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Abstract: Information extraction from multi-sensor remote sensing images has increasingly attracted
attention with the development of remote sensing sensors. In this study, a supervised change
detection method, based on the deep Siamese convolutional network with hybrid convolutional
feature extraction module (OB-DSCNH), has been proposed using multi-sensor images. The proposed
architecture, which is based on dilated convolution, can extract the deep change features effectively,
and the character of “network in network” increases the depth and width of the network while
keeping the computational budget constant. The change decision model is utilized to detect changes
through the difference of extracted features. Finally, a change detection map is obtained via an
uncertainty analysis, which combines the multi-resolution segmentation, with the output from the
Siamese network. To validate the effectiveness of the proposed approach, we conducted experiments
on multispectral images collected by the ZY-3 and GF-2 satellites. Experimental results demonstrate
that our proposed method achieves comparable and better performance than mainstream methods in
multi-sensor images change detection.

Keywords: multi-sensor image; change detection; siamese neural network; dilated convolution;
object-based image analysis

1. Introduction

The detection of changes on the surface of the earth has become increasingly important for
monitoring the local, regional, and global environment [1]. It has been studied in a number of
applications, including land use investigation [2,3], disaster evaluation [4], ecological environment
monitoring, and geographic data update [5].

Classical classification algorithms, such as support vector machine (SVM) [6], extreme learning
machine (ELM) [7], multi-layer perceptron (MLP) [8], and some unsupervised methods, for instance,
change vector analysis (CVA) [9,10], and the integration with Markov random field (MRF) [11,12], are
widely utilized in change detection. With the improvement in spatial resolution, more spatial details
have been recorded. Therefore, object-based methods are often utilized in a change detection task,
as pixel-based change detection methods may generate the high commission and omission errors, due
to high within class variation [10]. In this regard, the object-oriented technique has recently attracted
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considerable attention when handling high spatial resolution images [13–15]. Tang et al. [16] proposed
an object-based change detection (OBCD) algorithm, based on the Kolmogorov-Smirnov (K-S) test,
which used the fractal network evolution algorithm (FENA) for image segmentation. Li et al. [17]
proposed object-oriented change vector analysis on the basis of CVA, which reduced the number of
virtual detection pixels and salt-and-pepper noise compared with the pixel-based results. In [18],
Tan et al. presented an object-based approach using multiple classifiers and multi-scale uncertainty
analysis. These works are mainly developed for change detection using single sensor images, which
have similar data properties.

With the rapid development of the observation of the earth, the various imaging approaches
provide abundant multi-modal data resources, which significantly contribute to the discovery of
the hidden knowledge and rules in the data mining process [19–21]. Such multi-modal data sets
consist of data from different sensors observing a common phenomenon, and the goal is to use the
data in a complementary manner in learning a complex task [22,23]. In the field of change detection,
multi-modality can be regarded as a multi-sensor image-based change detector. Due to the different data
distribution, it is difficult to directly handle the data information in original low-dimensional feature
space [24], that is, the implementation of change detection across a multi-sensor is more challenging
than that of single sensor [25]. The main applications of multi-sensor image-based change detection
take the optical and SAR images as the data sources. In addition, auxiliary terrain data are usually used
to improve the accuracy of change detection. Mercier et al. [26] utilized the Copula function to measure
the local statistics between the two images to judge the changes by thresholding. Jorge et al. [27]
exploited sensor physical properties through manifold learning to detect changes between several
kinds of images. In [28], the proposed method combined an imaging modality-invariant operator
with multi-resolution representation to detect the differences of the high-frequency patterns of each
structural region that exists in the two multi-sensor satellite images.

