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Abstract: Landsat 8 is the most recent generation of Landsat satellite missions that provides remote
sensing imagery for earth observation. The Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
images, together with Landsat-8 Operational Land Imager (OLI) and Thermal Infrared sensor (TIRS)
represent fundamental tools for earth observation due to the optimal combination of the radiometric
and geometric images resolution provided by these sensors. However, there are substantial differences
between the information provided by Landsat 7 and Landsat 8. In order to perform a multi-temporal
analysis, a cross-comparison between image from different Landsat satellites is required. The present
study is based on the evaluation of specific intercalibration functions for the standardization of main
vegetation indices calculated from the two Landsat generation images, with respect to main land use
types. The NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water
Index), LSWI (Land Surface Water Index), NBR (Normalized Burn Ratio), VIgreen (Green Vegetation
Index), SAVI (Soil Adjusted Vegetation Index), and EVI (Enhanced Vegetation Index) have been
derived from August 2017 ETM+ and OLI images (path: 188; row: 32) for the study area (Basilicata
Region, located in the southern part of Italy) selected as a highly representative of Mediterranean
environment. Main results show slight differences in the values of average reflectance for each band:
OLI shows higher values in the near-infrared (NIR) wavelength for all the land use types, while in the
short-wave infrared (SWIR) the ETM+ shows higher reflectance values. High correlation coefficients
between different indices (in particular NDVI and NDWI) show that ETM+ and OLI can be used as
complementary data. The best correlation in terms of cross-comparison was found for NDVI, NDWI,
SAVI, and EVI indices; while according to land use classes, statistically significant differences were
found for almost all the considered indices calculated with the two sensors.

Keywords: Landsat 8; Landsat 7; vegetation indices; land cover; cross-comparison;
intercalibration functions

1. Introduction

In recent decades, an increasing number of satellite (and sensor) systems for Earth observation
have provided large datasets of remote sensed imagery and indices, contributing to monitoring
environmental changes at both regional and global scales. However, despite their increasing availability,
this information cannot be easily compared due to slight differences among sensors, and thus, it is
essential to define standards for cross-device validation, as well as reliable algorithms for dataset
difference reductions [1,2].

To date, the cross-comparison analysis covers most of the different optical- and radar-based satellite
systems currently in use for earth observation. These studies involve both the intercalibration among

Remote Sens. 2020, 12, 291; doi:10.3390/rs12020291 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2203-9179
https://orcid.org/0000-0002-5144-3421
http://www.mdpi.com/2072-4292/12/2/291?type=check_update&version=1
http://dx.doi.org/10.3390/rs12020291
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 291 2 of 20

different satellites [3–9] and different sensors built within the same satellite systems. For example,
regarding the Landsat system, different intercalibration algorithms have been identified both with
different satellite systems [7,10–18] and with different sensors such as Multi Spectral Scanner (MSS),
Enhanced Thematic Mapper plus (ETM+) and Thematic Mapper (TM) [19–25].

Generally, the intercalibration analysis achieves poor performance among different satellite
systems due to the different spatial and spectral resolution of remote sensing imagery [26]. On the
other hand, the intercalibration analysis among different sensors within the same satellite has shown
good results. As an example, in Xu and Guo [27], the cross-comparison between the Normalized
Difference Vegetation Index (NDVI) extracted from Landsat 8 and Landsat 7 images, showed larger
differences between NDVI calculated from the two generations of Landsat in lower vegetation covered
areas; however, the difference decreases at higher vegetation cover (i.e., the NDVI values increase).

In other cases, even if the differences in terms of reflectance for the spectral bands [28] and
other vegetation indices [29] was more significant, mainly for near infrared (NIR) and short wave
infrared (SWIR), the regression analysis among the vegetation indices calculated with the two sensors
provided high correlation values for other indices such as Land Surface Water Index (LSWI), NDVI and
Normalized Burn Ratio (NBR) [28].

Within this context, vegetation indices are mostly implemented in the cross-comparison
quantitative analysis [3,30–33] due to the low sensitivity to the atmospheric correction errors and
to the different satellite visual angles. In particular, the NDVI is one of the most well-known and
widely implemented at global scale for the environmental bio-physical characterization (vegetation
cover, biomass, net primary production, etc.), climate changes, and environmental and hydrological
modelling. A large set of intercalibration functions among NDVI indices from different sensors is
reported in Steven et al. [7].

