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Abstract: To increase the global convergence and processing efficiency of particle swarm optimization
(PSO) applied in the adaptive joint time-frequency, in this study an improved PSO is proposed to
refocus the high-resolution SAR images of complex moving vessels in high sea states. According to
the characteristics of the high-order multi-component polynomial phase signal, this algorithm
provides parallel processing and co-evolution methods by setting the different permissions of the
sub-population and sharing its search information. As a result, the multiple components can be
extracted simultaneously. Experiments were conducted using the simulation data and Gaofen-3
(GF-3) SAR data. Results showed the processing speed increased by more than 40% and the global
convergence was significantly improved. The imaging results verify the efficiency and robustness of
this co-evolutionary PSO.

Keywords: synthetic aperture radar (SAR); moving vessel; multicomponent polynomial phase
signal(mc-PPS); adaptive joint time-frequency (AJTF) decomposition; co-evolutionary particle
swarm optimization

1. Introduction

Synthetic aperture radar (SAR) has the distinct ability to be able to observe vessels at all
times, and is an important method in the detection and monitoring of marine moving targets [1–3].
Marine application research of SAR has been carried out around the world, and ship detection systems
based on space-borne SAR have been developed and used in practical applications, e.g., the ocean
monitoring workstation (OMW) system of Canada, the automated maritime surveillance tool (MaST)
system of England, the Kongsberg satellite services (KSAT) system of Norway, the collect localization
satellite (CLS) system of France, and the Ship Surveillance system of China. The GF-3 satellite is
China’s first C-band multi-polarization SAR, and has a maximum resolution of spotlight mode of 1 m.
As an ocean surveillance and monitoring satellite, it has played an increasingly important role in the
field of marine theory and applications [4]. Vessels can be detected effectively using constant false
alarm rate (CFAR) processing and its derivatives using high-resolution GF-3 images [5]. Wang et al.
used the analytic hierarchy process by calculating the vessel’s kernel density estimation, aspect ratio,
and pixel number to finally obtain optimized vessel detection results [6]. Similarly, the identification of
vessels can also be achieved with GF-3 SAR images using artificial intelligence techniques, such as
convolutional neural networks (CNNs) and Region-CNN algorithms [7,8]. However, SAR imaging
uses the relative motion of the satellite and ground targets to obtain high azimuth resolution in
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principle, assuming that the ground is static during synthetic aperture acquisition (i.e., dwell time).
For a stationary vessel, the main structure of the hull surface is distinguishable in SAR images, and is
easily detected and identified. On the contrary, vessels moving due to sea wind and waves appear as
various distortions and are blurred (defocused) in SAR images. This can cause the shape of vessels to
be distorted. As a result, the length, width, and scattering distribution cannot be accurately obtained,
thus affecting the application of target detection and recognition. The motions of a marine vessel have
multiple periodicities and a high degree of randomness. The different motion characteristics of each
scattering point in every range cell cause different distance migration and initial phase, which result in
frequency folding and wrapping in the azimuth dimension, and generate high-order non-cooperative
phase errors in the SAR echo signal, ultimately reducing the precision of compensation [9]. In particular,
the number of signal components in each cell increases and significant mutual interference between
the components exists, which reduces the reliability of the component extraction. The SAR images of
vessels are less clear, and vessels may even be unrecognizable, with worse sea conditions, longer dwell
time, and higher SAR resolution. This phenomenon is frequently found in high-resolution images of
space-borne SAR and airborne SAR.

Therefore, refocusing of the SAR images of vessels in complex motion has consistently been
an important research subject for marine remote sensing applications. Generally, the refinement
of image processing for moving SAR marine targets is divided into two main aspects: translation
compensation and rotation compensation. The compensation method for translation is relatively
mature, and usually use the inverse SAR (ISAR) principle and a self-focusing method, such as the
phase gradient autofocus algorithm (PGA), to achieve high-quality SAR images [10]. Liu et al. [11]
presented a model for numerical simulation and quantitative evaluation of the image distortions
caused by each rotation of a ship. Martorella [12] applied ISAR processing to the Cosmo-SkyMed SAR
system and refocused moving targets. These methods are suitable for vessels with relatively stable
motion or medium-resolution SAR. However, due to the complex three-dimensional rotation in high
sea states, there may be no effect of using the envelope alignment and phase correction method of
ISAR processing steps. The remaining uncompensated translational and rotational terms after ISAR
processing still have a large influence on the high-resolution SAR image in particular.

