6, 3) | INT,cv (2, 1) | INT,skew (7, 4) | 7 | 93.3 | 88.3 | ||
10 (80.8, 51.8) | HEI,90 (3, 4) | HEI,std (4, 6) | INT,mean (1, 3) | INT,mode (5, 5) | INT,cv (2, 1) | INT, skew (6, 2) | 6 | 91.7 | 88.3 |
Species | Variable | DF | Parameter Estimate | Standard Error | t Value | pr > |t| | Variance Inflation |
---|---|---|---|---|---|---|---|
Larix kaempferi | Intercept | 1 | −11.2321 | 1.91114 | −5.88 | <0.0001 | 0.0000 |
HEI,90 | 1 | 1.44559 | 0.28551 | 5.06 | 0.0002 | 4.07915 | |
HEI,std | 1 | −2.24028 | 0.62636 | −3.58 | 0.0030 | 4.03682 | |
INT,mode | 1 | −0.65035 | 0.19885 | −3.27 | 0.0056 | 1.00719 | |
INT,se | 1 | 63.19259 | 20.10955 | 3.14 | 0.0072 | 1.48727 | |
INT,TSum | 1 | 0.00112 | 0.000192 | 5.83 | <0.0001 | 1.37517 | |
P. densiflora | Intercept | 1 | 1.19921 | 2.42319 | 0.49 | 0.6279 | 0.00000 |
HEI,mean | 1 | 0.38271 | 0.11826 | 3.24 | 0.0055 | 1.48927 | |
HEI,mode | 1 | 0.07408 | 0.04048 | 1.83 | 0.0872 | 1.20480 | |
INT,std | 1 | 2.54207 | 1.37647 | 1.85 | 0.0846 | 1.52052 | |
INT,range | 1 | −0.85953 | 0.24021 | −3.58 | 0.0027 | 1.86565 | |
Quercus spp. | Intercept | 1 | −0.55562 | 1.09140 | −0.51 | 0.6181 | 0.00000 |
HEI,80 | 1 | −0.47026 | 0.19574 | −2.40 | 0.0297 | 8.50554 | |
HEI,90 | 1 | 0.72066 | 0.18835 | 3.83 | 0.0017 | 8.57314 | |
INT,mode | 1 | 0.06646 | 0.02167 | 3.07 | 0.0078 | 1.24328 | |
INT,kurt | 1 | 0.84446 | 0.42291 | 2.00 | 0.0643 | 1.22767 |
Species | Variables | HEI,90 | HEI,std | INT,mode | INT,se | INT,TSum |
---|---|---|---|---|---|---|
Larix kaempferi | HEI,90 | 1.00000 | 0.98055 | −0.0341 | 0.18118 | −0.15654 |
HEI,std | 0.98055 | 1.00000 | −0.03256 | 0.26466 | −0.07958 | |
INT,mode | −0.0341 | −0.03256 | 1.00000 | −0.04156 | −0.03433 | |
INT,se | 0.18118 | 0.26466 | −0.04156 | 1.00000 | −0.14369 | |
INT,TSum | −0.15654 | −0.07958 | −0.03433 | −0.14369 | 1.00000 | |
Pinus densiflora | Variables | HEI,mean | HEI,mode | INT,std | INT,range | |
HEI,mean | 1.00000 | 0.20974 | −0.47106 | −0.43012 | ||
HEI,mode | 0.20974 | 1.00000 | −0.20509 | −0.41167 | ||
INT,std | −0.47106 | −0.20509 | 1.00000 | 0.44358 | ||
INT,range | −0.43012 | −0.41167 | 0.44358 | 1.00000 | ||
Quercus spp. | Variables | HEI,80 | HEI,90 | INT,mode | INT,kurt | |
HEI,80 | 1.00000 | 0.93215 | 0.15998 | −0.07099 | ||
HEI,90 | 0.93215 | 1.00000 | 0.25939 | 0.14843 | ||
INT,mode | 0.15998 | 0.25939 | 1.00000 | 0.45776 | ||
INT,kurt | −0.07099 | 0.14843 | 0.45776 | 1.00000 |
Species | Optimal Plot Volume Equation | R2 | RMSE (m3) | t-test (α = 0.05) |
---|---|---|---|---|
Pr > | t | | ||||
Larix kaempferi | PV = 0.43730·HEI,90 − 0.68725·INT,mode + 24.2152 · INT,se − 0.000782 · INT,TSum − 5.85002 | 0.7075 | 2.772 | 0.966 |
Pinus densiflora | PV = 0.38271·HEI,mean + 0.07408·HEI,mode + 2.54207 · INT,std − 0.85953 · INT,range + 1.19921 | 0.7368 | 2.590 | 0.852 |
Quercus. spp. | PV = 0.28685·HEI,80 + 0.07623 · INT,mode + 0.31517 · INT,kurt − 0.71001 | 0.5641 | 3.010 | 0.925 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, T. Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation. Remote Sens. 2020, 12, 3266. https://doi.org/10.3390/rs12193266
Park T. Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation. Remote Sensing. 2020; 12(19):3266. https://doi.org/10.3390/rs12193266
Chicago/Turabian StylePark, Taejin. 2020. "Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation" Remote Sensing 12, no. 19: 3266. https://doi.org/10.3390/rs12193266
APA StylePark, T. (2020). Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation. Remote Sensing, 12(19), 3266. https://doi.org/10.3390/rs12193266