Among the various satellite platforms, Landsat can potentially provide long-term regional and
global-scale high-quality NDVI data, thanks to the sensor’s high resolution. Indeed, NOAA (National
Oceanic and Atmospheric Administration) Advanced Very High-Resolution Radiometer (AVHRR) has
provided data since 1989 at 1 km geometric resolution, and since 1982 at 4 km geometric resolution.
The SPOT (Satellite Pour l’Observation de la Terre) VEGETATION NDVI has provided NDVI data
since 1999 at 1.5 km spatial resolution [34], while the Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI datasets have been available since 2000 with different spatial resolutions, 250 m, 500 m,
or 1 km [35].

The different Landsat generations, including the Landsat MSS, the Landsat 4-and 5 TM, the Landsat
ETM+ and the current Landsat 8 Operational Land Imager (OLI), have provided data since 1972 [36],
at 79 m spatial resolution before 1982, and at 30 m resolution since 1982.

In order to use long-term information, it is necessary to intercalibrate the images provided
by the various Landsat sensor generations, obtaining standardized vegetation indices. Besides the
NDVI, many other vegetation indices sensitive to the spectral bands difference effects (SBDE) have
been formulated over the years, such as those resulting from the combination of visible bands as
Atmospheric Resistant Vegetation Index (ARVI) and the Modified Triangular Vegetation Index (MTVI);
whilst, the SBDE from other indices (e.g., Normalized Difference Water Index-NDWI, LSWI) have not
been reported yet.

Landsat TM and ETM+ sensors allowed earth observation since the launch of Landsat 4 in
1982. The Landsat mission has continued with the Landsat 5 launched in 1984, carrying the same
instrumentation of Landsat TM, and later with the launch of Landsat 7 in 1999 with the ETM+ sensor.
The Landsat missions have provided a large amount of earth reflectance data collected in six spectral
bands with different wavelengths at 30 m spatial resolution. Although the reflectance measured by
TM and ETM+ sensors can be considered comparable, due to the similarities in the bandwidth and
position, several studies on the intercalibration between the images yielded by different sensors have
been carried out in order to provide long-term data [37]. The last Landsat generation satellite was
launched on February 2013, initially known as the LDCM (Landsat Data Continuity Mission) was
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finally named Landsat-8. The satellite has been equipped with two new sensors: The Operational
Land Imager (OLI), designed in order to operate in continuity with TM and ETM+; and the Thermal
Infrared Sensor (TIRS), which features two bands in the thermal infrared region. The OLI sensor
includes enhanced bands due to new linear detector arrays which collect images in a push-broom
scanner mode providing a better signal with a high signal-to-noise ratio, compared to the previous
whiskbroom scanner-based sensor [38]. The improved signal-to-noise performance is quantized over a
12-bit dynamic range, enabling a better land cover status characterization, with 12-bit images (scaled
to 55,000 grey levels) [39]. Along these lines, the sensor is able to highlight a higher earth surface
variability due to the maximization of the radiance ranges for all the spectral bands [40], and at the
same time to reduce the saturation of highly reflective surfaces. However, the OLI sensor maintains
the same geometric resolution, scene size (170 km × 183 km) and revisit time (16 days) compared to
previous Landsat generations.

Thus, the main differences between OLI and previous TM and ETM+ sensors refer not only to
the overall image quality but also to the different number of spectral bands, their width and their
spatial resolutions [41]. In particular, the OLI sensor provides new bands such as: i) Band 1 (deep
blue and violet) with a shorter wavelength (0.43–0.45 µm), also called the coastal/aerosol band due to
its main uses; and ii) Band 9 covering a very short range of wavelengths in the short-wave infrared
(1.36–1.39µm), also called Cirrus band due to its cloud cover sensing capacity (Table 1).

Table 1. Morphological and vegetation characteristics of the plot areas.

Plot Prevailing Land Uses, % Altitude, m a.s.l. Slope, %

mean min max mean min max

1 Forests (72%); Arable lands (22%); Tree crops (<1%) 957 459 1804 24.9 0.0 201.3

2 Arable lands (56%); Forests (31%); Tree crops (7%) 680 317 1330 18.5 0.0 289.2
3 Forests (64%); Arable lands (28%); Tree crops (<1%) 696 227 1580 25.9 0.0 192.0

4 Arable lands (50%); Forests (34%); Tree crops (12%) 166 16 502 17.2 0.0 162.5

Furthermore, the Landsat 8 OLI bands are narrower compared to the Landsat 7 ETM+,
avoiding atmospheric absorption [38]. In particular, the OLI NIR band is more similar to the
MODIS NIR band, except for the 0.825 µm wavelength relative to the ETM+ for the absorption of water
vapour [39]. The OLI Bands 6 and 7 are narrower compared to the ETM+ bands 5 and 7 respectively,
reducing the atmospheric absorption and thus reducing the sensibility to atmospheric changes in terms
of water vapour content.