Most recently, deep learning has led to significant advances in various fields [29,30]. As a result,
change detection methods, based on deep learning, have made great progress, such as Restricted
Boltzmann Machine (RBM) [31], Denoising Autoencoder (DAE) [32], and convolutional neural network
(CNN) [33]. As a mainstream deep learning architecture, CNN specializes in extracting spatial context
information, which makes it effective, especially in the fields of image, video, and speech recognition.
Based on CNN, a large number of deep convolution neural networks (DCNN) have been developed,
such as VGGNet [34], GoogleNet [35], and ResNet [36]. As a unique neural network structure, the
Siamese network can measure the similarity between two images, which makes it more and more
important in change detection [37–39]. Yang et al. [25] introduced a deep Siamese convolutional
network to extract features by two weight sharing convolutional branches to generate binary change
map, based on the feature difference in the last layer. Three fully convolutional Siamese architectures
were firstly proposed in [37], which were trained in an end-to-end change detection dataset and
achieved good performance. Chen et al. [38] proposed a multi-scale feature convolution unit based
on the “network-to-network” structure to extract multi-scale features in the same layer. Two deep
Siamese convolution networks were then designed for unsupervised, and supervised change detection,
respectively. Liu et al. [39] proposed a deep convolutional coupling network for the multi-sensor image
change detection using images acquired by optical and radar sensors.

Due to the influence of the revisit period and image quality, it is hard to obtain the images of
the same scene by a single sensor regularly. Data unavailability is a common problem in long term
change analysis. In this regard, images from different sensors have to be used, which require extra
effort in multi-sensor image processing. In this study, a deep Siamese structure, designed to cope
with multi-optical sensor images, is proposed. The feature extraction process is carried out by dilated
convolution operation and the architecture of inception is used to obtain a series of different features for
determining the changes. After obtaining the pixel-level change detection results, the multi-resolution
segmentation is involved to refine the results to objects level. The rest of this paper is organized
as follows. Section 2 describes the proposed approach. Section 3 presents the experimental results,
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obtained on two multi-sensor remote sensing datasets, and Section 4 is the part of discussion. Finally,
our conclusions are presented in Section 5.

2. Materials and Methods

2.1. Data Description and Training Samples Acquisition

2.1.1. Data Description

In order to verify the effectiveness of the proposed method, the changes at three datasets are
investigated. The first area covers part of Tongshan district, China, which are shown in Figure 1a,b,
respectively. The second area is located near Dalong lake in Yunlong district, China, which are shown
in Figure 1d–f, respectively. Figure 1g–h show the third area, which is located at Yunlong lake in
Xuzhou, China. These three datasets represent three regions: Urban, rural-urban fringe, and non-urban
areas. Date 1 is 1 October 2014 and the images were acquired by ZY-3 and date 2 is 5 October 2016 and
the images were acquired by GF-2. The band combination of these three datasets is composed of blue,
green, red, and near-infrared bands, with different resolutions and imaging conditions. Figure 1 shows
the images and reference maps of these three datasets. The key technical specifications of ZY-3 and
GF-2 satellites are shown in Table 1. Their sensors have presented challenges in change detection using
multi-sensor data.

Both datasets were resampled to the same resolution of 5.8 m, and the geometric registration
root-mean-square error (RMSE) is 0.5 pixels. The pseudo-invariant feature (PIF) was applied to
achieve relative radiometric correction. The reference maps for both datasets were obtained via
visual interpretation with the aid of prior knowledge and the images from Google Earth during the
corresponding period, which are shown in Figure 1c,f,i.
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Figure 1. True-color images and reference change maps of the three datasets. (a,b) True-color images
in the first dataset. (c) Reference change map of the first dataset. (d,e) True-color images in the
second dataset. (f) Reference change map of the second dataset. (g,h) True-color images in the third
dataset. (i) Reference change map of the third dataset. (a,d,g) are ZY-3 satellite images. (b,e,h) are GF-2
satellite images.

Table 1. Information of ZY-3 and GF-2 images used in this study.

Satellite Payload Band Spectrum Range
(µm)

Spatial Resolution
(m) Time

ZY-3 MUX

Blue 0.45~0.52

5.8 2014.10.14
Green 0.52~0.59
Red 0.63~0.69
Nir 0.77~0.89

GF-2 PMS

Blue 0.45~0.52

4 2016.10.05
Green 0.52~0.59
Red 0.63~0.69
Nir 0.77~0.89

2.1.2. Training Samples Acquisition

The manual selection of training samples is a time-consuming process and the selected samples
often present incomplete representation. Therefore, the training samples are selected in combination
with an automatic analysis process, based on differences in multi-feature images in this work.