The time-frequency analysis method is an effective method for rotational compensation [13],
and utilizes the instantaneous Doppler frequency of the target to avoid blurring. In the literature [14],
the relatively stable interval of the target motion is selected for imaging using different time-frequency
analysis methods. However, for high-resolution SAR, the signal of a moving vessel can be represented
by a high-order multicomponent polynomial phase signal (mc-PPS), which includes complex envelope
migration and Doppler wrapping. In these circumstances, the traditional time-frequency analysis
methods, such as short-time Fourier transform, Wigner Ville distribution, and polynomial phase
transformation [15,16], are seriously affected by cross-terms and cannot adapt to the practical
applications of the mc-PPS. For an effective extraction of signal components, the adaptive joint
time-frequency (AJTF) method, as an improved maximum likelihood method, is proposed to represent
the mc-PPS in ISAR imaging, and offers better results without being affected by cross-terms. Li et al. [17],
based on the AJFT method, estimated the phase of multiple scattering centers of ISAR data. According
to the linearity relationship between the scattering point location and the Doppler change in the
echo phases, refined ISAR images are achieved using the data of the best imaging period time.
Searching for optimal parameter components with different extremal solutions in the solution space is a
multidimensional optimization problem during AJTF processing. Therefore, optimization algorithms,
such as genetic algorithms (GA) and particle swarm optimization (PSO) algorithms, are used to
reduce the computing complexity of searching, and simulation results confirm the efficiency of these
approaches during processing [18,19]. The frequency-domain extraction-based AJTF decomposition
method has been proposed to deal with the high-resolution space-borne SAR. Although its feasibility
and effectiveness have been verified, the imaging processing time is long and the SAR imaging results
show limited improvement [1].
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In this paper, a refocusing method is proposed to deal with the mc-PPS of the vessels’ SAR
data using a co-evolutionary PSO optimizing AJTF. Because the design of the method uses parallel
processing, this algorithm improves the effectiveness and computing speed by extracting multiple
components simultaneously. Furthermore, the convergence and global optimal ability are enhanced
through the co-evolution of multiple sub-populations. The simulation high-resolution SAR data and
GF-3 SAR data were processed and compared with ISAR and the classic PSO algorithm. Results show
that the imaging technical indicators and image visualization were clearly improved. These results also
verify the robustness and efficiency of the presented algorithm, particularly under high sea conditions.

2. AJTF Decomposition Method

AJTF is a global phase compensation method that has been proved to be an effective focused
imaging algorithm to address the problem of non-cooperative targets [20]. This method performs
parameter estimation and phase compensation, which reduces the influence of mutual interference
between scattering centers and is particularly suitable for situations with different phase changes of
each scattering center of the vessels in high-resolution SAR.

The echo of a moving vessel for a range cell in high-resolution SAR can be expressed in the form
of the mc-PPS as follows [21]:

s(t) =
M∑

m=1

Am·rect
[ t
T

]
exp

 j2π
Np∑

n=0

am,ntn

, (1)

where M is the number of components; Am represents the component intensity; rect[·] is the rectangular
time window of width T; Np is the polynomial order of the signal phase; am,0 is a time-independent
constant phase; am,1 is the linear term of time t, which is related to the real position of the scatter point;
and am,2 Skimmed higher-order parameters are the phase errors generated by the target motion and
need to be compensated in the SAR imaging process.

For the m-th component signal sm of the mc-PPS, the phase compensation function sh(t) is
expressed as follows:

sh(t) = rect
[ t
T

]
exp

{
− j2π

∑Np

n=2
antn

}
, (2)

By multiplying this component signal sm and the phase compensation function sh, the m-th
motion compensation is achieved. The frequency spectrum Sc( f ) is obtained by applying Fourier
transformation to the compensated signal, as follows:

Sc( f )= FT
{
rect

[ t
T

]
·sm(t)·sh(t)

}
= FT

{
rect

[ t
T

]
·Ae j2πa0 exp[ j2πa1t]

}
= Ae j2πa0T sin c[T( f − a1)]

(3)

The objective function of the AJTF method is as follows: {ân} = argmax
{
max

[
FT

(
sp(t)·sh(t)

)]}
, n = 2, 3, 4, · · ·

â1 = fp, Sc( fp) = max[Sc( f )]
, (4)

where {ân} refers to the estimating parameters and fp is the peak position Sc max = Sc (fp). The maximum
value of the spectrum is at f = a1. The maximum value of the spectrum is at, which is the scattering
point image as the sin c(·) envelope function.