To improve the standardization among different Landsat image generations, it is thus necessary
to verify if the substantial differences between the two sensors regarding both bandwidth for the
visible and SWIR, and the detection system technology, allowing for an efficient comparison among
the images by the two sensors.

The main objectives of this study are: i) to extend the knowledge on the effects that the differences
between Landsat 7 ETM+ and Landsat 8 OLI spectral responses may have through the analysis of
different land use types through a wide range of derived vegetation indices; ii) to evaluate specific
intercalibration functions for the standardization of vegetation indices in order to perform long-term
time series analysis.

Up to date, the differences between Landsat 7 ETM+ and Landsat 8 OLI spectral responses have
only been analyzed on a single derived vegetation index such as the NDVI, while in the present study,
we extended the analysis to seven different indices and different land use types in order to achieve a
more comprehensive analysis between the two sensors.
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2. Materials and Methods

2.1. Study Area

The study area is located in the Basilicata region, in southern Italy (Figure 1). The Region can be
considered representative for the Mediterranean area due to both climate and vegetation characteristics.
In particular, the area is characterized by both a Mediterranean humid-type climate in the Apennine
Mountains, and a Mediterranean dry-type climate in the hilly and flat areas. Forest vegetation covers
35.6% (355,367 ha) of the total area, represented by deciduous oak forests (51.8%), beech forests
(8.4%), Mediterranean Macchia (7.9%), shrublands (6.9%), and other deciduous broad-leaved forests
(5.5%) [42].
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Figure 1. Plots location (1, 2, 3, 4) within the territory of Basilicata Region (Southern Italy) presented on
Landsat 8 Operational Land Imager (OLI) Normalized Difference Vegetation Index (NDVI) (Tile: 188,
32; image acquired on 18/08/2017).

The analysis was performed in four rectangular plots covering an area of 4536 ha each, for a total
area of 18,144 ha. The selected plot areas cover different land uses, climatic and orographic conditions.
As shown in Table 1, the main land uses are “Forests” and “Arable lands” classes, representing 90%
of the plot area. Other land uses are “Tree crops” (5%) and “Pastures and natural grasslands” (2%).
Main differences in the plot areas depend on the distribution of the two main land use classes: i) plots
1 and 3 with predominant “Forests” class distribution; and ii) plots 2 and 4 with predominant “Arable
lands” class distribution.

2.2. Spatial Data Preprocessing

To perform the cross-comparison analysis, the images from the two Landsat sensor generations
have been selected according to the temporal proximity and to the overall quality, using the Global
Visualization Viewer (Glovis) developed by the USGS Earth Resources Observation and Science Center
(EROS). The selected scenes are the ETM+ SLC-off (Scan Line Corrector) (path = 188; row = 32),
WRS2 (Worldwide Reference System2) (10/08/2017) and OLI (18/08/2017), classified as L1T (Level-1
Terrain-corrected) and registered to UTM coordinates, zone 33N, WGS84 Datum. The acquisition dates
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were chosen to minimize potential differences in terms of phenological phases between the ETM+ and
OLI images.

Moreover, both Landsat ETM+ (26/08/2017) and MODIS (MOD09Q1, surface reflectance, band 1-2,
8-days composition) imageries have been downloaded and pre-processed in order to correct the NDVI
variation caused by the 8-day time lag using the phenological patterns [27].

The land use information has been derived merging the Regional Agricultural Land Use Map,
and the Regional Forest Map of Basilicata [42]. The land use classes in the two maps have been
reclassified to reduce land use types (Table 2), as well as corrected through visual analysis based on
the visual matching of land use classes from thematic maps compared to digital images form aerial
orthophotos at 0.5 m spatial resolution TerraItaly 2008 data set.

Table 2. Morphological and vegetation characteristics of the plot areas.

Plot Prevailing Land uses, % Altitude, m a.s.l. Slope, %

mean min max mean min max

1 Arable lands (56%); Forests (31%); Tree crops (/%) 680 317 1330 18.5 0.0 289.2
2 Forests (72%); Arable lands (22%) 957 459 1804 24.9 0.0 201.3
3 Arable lands (50%); Forests (34%); Tree crops (12%) 166 16 502 17.2 0.0 162.5
4 Forests (64%); Arable lands 696 227 1580 25.9 0.0 192.0

Total Forests (50%); Arable lands (40%); Tree crops (4%) 612 16 1804 21.1 0.0 289.2

According to several studies [43–46], both the radiometric calibration and the atmospheric
correction represent a fundamental prerequisite for quantitative analyzes on Landsat data.