Initial selection of changed and unchanged pixels is conducted by combining the individual
detection results from spectral and texture features. Firstly, the Gabor features are constructed in the
0◦, 45◦, 90◦, and 135◦directions, with a kernel sizes of [7,9,11,13,15,17], for the transform-based texture
features. Consider the original images with X spectral bands, the multi-kernel Gabor features in one
direction is calculated as Equation (1),

Gx
direction =

∑
k

gx
k , k ∈ [7, 9, 11, 13, 15, 17], (1)

where gx
k means the Gabor feature of x-th spectral band with a kernel size k. 4×X Gabor features are

then obtained.
The difference image D is generated from two temporal images, with the dataset consisting of the

spectral features, and Gabor texture features. Consider the images with r spectral bands at t1 and t2,
D is calculated as follows:

D =
∣∣∣T1
− T2

∣∣∣. (2)
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Each dimension of D must be normalized in the range [0, 1], and data in the b-th dimensional Db
is normalized as follows,

Db =
Db −Dmin

Dmax −Dmin
, b = 1, 2, . . . , r, (3)

where Dmin and Dmax are the minimum and maximum values of the difference image in b-th dimension.
Equation (4) is aimed at obtaining the initial pixel-based change detection map CDb on each band,

cdb
i, j =

 0, i f db
i, j < Tb

1, i f db
i, j ≥ Tb

Tb = mb + sb, b = 1, 2, . . . , r

, (4)

where cdb
i, j indicates that the pixel at position (i, j) in CDb belongs to the unchanged or changed part.

Tb is calculated according to the mean mb and standard deviation sb of the pixels on the b-th dimension.
In order to select reliable training and testing samples, the uncertainty of each b-th dimensional
difference image is considered, and a conservative decision is made as follows,

Li, j =

{
0, p ≤ b0.3× bc
1, otherwise

p =
b∑

r = 1
cdb

i, j

, (5)

where Li, j = 0, 1 indicates that the label on position (i, j) in the image belongs to unchanged or
changed part. p is the score that a pixel at position (i, j) considered to be changed by all dimensions.

For the pixel on position (i, j), if the score p is greater than the threshold b0.7× bc, then the pixel
will be labelled as “changed” category. Likewise, if p is less than b0.3× bc, then it will be labelled as
“unchanged” category. Training samples were selected from these “certain” cases randomly. Patches of
a fixed size ω centered on each selected pixel are taken as the input samples. Therefore, the inputs in
our proposed methods are [patch1, patch2, label].

2.2. Proposed Approach

2.2.1. Hybrid Convolutional Feature Extraction Module

When an image patch is input into the model, such as FCN [40], it is firstly convolved and then
pooled to reduce the size, and increase the receptive field at the same time. After that, the size of the
patch is expanded by up-sampling and deconvolution operations. However, the pooling process gives
rise to partial loss of image information. In this case, understanding how to achieve a larger receptive
field without pooling has become a new question in the field of deep learning.

Dilated convolution (or Atrous convolution) was originally developed for wavelet
decomposition [41], the main idea of which is to insert “holes” (zeros) between pixels in convolutional
kernels to improve the resolution. The characteristic of expanding the receptive field without loss of
resolution or coverage enables the deep CNNs to extract effective features [42]. As shown in Figure 2a,
standard convolution, with kernel size 3 × 3, is equal to dilated convolution when rate = 1. Figure 2b
illustrates the samples of dilated convolution when rate = 2. The receptive field is larger compared
with the standard convolutional operation. Figure 2c shows the convolution with dilated convolution
when rate = 5 and the receptive field reaches 11 × 11.