Through optimal estimation, the estimated signal
_
s m of this component is obtained as:

_
s m(t) =

_
A· exp

{
j2π

∑Np

n=1

_
a ntn

}
, (5)
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where
_
A is the component intensity of the maximum value of the spectrum Sc( f ), and

{_
a n

}
is the

optimal estimated parameter of the signal component.
The time-domain residual signal is updated as follows:

y(t) = s(t) −
_
s m(t) (6)

Using the same method, each signal component can be continuously estimated and extracted
from the residual signal sequentially. The final estimated signal can be expressed as:

_
s (t) =

M∑
m=1

_
s m(t)+yM(t), (7)

where M is the number of components,
_
s m is the optimal estimation of the m-th component signal,

and yM(t) is the residual error after extracting M components.
The most critical step in AJTF decomposition processing is the search for the optimum parameters

in the multidimensional solution space. Such optimal problems are generally non-convex and require
substantial amounts of computation. Therefore, optimization algorithms such as PSO can be applied
to AJTF decomposition, thus accelerating the speed of optimal processing and improving the global
convergence ability.

3. PSO Algorithm Applied in AJTF Decomposition

3.1. PSO Algorithm

PSO is based on the movement and intelligence of swarms. This approach compares the
optimization technique to bird flocking and has become an attractive alternative to other heuristic
algorithms [22]. The method is initialized with a population of random solutions. Then, the bird is
abstracted as a particle, which is represented by two parameters: position and velocity. The position
indicates a feasible solution of the optimization and the velocity means the tendency of particles to
move, which is the rate of change of the particle position. The particle tends to move to its historical
optimal position and global optimal position during the iteration. The optimal state of each particle
in the population during the iteration is evaluated using fitness. The method minimizes the fitness
function and obtains the optima by adopting the optimum velocity of each particle toward the local and

global particle. From iteration g to g + 1, the update of the velocity
→

Vi(g + 1) and position
→

P i(g + 1) of
the i-th particle is shown as follows:

→

Vi(g + 1) = ω
→

Vi(g) + r1c1

(
→

PLbest −
→

P i(g)
)
+ r2c2

(
→

PGbest −
→

P i(g)
)
, (r1, r2) ∈ U(0, 1)

→

P i(g + 1) =
→

P i(g) + T
→

Vi(g + 1)
(8)

where ω is the inertial weight; c1 and c2 are the local and global attractive coefficients, respectively;

and
→

PLbest the
→

PGbest represent the historical best local and global positions, respectively, in the whole
swarm. T is the factor of position updating. Therefore, the PSO algorithm may obtain a local optimal
solution and retain multiple sub-optimal solutions. The flow chart of PSO is shown in Figure 1.
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Figure 1. The flow chart of the particle swarm optimization (PSO) algorithm.

In each iteration, the position and velocity of each particle is updated, and each particle has
an overall tendency to maintain its local and global best positions. The PSO algorithm retains its
individual best value at the end of the algorithm. Compared with other evolutionary algorithms such
as GA, PSO avoids complex genetic operations and has a population-based global search strategy.
Thus, it is a more efficient search algorithm than other evolutionary algorithms [19]. Unfortunately,
PSO compensation processing takes about 20 min, which means it does not meet the requirements
of the mission. However, for the mc-PPS in AJTF decomposition, PSO may obtain a locally optimal
solution while retaining multiple sub-optimal solutions, which may also be true components. Therefore,
PSO easily falls into the local optimal solution, which means the algorithm cannot guarantee convergence
to the global optimum during the processing of the mc-PPS signal of the vessel’s SAR data.

3.2. Co-Evolutionary PSO Algorithm

To solve the problems of the standard PSO algorithm, Shi Y. devised the co-evolutionary PSO
algorithm by reducing the dimension of the fitness function. The solution is divided into multiple
sub-groups, each of which is optimized by a separate algorithm, and the fitness value is evaluated
and combined into a complete particle. However, the algorithm and subsequent improvements are
nonetheless prone to the problem of pseudo-minimums and cannot guarantee global convergence [23].
In theory, the components of the mc-PPS are uncorrelated with each other, which indicates that the
extraction of the signal components will not affect other components [18]. Therefore, the improved
co-evolutionary PSO algorithm is proposed, based on the division of multiple sub-groups in the
original algorithm. This algorithm sets different permissions of the sub-groups and adds a random
group. It divides the entire population into several sub-groups, such as an optimal group (Opt-group),
a sub-optimal group (Sub-group), and a random group (Ran-group). The term “co-evolutionary” refers
to the division of groups in the solution space into several sub-groups; a sub-group represents a sub-goal
to be solved, and excellent individuals found in the search migrate between different sub-groups as
shared information to guide the progress of evolution. As a result, the global convergence efficiency of
this algorithm is significantly improved.