In particular, the radiometric calibration is required to convert the signal of quantified energy
from digital numbers (DNs) into sensor radiance values, by using:

TOA = DN × G + B (1)

where TOA (top-of-atmosphere) represent the radiance at the sensor for each band (W m−2 sr−1 µ−1);
DN is the Digital Number value; G and B are respectively Gain and Bias values, calculated as follows:

B = Lmin − (Lmax − Lmin/Qmax − Qmin) × Qmin (2)

G = (Lmax − Lmin/Qmax − Qmin) (3)

where Lmin and Lmax represent minimum and maximum values of spectral radiance, as reported by the
ETM+ and OLI image metadata files; Qmin and Qmax represent minimum and maximum values of DN
for the two sensors, ranging from 1 to 255 for ETM+ and from 1 to 65,535 for OLI (16 bit images [47].

The atmospheric correction is necessary to reduce or normalize the modifications of the remotely
sensed signal due to the intervening atmosphere between Earth’s surface and satellite. Although the
atmospheric correction usually follows standardized procedures [48,49], it is a crucial pre-processing
step, especially for data acquired by different sensors at different times, as well as to field-based and
remote sensing data [49].

In this regard, we applied the 6SV atmospheric correction algorithm [50–52], which is one of the
most effective methods for the atmospheric correction of different sensor spectral bands [7,53,54] and
also for other applications [55–60].

2.3. Vegetation Indices

The ETM+ and OLI derived vegetation indices used for the cross-comparison analysis are reported
in Table 3.

The NDVI is the first and most known vegetation index to explore and detect vegetated areas and
plant canopies [61].
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The NDWI, based on the combination of the green band with NIR or SWIR, is a good indicator for
vegetation liquid water content and in the same time is less sensitive to atmospheric scattering effects
than NDVI [62]. Its usefulness for drought monitoring and early warning has been demonstrated in
different studies [63,64].

The LSWI (Land Surface Water Index) is sensitive to the total amount of liquid water in vegetation
and in its soil background [62,65–69]. It is based on the SWIR1 and on the NIR regions of the
electromagnetic spectrum. It is particularly used to detect the vegetation water content during the
different phenological stages [70,71], and the inter-annual changes in vegetation water content related
to climatic variations [66,72–74].

The NBR (Normalized Burn Ratio) index is used to detect the burnt areas and fire intensity [75–79].
The NIR band is sensitive to vegetation chlorophyll content, whilst the SWIR2 band is sensitive to soil
and vegetation water content [80,81] providing information on typical conditions that occur after the
fire events [82,83].

The EVI (Enhanced Vegetation Index) represents an improvement of NDVI, showing a reduced
saturation in high vegetation cover regions, a reduction in atmospheric influences and a de-coupling
of the canopy background signal [35,84,85]. These improvements are based on the introduction of the
blue band to reduce the effects of the atmospheric aerosols in the red band, and on some correction
coefficients to reduce the effect of soil reflectance. According to these differences, the NDVI is more
sensitive to the chlorophyll content, whilst the EVI is more sensitive to the structural characteristics
of the vegetation cover [86]. Thus, it has been widely used for Land Cover and Land Use/Land
Cover Change detection [87], for the evaluation of vegetation bio-physical parameterization [88,
89], phenology [85,90,91], evapotranspiration [73], biodiversity assessment [92], and gross primary
production [93–95].

The SAVI (Soil-Adjusted Vegetation Index), proposed by Huete [96] reduces the effects of soil on
vegetation reflectance [97,98].

Table 3. Selected vegetation indices.

Index Formula Author

NDVI (NIR − red)/(NIR + red) [61]
NDWI (green − SWIR1)/(green + SWIR1) [62,63]
NBR (NIR − SWIR2)/(NIR + SWIR2) [78]
LSWI (NIR − SWIR1)/(NIR + SWIR1) [69]

VIgreen (green − red)/(green + red) [99]
SAVI [(NIR − red)/(NIR + red + L)] * (1 + L) * [96]
EVI G * [(NIR − red)/(NIR + C1 * red − C2 * blue + L)] ** [84]

* L= 0.5. ** G = 2.5, C1 = 6, C2 = 7.5, L = 1.

The VIgreen (Vegetation Index Green) is sensitive to chlorophyll content and particularly to the
photosynthetic active vegetation [99]. It has been used to detect the physiological conditions of the
vegetation, the vegetation water content implemented in fuel models [100], the structural characteristics
of the tree crops [101], and the phenology in agricultural crops [102].

2.4. Preliminary Analyzes

Due to the 8-day time lag between the Landsat ETM + and OLI image, a preliminary analysis
was carried out on climatic data derived from the local meteorological stations in each considered
plot. The occurrence of climatic events (especially with regard to precipitations) was verified, in order
to remove any significant influence on the NDVI values, during the period between images. Over
the 8-day time period (data processed from the Hydrological Annals from 10 to 18 August 2017) no
anomalies were recorded that could significantly impact the NDVI values (Table 4).
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Table 4. Climatic data of the local meteorological stations within the four study plots.