Before the architecture of Inception [35], further convolutional layers were stacked on top of
each other, making the CNN deeper and deeper for the pursuit of better performance. The advent
of Inception makes the structure of CNN wider and diverse. Based on the structure of “network
in network”, the hybrid convolutional feature extraction module (HCFEM) is developed for the
purpose of extracting effective features from the multi-sensor images in this work. As shown in
Figure 3, HCFEM includes two units: Feature extraction unit and Feature fusion unit. Four channels
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with different convolutional operation compose the extraction unit: (1) 1 × 1 convolution kernel to
increase nonlinearity of neural network and change the dimension of the image matrix; (2) block 1
uses convolutional layer with a dilation rate r = 1; (3) block 2 uses convolutional layer with a dilation
rate r = 2; (4) block 3 uses convolutional layer with a dilation rate r = 5. Three blocks apply 3 × 3
convolutions. After the convolution operation by four channels, feature fusion is carried out. Add 1
refers to the fusion between the results from block 1 and block 2, and Add 2 refers to that between the
results from Add 1 and block 3.
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Based on dilated convolution and the structure of “network in network”, HCFEM can encode the
object on multiple scales. With dilated convolution, deep convolutional neural network (DCNN) is
able to control the resolution at which feature responses are computed, without requiring learning
extra parameters [43]. Moreover, the “network in network” structure can increase the depth and width
of the network, without any additional computational budget needed.
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2.2.2. Network Architecture

Figure 4 shows a traditional Siamese neural network, which has two inputs and two branches.
In Siamese neural network, two inputs feed into two neural networks (Network1 and Network2)
concurrently and the similarity of the two inputs is evaluated by contrastive loss [44]. Based on the
architecture of the Siamese network, a change decision approach has been proposed with Siamese
convolutional neural network.
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Combining with the architecture of “network in network”, we design a deep Siamese convolutional
network based on HCFEM (DSCNH) for supervised change detection on multi-sensor images.
The network consists of two components: Encoding network (feature extraction network) and change
decision network. The layers in the encoding network are divided into two streams with same structure
and shared weights as in a traditional Siamese network. As shown in Figure 5a, each image patch is
inputted into these equal streams. Each stream is composed of heterogeneous convolution groups.
In each group, the former convolutional module transforms the spatial and spectral measurements into
high dimensional feature space, from which the subsequent HCFEM (colored in yellow in Figure 5)
extracts the abundant features.

Through two heterogeneous convolution groups and another two normal convolutional modules,
the absolute difference value of multiple-layer features are concatenated and inputted into the change
decision network, in which three normal convolutional modules are used to extract difference features.
A global average pooling layer (GAP) is carried out to decrease the number of parameters and avoid
overfitting. The changed result is obtained after a fully connected layer. Figure 5a shows the designed
deep Siamese convolutional neural network, and Figure 5b shows the change decision network.
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2.2.3. Bootstrapping and Sampling Method for Training

To train the model properly with limited labelled samples, we introduce a sampling method based
on the strategy of bootstrapping, which is implemented by constructing a number of resamples with
replacement of the training samples [45]. Specifically, random sampling can be performed to extracting
a certain number of samples, which are reused with new samples in the next iterative training process.

2.3. Multi-Resolution Segmentation

The images acquired by multiple sensors often present the great variations due to different imaging
conditions, which brings strong noises in change detection. The object-oriented change detection
(OBCD) can effectively restrain the influence of noise on change detection. Image segmentation is
a primary step in OBCD, and the fractal net evolution approach (FNEA) is an effective and widely-used
image segmentation method for remote sensing imagery [46]. It merges neighboring pixels with similar
spectral measurements into a homogeneous image object following the principle of minimum average
heterogeneity [47]. In the proposed method, two temporal images are combined into one data set
by band stacking. The stacked image is then segmented on an over-segmented scale using FNEA.
The segmented objects are then merged into multiple scales based on their heterogeneity.

In this work, the optimal segmentation scale Sl according to the GS value is obtained firstly [18],
then five segmentation scales, [Sl−2, Sl−1, Sl, Sl+1, Sl+2], are selected. The optimal image segmentation
scale, Sl, is defined as the scale that maximizes the inter-segment heterogeneity and the intra-segment
homogeneity [48]. The global Moran’s I [49], which calculates spatial autocorrelation, is used as the
inter-segment heterogeneity measure, and is calculated as,
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MI =
n
∑n

i = 1
∑n

j = 1 wi j(yi − y)
(
y j − y

)
(∑n

i = 1(yi − y)2
)(∑

i, j
∑

wi j
) (6)

where wi j is the spatial adjacency measure of Ri and R j. If regions Riand R j are neighbours, wi j = 1;
otherwise, wi j = 0. yi and y j are the mean values of Ri, and R j, respectively. While, y is the mean
value of each band of the image. Low Moran’s I values indicate a low degree of spatial autocorrelation
and high inter-segment heterogeneity.