The co-evolutionary PSO algorithm combines the abilities of PSO to explore the search spaces
with varied priorities. The Opt-group includes the particle with the global optimal position, and the
Sub-group is prohibited from iterating with the neighborhood of the Opt-group. Setting the search
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forbidden zone to the sub-optimal particle swarm strengthens the global optimal ability of the
Opt-group. The Sub-group only limits the search area in the sub-optimal solutions, which means the
premature stagnation state problem of the particle is solved. The Sub-group represents a sub-space in
the solution space, and also represents one solution to the problem. Based on the azimuth position of
the scattering center, the Opt-group and the Sub-group are distinguished and the scattering center
corresponds to the maximum value of the spectrum. The random group has no best particle and is
updated with the other groups, which improves the randomness of the entire population and the
information exchange among the three groups. When the Opt-group falls in the local optimal solution,
the Sub-group retains the ability to search for another optimal solution outside of the region. Using this
approach, multiple components can be extracted simultaneously, which effectively improves the global
convergence speed. The procedure flow of the co-evolutionary PSO algorithm is shown in Figure 2.
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(a) The input initial particles are the residual signal of one range cell of SAR.
(b) The initial fitness. The fitness of the m-th particle Pm is as follows:

F f it(P m) = max
{∣∣∣∣FT

(
sp(t)·sh(Pm, t)

)∣∣∣∣} (9)

where F f it(P m

)
is the fitness function of the m-th component; FT() is the Fourier transform process;

sp(t) is the signal to be processed; and sh(t) is the phase compensation function. The position of all
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particles refers to the individual parameters in the multidimensional solution space, including the start
and end times of the signal component and the second-order and above polynomial coefficients.

→

Pm = {an, τs, τe}, m = 1, · · ·, Npop, n = 2, 3, · · ·, Np, (10)

where an refers to the higher-order parameters and is due to the complex movement; τs and τe are
the start time and end time of the time window, respectively. This indicates that the point scattering
characteristics of the complex motion are variable because some signal components will appear and
vanish during the dwell time. Npop is the total number of particles, which mainly depends on the vessel
size and SAR image resolution, and typically has a value of 50~120. Np is the polynomial order of the
input signal phase, and has a value of 3~4 [18].

(c) Divide P1 into three groups. P1, sub1 is the Opt-group, P1, sub2 is the Sub-group, and P1, sub3 is
the Ran-group. Iteration is set to g = 1.

(d) Update particle position. By random division, the Ran-group is divided into two sub-groups
and combined with the Opt-group and Sub-group in two new mixed groups.

(e) Update fitness and local best particles. According to the fitness function, the global optimal
and sub-optimal particle fitness are searched for in the respective ranges, and the optimal particle
parameters and scattering center positions are updated. Observing the near zone of the Opt-group
scattering center is prohibited to the Sub-group, which has a value of 20~30.

In the g-th iteration, the local and global optimal fitness values of the m-th particle are as follows: FL,g,m = max
{
Ffit

({
→

Pm(g′)
})}

FG,g = max
{
FL,g′,m

} , g′ = 1, 2, · · · , g, (11)

where
→

Pm(g′) represents all position records from the 1st iteration to the g-th iteration of the m-th
particle. Correspondingly, the local and global optimal positions of the m-th particle are as follows:

→

PLbest(g) = argmax
{
FL,g,m

}
→

PGbest(g) = argmax
{
FG,g

} , m = 1, 2, · · · , Npop, (12)

(f) According to local fitness results in the new mixed group of the Opt-group, the survival of
the fittest is made by exchanging the two particles inside if the maximum fitness value of the random
Sub-group is more than the minimum value of the Opt-group. The same processing is applied to the
other mixed group of the Sub-group.

(g) Similarly, according to global fitness results, the survival of the fittest is made by exchanging
the roles of the two groups if the maximum fitness value of the Sub-group is more than that of
the Opt-group.