Plot Weather Station P, mm (tot) T, ◦C (mean) P, mm (tot) T, ◦C (mean)

from 10 to 18
August

from 10 to 18
August

from 1 to 31
August

from 1 to 31
August

1 Atella 0.0 23.8 0.0 25.3
2 Potenza 0.6 24.5 1.4 25.4
3 Ferrandina 0.0 26.5 0.2 28.1
4 Noepoli 0.0 25.3 3.2 26.8

However, in order to account for possible phenological effects that occurred over the 8-day
time span, the vegetation growth rate was calculated using the MOD09Q1 MODIS product (surface
reflectance 8 days composite):

r =
NDVI26 august −NDVI18 august

NDVI18 august − NDVI10 august
(4)

Subsequently, to correlate the Landsat 8 NDVI of 18 August, the growth rate [5] between the 10
and 26 August ETM + images has been used:

NDVIETM 18 august =
NDVIETM 26 august + r ∗ NDVIETM 10 august

1 + r
(5)

where NDVIETM 18 august is the 18 August simulated Landsat ETM + NDVI, and NDVIETM 26 august

and NDVIETM 10 august are respectively the Landsat ETM + NDVI of 10 and 26 August.
The analysis carried out between the Landsat 8 OLI NDVI of August 18 and the simulated Landsat

ETM + NDVI of August 18, and the Landsat ETM + of 10 August (Figure 2) also does not show
significantly different values.
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Thus, the comparison analysis between the two sensors has been performed for the all
selected indices.

2.5. Statistical Analysis

According to the main studies on cross-comparison statistical analysis between different
sensors [1,10,29,37,59,103], we performed for each test plot: i) the analysis of differences of the
spectral responses between ETM+ and OLI for different land uses by estimating the differences
between the reflectance average values of the two sensors and their dispersion. The analysis has been
separately conducted for the main land uses in order to highlight potential spectral differences between
them and the two sensors. ii) The analysis of differences in terms of descriptive statistic between
different vegetation indices. In this ambit we analyzed the distribution of the different vegetation
indices using indices of position and dispersion, highlighted through the box and whisker plots.
Thus, the mean values and the measures of dispersion (mean + − SE and mean + − 2 SD) have been
evaluated for the values of the indices differences and in order to examine the possible effects for
different land use and environmental characteristics of each plot. The vegetation indices statistical
significance difference has been also evaluated using the Student’s t-test, by considering the values
of the indexes both on the whole image and on the stratified values, as a function of the land use.
iii) the regression analysis between vegetation indices for the two sensors and for each plot, in order
to evaluate a possible linear relationship between the two sensors, and consequently to assess the
estimated intercalibration functions.

3. Results

Figure 3 shows significant differences in the average reflectance values between the ETM+ and
OLI bands by land use classes. In particular, the OLI NIR band seems to be more sensitive (higher
average reflectance value compared to ETM+) in the forest class, while the reflectance in the visible
band (and especially in the red one) is greater in ETM+ than OLI, determining the higher values of
OLI NDVI than ETM+ NDVI.

The SWIR1 and SWIR2 infrared bands show few differences for the forest land use class with a
slight absorption for the SWIR1 OLI band. The NIR OLI band shows higher average reflectance value
than ETM+ for the land use classes characterized by high vegetation cover than for low vegetation
cover areas (arable lands, urbanized areas). The SWIR (SWIR1 e SWIR2) OLI bands show higher
absorption values than ETM+, although these differences tend to decrease in the area with high
vegetation cover. The highest differences between the two sensors refer to the water bodies with
significantly higher average reflectance values for all the ETM+ bands, and particularly for the SWIR1
band. The sensor sensitivity to visible bands shows an opposite behaviour for the NIR, in all the land
use classes, with ETM+ average reflectance values constantly higher than OLI (especially for the red
band) with significant differences for pastures, arable lands, and water bodies. To compare the ETM+

and OLI derived vegetation indices, for the 4 plots, the NDVI, LSWI, NDWI, NBR, VIgreen, SAVI,
and EVI have been calculated from the ETM+ and OLI images. The Student’s t-test results (Table 5)
show a significant difference between the ETM+ and OLI derived vegetation indices (NDVI, LSWI,
NDWI, NBR, VIgreen, SAVI, and EVI) for the 4 plots.