The variance average weighted by each object area is used as the global intra-segment homogeneity
measurement, which is calculated as,

V =

∑n
i = 1 aivi∑n

i = 1 ai
(7)

where ai and vi represent the area and variance of segment Ri, respectively. n is the total number of
objects in the segmentation map.

Both measurements are rescaled to range (0–1). To assign an overall “global score” (GS) on each
segmentation scale, the V and MI are combined as the objective function:

GS = MI + V. (8)

For each segmentation, the GSs are calculated on all the feature dimension. The average GS of
all the feature bands are used to determine the best image segmentation scale, where the optimal
segmentation scale is identified as the one with the lowest average GS value. For the experimental data,
the segmentation scales of three datasets are set to [30,35,40,45,50], [25,30,35,40,45] and [25,30,35,40,45],
respectively. The results on different segmentation scale are shown in Figure 6.
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Figure 6. Illustration of several objects of images in data after multi-resolution segmentation by fractal 
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40, (d) 45, (e) 50, respectively. Segmentation scales on the second location are set as (f) 25, (g) 30, (h) 
35, (i) 40, (j) 45, respectively. Segmentation scales on the third location are set as (k) 25, (l) 30, (m) 35, 
(n) 40, (o) 45, respectively. 

Figure 6. Illustration of several objects of images in data after multi-resolution segmentation by fractal
net evolution approach (FNEA). Segmentation scales on the first location are set as (a) 30, (b) 35, (c) 40,
(d) 45, (e) 50, respectively. Segmentation scales on the second location are set as (f) 25, (g) 30, (h) 35,
(i) 40, (j) 45, respectively. Segmentation scales on the third location are set as (k) 25, (l) 30, (m) 35, (n) 40,
(o) 45, respectively.
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2.4. Change Detection Framework Combined with Deep Siamese Network and Multi-Resolution Segmentation

Patches of high-resolution remote sensing image are utilized in DSCNH to extract the deep
context features and analyze the changes in the feature space. However, the learned spatial features
are only restricted to a fixed neighborhood region. In this regard, we introduce the multi-resolution
segmentation algorithm to fully explore the object’s spatial information. The pixel-based result obtained
by DSCNH can be refined by an additional constraint in the same object, so as to make better use of the
spatial information of multi sensor images.

Suppose the category ϑ = {C, U}, where C and U represent the changed and unchanged
classes, respectively. Then the inputs are divided into these two categories through DSCNH, and the
pixel-based change detection results can be obtained. For each scale level l, an object is represented as
Ri, i = 1, 2 . . .N, where N denotes the count of objects in level l, and threshold T is set to classify the
objects Ri using Equations (9) and (10).

CDi =

{
1, i f pc > T
0, others

, (9)

pc =

∑n
j = 1 n j

c

n
, (10)

where pc represents the probability of object Ri belonging to C in level l, n j
c and n are the changed pixels

and total number of pixels in object Ri. If the CDi satisfies Pc > T, the object Ri is labeled as changed
object. CDi = 0, 1 indicates that Ri belongs to the unchanged and changed classes, respectively.

We can see now the proposed method can be regard as a combination with deep learning and
multi-resolution segmentation (OB-DSCNH), including images pre-processing, sample selection,
change detection based on DSCNH, and decision fusion. The flow chart of the procedures is shown in
Figure 7.
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3. Results

In order to demonstrate the effectiveness of the OB-DSCNH, two dates of images from two sensors
were utilized at three locations. The factors that may impact the performance of the model were
explored. The influence of different patch sizes was also studied, which is linked to the size of the
receptive field. Five hundred changed, and one thousand unchanged, regions (patches) were chosen as
the labelled dataset, fifty percent of which were randomly selected to be the training sets and the rest for
testing. The threshold for the uncertainty analysis was set as 0.70 by trial and error. The segmentation
scales of the three datasets were set as 40, 30, and 45, respectively, based on cross-validation. In this
work, all the experiments were implemented in Python 3.7.
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3.1. Experimental Results