(h) The iteration g = g+ 1. Based on the previous two steps, the new groups become the (g + 1)-th
population. The local best position is updated as follows. Furthermore, the global best position can
also be obtained, according to Formula (12). When the fitness is stable, the update velocities of the
optimal particle become zero, and the position, which is equivalent to the global optimal position, no
longer changes.

→

PLbest(g + 1) =


→

Pm(g + 1), Ffit

(
→

Pm(g + 1)
)
≥ Ffit

(
→

PLbest(g)
)

→

PLbest(g) otherwise
(13)

(i) Whether the stop conditions are met is determined, including the maximum iteration number
and the convergence of the global fitness results. The maximum iteration number is generally 300,
and the convergence is expressed by the fitness ratio of the residual signal of the sub-optimal solution
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before and after the extraction of the global optical component, which is usually set to 0.99. If the
conditions are met, step (j) is performed, and if not, then step (e) is performed.

(j) Finally, the global best parameters of Opt-group and Sub-groups are outputted, and the
algorithm of one range cell is completed and it continues to process the next range cell. When the
traversing of all range cells is completed, the two-dimensional imaging result is obtained with the
AJTF decomposition method [1].

4. Experiment Results and Analysis

4.1. Simulation Test

The modeling and simulation system of space-borne SAR was established. The vessel scattering
model consists of nine points on the edge of the hull. The sea condition of the complex motion was
Level 5 [24]. The main simulation parameters of the moving vessel and imaging condition of the GF-3
satellite are shown in Table 1.

Table 1. Main simulation parameters.

Item Value

Scattering point model of the vessel with 9 points
[X,Y]

[0 0, 100 0, −100 0,
50 50, 50 0, 50 −50,

−50 50, −50 0, −50 −50] [m]
Vessel rotation amplitude

Vessel rotation period
[Roll, Pitch, Yaw]

[38.4, 3.4, 3.8] [deg]
[12.2, 6.7, 14.2] [s]

Looking Angle
Imaging Mode

Band Width
PRF

31.2 [deg]
Spotlight

240 [MHz]
3725.6 [Hz]

Sample Rate 266.667 [MHz]
Aperture Time 4.0 [s]

Shortest Slant Range 898.388 [Km]

To evaluate the performance, the classical PSO and the proposed algorithm applied to AJTF
were compared in the simulation experiment. The imaging results of the scattering point model
simulation are shown in Figure 3. Figure 3a,b shows the results of the stationary vessel and the moving
vessel, respectively, which were obtained using the Chirp Scaling (CS) algorithm of the conventional
SAR ground processing system. Significant differences exist between the results of the model with
nine scattering points. Under the stationary condition, all of the points are similar; moreover, the
intensity value of the points is also relatively larger, indicating that the focusing effect was better.
On the contrary, the imaging result of the vessel in complex motion is defocused and fuzzy, and
it is not possible to effectively identify the points of the simulation model. The exception is the
central point, which remains focused in the image because it is the center of rotation and is thus
not influenced by the rotational motion. The eight surrounding points are distorted and differ from
each other. These differences are due to the phase error caused by the rotation movement and the
different positions. Figure 3c,d shows the results of the moving vessel using the classical PSO and
co-evolutionary PSO, respectively. During the PSO processing, the number of iterations is 300, and the
number of particles is 100. The scattering points are focused better than those using the CS algorithm.
The nine scattering points of the modeled vessel are obvious and identifiable. The focusing effect in the
azimuth (Figure 3d) is more obvious in the detail of its points, which indicates that complex moving
compensation is more accurate compared with that using classical PSO.
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Figure 3. Imaging results of the vessel scattering point model: (a) imaging result of a simulated
stationary vessel; (b) imaging result of a simulated moving vessel; (c) imaging result of classical PSO;
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To evaluate the effects of point refocus, the peak sidelobe ratio (PSLR) and the integral sidelobe
ratio (ISLR) in the azimuth were calculated from the eight surrounding scattering points, and are
shown in Table 2. Compared to the imaging results, the PSLR and ISLR of co-evolutionary PSO were
superior. The improvement of the average azimuth PSLR was greater than 1.45 dB, and the average
azimuth ISLR improvement was greater than 2.1 dB, compared to classical PSO in this simulation test.
This indicates the compensation accuracy of the high-order phase error is higher and the algorithm is
more robust. Finally, the processing speed of co-evolutionary PSO is about 48.97% faster than that
of classical PSO, indicating a significant improvement in the global convergence. Computational
complexity relates mainly to iterative processing, including the fitness update and individual parameter
update. The fitness update requires the Fourier transform, and the number of calculations in the
extracting components is related to the number of population individuals and the total number of
iterations. Unfortunately, the PSLR and ISLR in the subsequent experiment were difficult to measure
due to the clustered scattering points of the vessel in the real SAR data.