As shown in Figure 4, there are relevant dissimilarities between the two sensors in all indices.
The NDWI, SAVI, and LSWI indices show the higher correlation between the two sensors with a mean
difference of −0.0500, −0.0725, and 0.0819, respectively. Instead, the standard deviation is smaller than
the other indices. The other indices (NDVI, VIgreen, and EVI), with the exception of NBR (which has
the difference average value equal to −0.8446, and the standard deviation of 1.27) show difference
average values higher than 0.1. Among these, the EVI shows a greater similarity between the two
sensors (with very low deviations), followed by the NDVI with an average difference value equal to
0.1223. The VIgreen shows the higher differences between OLI and ETM+ (average difference value
equal to 0.1367).
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Table 5. Summary Statistics for the vegetation indices calculated from the ETM + and OLI sensors and
Student’s t-test for difference between the two sensors (* Significant differences, p < 0.05).

Vegetation Index Mean L7 Dev.St. L7 Mean L8 Dev.St. L8 t-Value p

NDVI 0.498518 0.259871 0.621517 0.251277 −469.003 * 0.00
NDWI −0.633739 0.186459 −0.684272 0.177237 274.065 * 0.00
NBR 1.254274 1.313125 0.408800 0.254303 309.040 * 0.00
LSWI 0.083145 0.181938 0.165224 0.196626 −319.266 * 0.00

VIgreen −0.191954 0.073956 −0.054372 0.139435 −536.107 * 0.00
SAVI 0.490937 0.291796 0.418399 0.178539 196.647 * 0.00
EVI 0.305163 0.171320 0.407259 0.195831 −481.713 * 0.00

The indices based on non-visible bands combinations (LSWI and NBR) are therefore sufficiently
similar and stable between the two sensors, with few fluctuations in the average difference over the
four plots. However, the NDVI and NDWI show the greater stability in the different plots with very
few fluctuations. The NDWI also shows the lower differences between the two sensors in all the plots.
The VIgreen index shows the lower stability, confirming that indices using only visible bands show
higher variation due to the SBDE (spectral difference between bands) [2,29].

In particular, these results are related to the main differences in the red band between the two
sensors for all the land uses with the exception of urbanized areas. Figure 4 was characterized by
small differences in every index. This can be attributed to the morphological characteristics of the area
depending on climatic conditions and on land use classes. In particular the plot 4 (Table 2), located in
the Southeast of the regional survey area, is characterized by low altitude and flat terrain. As for the
land use classes, Figure 4 shows a predominance of arable land (about 50% of the area), followed by
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forests, for about 1/3 of the entire area, and tree crops that reach here the greater extension (12% of the
plot area) among all the plots.
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The results of the analysis of the difference variability between the vegetation indices for each of
the test area and for each land use class are reported in Figure 5 and Table 6.

The results in Table 6 show that, for almost all the considered indices, statistically significant
differences exist between the two sensors by land use class. Only for water bodies class, NDWI (often
used for the identification of wet areas), SAVI and EVI indices do not show significant differences
between the sensors, and SAVI also does not show significant differences for the Urbanized and Mixed
agricultural areas classes. This result also confirms the robustness of the correction of the soil brightness
introduced in the index for both sensors, for the discrimination of the classes in which the vegetation is
absent (Urbanized areas) or it is interspersed with bare soils (Mixed agricultural areas).

According to the box-plot results showed in Figure 5, for forest land use, some indices based on
the combination of NIR and Red (SAVI and EVI) show a remarkable difference between the two sensors
with significant variability. The same performance for the forest land use has been found in NBR,
based on the combination of infrared bands, and VIgreen, based only on visible bands. NDVI and
NDWI for forest land use show good results with low average difference values and low variability.
Tree crops show average difference values generally close to zero and low variability with respect to
the other land uses for all indices.

Even arable land classes show a similar trend to the tree crops with generally low average
difference values between the two sensors, both for the vegetation indices based on the combination of
infrared bands (NBR, LSWI), and based only on visible bands (VIgreen).
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The plot 4, characterized by a lower percentage of forest land use cover and combined with the
higher percentage of tree crops cover and high arable lands cover, shows a low variability of the
average difference values for all the vegetation indices.

Plots 1 and 2, characterized by a higher percentage of forest land use cover (more than 60% of the
plot area), by a lower percentage cover of arable land, and by a significant reduction, compared to
the fourth plot, of tree crops land use (respectively 0.1% and 2% of the surface of the plot), show the
highest variability for all vegetation indices.

Finally, the regression analysis between the vegetation indices ETM+ based and OLI based has
been conducted in order to identify the intercalibration functions between the two sensors datasets.
The goodness of fit of the OLS regressions were defined by the coefficient of determination (R2) and
the significance of the OLS regressions was defined by examination of the regression overall F-statistic
p-value. To provide simple overall measures of similarity, the Root Mean Square Deviation between
the OLI and ETM+ data has derived:
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RMSD =

√∑n
i

(
vOLI

i − vETM+
i

)2

n
(6)

Table 6. Land use class-based Student’s t-test to examine differences between ETM+ e OLI sensors for
each vegetation index. * Significant differences (p < 0.05).