We compared the proposed OB-DSCNH with the state-of-the-art methods to demonstrate its
superiority. The supervised pixel-wise change detection methods of Multiple Linear Regression
(MLR), Extreme Learning Machine (ELM), the Artificial Neural Network (ANN), and Support
Vector Machine (SVM) were chosen as comparative methods. Moreover, CD based on the deep
Siamese multi-scale convolutional network (DSMS-CN) [36], the deep convolutional neural network
(DCNN), and traditional Siamese convolutional neural network (TSCNN) [25] were chosen on behalf
of the deep learning methods in the contrast experiments. The patch size used in deep learning
comparison experiments are the same as that of OB-DSCNH. The hyper-parameters of each method
were chosen empirically.

Figures 8–10 show the change detection results based on the deep Siamese convolutional network.
The unchanged and changed classes are colored in black and white, respectively. It can be seen from
the change maps that the changed regions in the first dataset mainly comprise the increased land
and roads, and the decreased buildings. The changed regions in the last two datasets mainly are
constructions. Compared with the reference change maps shown in Figures 8i, 9i and 10i, the change
detection results of OB-DSCNH are more consistent with the reference change maps.

The detection results on the first dataset show that the change maps obtained by MLR, ELM,
and SVM contain a large number of false detected pixels. From Figure 8d, ANN and the previous
several methods present a similar result, which demonstrates the insufficiency of these classifiers on
multi-sensor images. For the second dataset, there is a large area of cultivated land in the southwest
of the image. The convention in change detection is that the area should be judged to be unchanged
when it is covered by crops. As shown in Figure 9a–d, the common change detection methods fail to
extract useful features towards the classification task, and there is significant “salt-and-pepper” noise
due to the lack of spatial context usage. As shown in Figures 8e–h and 9e–9h, deep convolutional
neural networks have a powerful ability to extract spectral and spatial context information. The third
dataset has less changes than the first two datasets. From Figure 10a–d, it can be seen clearly that the
change maps, obtained by ELM, MLR, SVM, and ANN, contain many false detected pixels in the water
area. OB-DSCAH and other deep learning methods succeed in the unchanged information detection,
as shown in Figure 10e–h. Some of the “salt-and-pepper” noise in the change detection results is
eliminated after including the segmented object information constraint.
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Figure 8. Change detection maps obtained on the first location by: (a) Extreme Learning Machine ELM,
(b) Support Vector Machine (SVM), (c) Multiple Linear Regression (MLR), (d) Artificial Neural Network
(ANN), (e) Deep Convolutional Neural Network (DCNN) (ω = 7), (f) Traditional Siamese Convolutional
Neural Network (TSCNN) (ω = 7), (g) Deep Siamese Multi-Scale Convolutional Network (DSMS-CN)
(ω = 7), (h) Deep Siamese Convolutional Network based on Convolutional Feature Extraction Module
(OB-DSCNH) (ω = 7, l =40), (i) Reference map.
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Figure 9. Change detection maps obtained on the second location by: (a) Extreme Learning Machine
(ELM), (b) Support Vector Machine (SVM), (c) Multiple Linear Regression (MLR), (d) Artificial Neural
Network (ANN), (e) Deep Convolutional Neural Network (DCNN) (ω = 13), (f) Traditional Siamese
Convolutional Neural Network (TSCNN) (ω = 13), (g) Deep Siamese Multi-scale Convolutional
Network (DSMS-CN) (ω = 13), (h) Deep Siamese Convolutional Network Based on Convolutional
Feature Extraction Module (OB-DSCNH) (ω = 13, l = 30), (i) Reference map.
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Figure 10. Change detection maps obtained on the third location by: (a) Extreme Learning Machine
(ELM), (b) Support Vector Machine (SVM), (c) Multiple Linear Regression (MLR), (d) Artificial Neural
Network (ANN), (e) Deep Convolutional Neural Network (DCNN) (ω = 9), (f) Traditional Siamese
Convolutional Neural Network (TSCNN) (ω = 9), (g) Deep Siamese Multi-Scale Convolutional Network
(DSMS-CN) (ω = 9), (h) Deep Siamese Convolutional Network Based on Convolutional Feature
Extraction Module (OB-DSCNH) (ω = 9, l = 45), (i) Reference map.