Table 2. Comparison of the algorithms.

CS Classical PSO Co-Evolutionary PSO

PSLR (dB) −5.02 −10.12 −11.57
ISLR (dB) −5.41 −13.55 −15.65

Ave computation time (s) 65 1421 725

4.2. Experimental Test

To evaluate the imaging effect and usability of this algorithm, actual GF-3 SAR stationary and
moving vessel data were used to verify the experiment, as shown in Figure 4. According to the
imaging time and location of the moving vessel in a high sea state taken from the GF-3 satellite,
we determined that the wave height was 2.8 m and the ocean velocity was 1.42 m/s at the time the
image was captured [25]. In addition, the stationary vessel was selected at other times near the area in
a calm sea state to compare the effects of complex motion on SAR imaging. Figure 4a,b show the results
of the stationary and moving vessels using the CS algorithm. Figure 4c shows the refocusing result of
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the moving vessel using ISAR processing algorithms [26]. Figure 4d,e show the imaging results of the
moving vessel using the classical PSO and co-evolutionary PSO algorithms, respectively.
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In Figure 4a, the edge of the stationary vessel is clear and the inside structure is easy to identify
on the calm sea, similar to the case of the SAR imaging result of a stationary ground target. However,
as shown in Figure 4b, the vessel image in a high sea state is highly unfocused, and it is impossible to
measure the parameters of the vessel and recognize the vessel type. The ISAR principle and the phase
gradient autofocus method were used to accomplish the phase compensation of the moving vessel,
shown in Figure 4c. Compared with Figure 4b, the focus in the azimuth is improved, indicating that
there is a translation component of the vessel. However, previous research has shown that the ISAR
method is only applicable to vessels with stable motion. Due to the different movements of the various
parts of the vessel, this method is not able to provide complete compensation. Residual uncompensated
translation and rotation errors after ISAR processing still have a significant influence on the SAR image.
Figure 4d,e shows that the information of the scattering centers of each range unit is effectively extracted.
The basic outline of the vessel is maintained, and the length and width of the vessel can be easily
measured. In addition, the resolution of each scattering center is improved and the imaging blurring
problem caused by phase wrapping is resolved. The edge shape of the vessel in Figure 4e shows more
image detail than that of 4d; however, many noise spots are present in the red circles of the classical
PSO result image, indicating that it may have fallen into a local optimal solution, and the stability and
reliability of the classical PSO algorithm are comparatively worse. In addition, the processing time of
co-evolutionary PSO was about 10 min, representing a reduction of about 42.2% compared to classical
PSO, which is consistent with the simulation results. Hence, the results proved the efficiency and
robustness of this co-evolutionary PSO algorithm by simulation and experimental testing.

5. Conclusions

According to the relevant statistics, the number of defocused vessel images affected by complex
motion accounts for 15–20% of GF-3 high-resolution ocean data. The SAR echo of vessels subject to
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complex motion is a multicomponent polynomial phase signal, which leads to the inability of classical
time-frequency analysis methods to process data efficiently. Therefore, a novel co-evolutionary PSO
applied to AJTF is proposed that can extract several components in the solution space simultaneously
and avoid falling into a local optimal solution. Compared with other algorithms, this method has
obvious advantages in image focusing performance, robustness, and efficiency. The results of simulation
data and GF-3 satellite SAR data show that the image of a moving vessel in a high sea state was improved
and, simultaneously, the processing speed of the algorithm was increased by over 40%. According
to our preliminary experiments, this algorithm is also suitable for sub-meter space-borne SAR and
airborne SAR data processing, with a processing time of several hours. The existing method performs
compensations after traditional SAR imaging and involves redundant calculations. Therefore, we will
continue to study methods for simultaneous image processing and phase estimation compensation to
improve computing efficiency for processing sub-meter resolution SAR data. To summarize, the use of
the proposed and ISAR methods [26] in existing GF-3 SAR ground processing systems could have
significant benefits for marine users who need high-precision images of moving marine vessels in
applications such as vessel identification and intelligent feature extraction.
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