Vegetation
Index Land Use Classes

Forests Mixed Agricultural
Areas

Tree
Crops

Water
Body

Pastures and
Grasslands

Arable
Lands

Urbanized
Areas

NDVI
t value −105.667 * −140.198 * −27.670 * −2.991 * −46.186 * −158.233 * −21.754 *

p 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NDWI
t value 45.104 * −27.670 * −47.495 * 0.316 27.043 * 104.365 * −21.754 *

p 0.00 0.00 0.00 0.75 0.00 0.00 0.00

NBR
t value 331.501 * 21.144 * 48.221 * 2.046 * 20.508 * 81.574 * 17.657 *

p 0.00 0.00 0.00 0.04 0.00 0.00 0.00

LSWI
t value −106.632 * −28.893 * −23.905 * −2.719 * −46.696 * −120.833 * −15.217 *

p 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Vigreen t value −384.512 * −48.260 * −86.581 * −5.015 * −83.768 * −240.003 * −49.762 *
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SAVI
t value 151.586 * 1.818 10.511 * 0.643 −7.922 * −16.340 * −0.787

p 0.00 0.07 0.00 0.52 0.00 0.00 0.43

EVI
t value −140.903 * −32.221 * −46.494 * −1.862 −51.212 * −151.229 * −23.001 *

p 0.00 0.00 0.00 0.06 0.00 0.00 0.00

The identified functions and the related indices (Table 7) show a good linear relationship between
the dependent variables (indices calculated with OLI) and the independent variables (indices calculated
with ETM+). The intercalibration functions, however, show significant dissimilarities among vegetation
indices: the indices based on the combination between infrared and visible bands (NDVI, NDWI, SAVI,
and EVI) show a better correlation with a determination coefficient always higher than 0.8. Instead,
the indices based only on infrared (NBR and LSWI) or on visible bands (VIgreen) show a lower
correlation. In particular, the VIgreen shows a determination coefficient less than 0.5, highlighting
the differences SBDE in the range of the visible waveband, and, thus, confirming the previously
described analysis.

Table 7. Intercalibration equations between ETM+ and OLI indices.

Vegetation Index Intercalibration Equations R2 RMSD F p Value

NDVI Y = 0.1823 + 0.881·X 0.8302 0.103541 830103.4 0.00
NDWI Y = –0.1370 + 0.8688·X 0.8353 0.071923 861182.8 0.00
NBR Y = 0.2203 + 0.1503·X 0.6022 0.160395 256992.2 0.00
LSWI Y = 0.0892 + 0.9145·X 0.716 0.104781 428072.0 0.00
VIgreen Y = 0.1866 + 1.2552·X 0.4432 0.104045 135139.2 0.00
SAVI Y = 0.1476 + 0.5515·X 0.8125 0.077305 735804.8 0.00
EVI Y = 0.095 + 1.0234·X 0.8016 0.087237 685745.8 0.00

Y = Landsat 8 OLI; X = Landsat ETM+.

NBR and LSWI also show a poor correlation, particularly for NBR, which highlight the existence
of a non-linear component between the two sensors. In addition, in this case, the differences are most
likely related to SBDE, as for the bands SWIR highlighting a significant difference in the bandwidth
between the two sensors.

From the regression analysis, it has been found that lowest values are reported in plot 4, whilst plot
2 and 3 show higher correlation values. In particular, plot 4 is characterized by the lowest average
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values for all the calculated vegetation indices, whilst plot 2 and 3 are characterized by highest average
values for all the calculated vegetation indices.

These differences also suggest that the higher variability within vegetation indices values occur
within areas characterized by low vegetation indices values and thus for areas with a low percentage
of vegetation cover. Figure 6 shows different trends according to the land use type and vegetation
index. The OLI NDVI is always higher than the ETM+ NDVI in all land uses, with higher differences
for pasture and arable land and a decrease for tree crops and forests. This may suggest that the greatest
differences of index values are related to low biomass content (pastures and arable land), whilst lower
differences are related to the high value of biomass content. In particular, pasture, arable lands and
tree crops show a regression function with a slope almost parallel to the 1:1 line, and forest land use
shows the largest differences for lower NDVI values. With the increase of the index value, there is
a constant reduction of the differences between OLI and ETM+ derived indices. The EVI shows the
same trends described for NDVI and for indices based on the normalized difference of infrared bands
(LSWI in Figure 6). VIgreen, based on visible bands (green and red), shows the greatest differences
for land use classes characterized by high values of vegetation cover (forests) with differences nearly
constant. This confirms the existence of differences due to SBDE between the two sensors in the visible
range, especially with respect to the red band. For arable land, the trends of the index are different
because OLI is higher than ETM+. For low index values, the increase of the VIgreen values ETM+ is
higher than OLI ones due to a greater absorption in OLI red band together with the intensification of
the vegetation cover.
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4. Discussions