3.2. Accuracy evaluation

In order to assess the performance of the proposed approach, four indicators are adopted by
comparing the detection results with the ground truth: (1) Overall accuracy (OA); (2) Kappa coefficient;
(3) commission error; and (4) omission error, which are defined as:

OA =
(N11+N00)

(N11+N00+N01+N10)

Kappa =
N×(N11+N00)−((N11+N10)×(N11+N01)+(N01+N00)×(N10+N00))

N2−((N11+N10)×(N11+N01)+(N01+N00)∗(N10+N00))

Commission error =
N01

(N01+N11)

Omission error =
N10

(N10+N00)

(11)

where N11 and N00 are the numbers of changed pixels and unchanged pixels correctly detected,
respectively; N10 denotes the number of missed changed pixels; N01 is the number of unchanged pixels
in the ground reference that are detected as changed in the change map; and N is the total number of
the labelled pixels.
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The accuracies of the change detection for the three datasets are listed in Tables 2–4. It can be
clearly seen that the proposed OB-DSCNH obtains a higher change detection accuracy than the other
methods. The accuracy of OB-DSCNH achieves the highest among all the methods with the OAs being
0.9715, 0.9468, and 0.9792 on the three datasets. In the first dataset, the OA of OB-DSCNH is superior to
DSMS-CN by 3.24%, and the Kappa coefficient is superior by 13%. The OA and Kappa of OB-DSCNH
are increased by 2.21%, 5% on the second dataset compared with which of DSMS-CN, respectively.
On the third dataset, the OA of OB-DSCNH are superior to other deep learning methods by more
than 2.9%, and the Kappa coefficient is increased by 16.6% compared with which of DSMS-CN. These
results demonstrate the superiority in effectiveness and the generalizability of the proposed method.

Table 2. Accuracy of the different change detection methods on the first dataset.

Method OA Kappa Commission Omission

MLR 0.9413 0.5802 0.4242 0.3474
ELM 0.9447 0.6033 0.4022 0.3270
SVM 0.9470 0.6097 0.3817 0.3405
ANN 0.9378 0.5850 0.4528 0.2895

DCNN 0.9268 0.5805 0.5094 0.1655
TSCNN 0.9382 0.5544 0.4421 0.3791

DSMS-CN 0.9391 0.6459 0.4573 0.0998
OB-DSCNH

(ω = 7, l = 40) 0.9715 0.7801 0.1894 0.2193

* The best results are shown in bold.

Table 3. Accuracy of the different change detection methods on the second dataset.

Method OA Kappa Commission Omission

MLR 0.8682 0.3032 0.5971 0.6466
ELM 0.8630 0.3232 0.6051 0.5937
SVM 0.8803 0.3167 0.5440 0.6729
ANN 0.8416 0.3085 0.6523 0.5362

DCNN 0.8783 0.5074 0.5263 0.2697
TSCNN 0.8820 0.4223 0.5229 0.4986

DSMS-CN 0.9247 0.6799 0.3822 0.1313
OB-DSCNH

(ω = 13, l = 30) 0.9468 0.7351 0.2392 0.2305

* The best results are shown in bold.

Table 4. Accuracy of the different change detection methods on the third dataset.

Method OA Kappa Commission Omission

MLR 0.9548 0.4818 0.5335 0.4488
ELM 0.9442 0.4783 0.5979 0.3184
SVM 0.9581 0.4932 0.5006 0.4683
ANN 0.9145 0.3886 0.7041 0.2434

DCNN 0.9491 0.5692 0.5542 0.1139
TSCNN 0.9539 0.5107 0.5374 0.3676

DSMS-CN 0.9502 0.5889 0.5457 0.0621
OB-DSCNH

(ω = 9, l = 45) 0.9792 0.7549 0.2756 0.1879

* The best results are shown in bold.