The comparison between Landsat 7 ETM+ and Landsat 8 OLI to identify the main differences
between the two sensors and the spectral responses for different land uses presented in this study,
showed significant differences among spectral ranges and vegetation indices derived from the two
sensors. However, the 8-day difference between the two Landsat 7 ETM+ and Landsat 8 OLI scenes
and the period of the analysis minimizes the effects of vegetation phenology and thus increasing the
reliability of the results of the present study. The comparison among the spectral bands provided
by the two sensors showed a good similarity. Nevertheless, significant differences are evident in
the various spectral ranges: i) high reflectance values of OLI in the band of NIR for all the land use
classes, particularly for high values of vegetation cover, ii) and lower reflectance in the SWIR bands,
especially for low vegetation cover land uses as for the pastures and grasslands. There are decreasing
differences in SWIR band with the increase of biomass values up to maximum values represented by
forest cover.

For the visible bands, the ETM+ sensor shows reflectance values greater than OLI ones.
The analysis of vegetation indices based on the two sensors shows low differences between the
indices based on the combination of NIR and visible bands (NDVI, EVI, NDWI, and SAVI), whilst the
indices based only on the visible bands (VIgreen) or only on the infrared bands such as NBR, show higher
values of difference. A different result is showed by the analysis of LSWI which, according to the results
showed by Li et al. [29], is not only more similar but also more stable between the two sensors, with low
fluctuations in the various plot areas. The regression analysis among the vegetation indices calculated
with the two sensors highlights a good correlation, especially for NDVI, NDWI, SAVI, and EVI,
with an index of determination higher than 0.8. On the other hand, both VIgreen and NBR show a
high dispersion, probably due to the differences in the spectral response of corresponding bands.

With regard to the study of the intercalibration functions between ETM+ and OLI derived
vegetation indices for the Mediterranean region is fundamental to ensure an effective operational
continuity between the current and previous Landsat missions.

As showed by the literature and confirmed by the results of this study, the two sensors derived
vegetation indices are not directly comparable. Differences between Landsat 7 ETM+ and Landsat 8
OLI vegetation indices are directly related to the different width of spectral bands and to the different
radiometric resolution between the two sensors [104].

Different studies showed how the differences for high values of NDVI are directly related to
the spectral bandwidth; other studies highlighted the inverse relationship between the increases in
bandwidth and mean NDVI values [46].

Another factor affecting the differences of vegetation indices between the two sensors, and in
particular, the dynamic range of vegetation indices, is the difference in spectral band resolution [105]:
the higher is the number of bits, the higher is the variability of the estimated index. According to
this, the Landsat 8 OLI derived vegetation indices represent an effective tool to study the ecosystem
variability in the Mediterranean region, characterized by a very high land use and land cover variability,
due to the combination of both land management practices and physical characteristics mainly related
to high climatic variability.

5. Conclusions

Landsat satellite systems represent a fundamental tool for the study of long-term environmental
and land use/land cover dynamics at a global scale. The long-term dataset availability combined with the
increased processing capacity, contributed to an increase of the number of studies, observation programs
and land cover monitoring tasks. In order to emphasize and standardize the available dataset provided
by different missions and to allow reliable and site specific multi-temporal analysis, it is important
to define intercalibration algorithms between the different missions. The high ecosystem spatial and
temporal variability, characterizing the Mediterranean region, represents a real challenge to develop
reliable intercalibration algorithms between the two sensors. The results of this study showed an
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overall good correlation between indices calculated with the two sensors; while according to single
land use classes, statistically significant differences was found for almost all the indices analyzed.
According to these observations, a greater attention needs to be addressed in long-term environmental
and land use/land cover dynamics analysis in the Mediterranean region. In particular, the very fast
land use/land cover changes characterizing this region under the ongoing climate change scenario,
are mainly due to the combination of both natural and anthropogenic drivers. Such variability
combined with sensor’s differences may lead to wrong estimates and thus wrong interpretation of
environmental patterns of main vegetation indices. In particular, more attention needs to be addressed
to differences between the two sensors in the evaluation of infrared (NIR and SWIR) based indices for
the estimation of both vegetation and soil water content, which represent highly climate sensitive key
indicators in the Mediterranean environment.
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