Atmosphere and illumination variations may lead to the complicated feature statistics for the
multi-sensor images, resulting in poor performance on change detection for some classical methods.
It is evident that the proposed method can extract the deep and separable features from the training
data towards change detection task. OB-DSCNH outperforms the classical methods, such as SVM
and ELM, which can be ascribed to the extracted features by the deep Siamese convolutional network.
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Although, the omission error is higher than DSMS-CN, the proposed method still presents a stronger
robustness compared with DSMS-CN on the three datasets.

4. Discussion

In the proposed network, the input consists of a pair of satellite images with an alterable size.
To detect the changes of landcover using fine-grained features, the size of the input patch needs to
be considered carefully. In this study, five sizes of input patch are chosen to analyze the influence
on the accuracy. The values of three datasets are set to [5,7,9,11,13], [7,9,11,13,15], and [5,7,9,11,13]
respectively. The experimental results in this part are obtained without constraining by segmentation,
in order to eliminate the influence of the segmentation scale.

The accuracies under different patch sizes for change detection are listed in Tables 5–7. It can be
seen that, for the first dataset, the model yields the highest OA when patch size is 5 while the omission
ratio is also higher than others. The aggregative indicators show that the optimum is 7. For the second
dataset, the method achieves the best performance when the patch size is 13. When the patch size is 9,
the method preforms best on the third dataset.

Table 5. Accuracy under different patch sizes on the first dataset.

ω OA Kappa Commission Omission

5 0.9475 0.6256 0.3862 0.3003
7 0.9445 0.6619 0.4293 0.1247
9 0.9335 0.6124 0.4810 0.1425

11 0.9295 0.6033 0.4982 0.1202
13 0.9394 0.6406 0.4548 0.1241

* The best results are shown in bold.

Table 6. Accuracy under different patch sizes on the second dataset.

ω OA Kappa Commission Omission

7 0.8929 0.5769 0.4849 0.1701
9 0.9138 0.6437 0.4208 0.1420

11 0.9167 0.6545 0.4114 0.1340
13 0.9244 0.6759 0.3810 0.1446
15 0.9236 0.6720 0.3832 0.1503

* The best results are shown in bold.

Table 7. Accuracy under different patch sizes on the third dataset.

ω OA Kappa Commission Omission

5 0.9537 0.5830 0.5292 0.1521
7 0.9498 0.5791 0.5495 0.0900
9 0.9619 0.6476 0.4740 0.0915

11 0.9524 0.5928 0.5352 0.0899
13 0.9543 0.6016 0.5243 0.0955

* The best results are shown in bold.

Generally, most of the changes come from buildings in the first dataset. Relatively, a single
change category and regular change shape should be the main reason that caused the patch size has no
significant impact on the accuracy on the first dataset. As is shown in Table 5, due to the complexity of
surface feature in the second dataset, the accuracy of change detection is improved obviously when the
patch size changes from 7 to 13. Compared to the first dataset, change scenarios in this area are more
complex, such as a large number of buildings being demolished and turned into land. If the patch size
is too small, the network cannot fully learn the change information of surface feature, as well as its
surrounding areas, which results in the inability to accurately detect these changes.
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5. Conclusions

In this paper, we propose a supervised change detection method based on the deep Siamese
convolutional network for multi-sensor images. The hybrid convolutional feature extraction module
(HCFEM) has been designed based on dilated convolution and the structure of “network in network”.
The proposed method is capable of extracting the hierarchical features from the input image pairs, which
are more abstract and robust than comparative methods. In order to demonstrate the performance of
the proposed technique, two multi-sensor datasets at three locations were utilized. Experimental results
demonstrate that the proposed method achieves significant superiority than mainstream methods in
multi-sensor images change detection.

However, when the central pixel and its neighborhoods are not in the same category, they are still
regarded as the same class because of the impartible of the square input patch, which is the limitation
of OB-DSCNH. In future work, segmentation object, taken as a training sample, will be explored.
In addition, the unsupervised representation learning methods will also be considered during the
detection process.
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