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Abstract: The redistribution of solar radiation, temperature, soil moisture and heat by topography
affects the physical and chemical properties of the soil and the spatial distribution characteristics
of crop growth. Analyses of the relationship between topography and these variables may help to
improve the accuracy of digital elevation models (DEMs). The purpose of correcting Shuttle Radar
Topography Mission (SRTM) data is to obtain high-precision DEM data in cultivated land. A typical
black soil area was studied. A high-precision reference DEM was generated from an unmanned aerial
vehicle (UAV) and extensive measured ground elevation data. The normalized differential vegetation
index (NDVI), perpendicular drought index (PDI) extracted from SPOT-6 remote sensing images and
potential solar radiation (PSR) extracted from SRTM. The interactions between topography and NDVI,
PDI, and PSR were analyzed. The NDVI, PDI and PSR in June, July, August and September of 2016
and the SRTM were used as independent variables, and the UAV DEM was used as the dependent
variable. Linear stepwise regression (LSR) and a back-propagation neural network (BPNN) were
used to establish an elevation prediction model. The results indicated that (1) The correlation between
topography and NDVI, PSR, PDI was significant at 0.01 level. The PDI and PSR improved the spatial
resolution of SRTM data and reduce the vertical error. (2) The BPNN (R?; = 0.98, root mean square
error, RMSE; = 0.54) yielded a higher SRTM accuracy than did the studied linear model (RMSE; = 1.00,
R?; = 0.90). (3) A series of significant improvements in the SRTM were observed when assessed with
the reference DEMs for two different areas, with RMSE reductions of 91% (from 14.95 m to 1.23 m)
and 93% (from 15.6 m to 0.94 m). The proposed method improved the accuracy of existing DEMs and
could provide support for accurate farmland management.

Keywords: Shuttle Radar Topography Mission (SRTM); digital elevation models (DEMs);
crop growth cycle; prediction models; back-propagation neural network (BPNN); linear stepwise
regression (LSR)

1. Introduction

The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is free and publicly
available. However, SRTM data sets are known to have a large vertical error. Improvements to the
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SRTM would greatly increase the value of the public data and improve the corresponding application
reliability especially in typical black soil areas, in which the surface of the soil appears black and
the topsoil in the region is covered with black or dark humus. The typical soil type in black soil
regions is also directly defined as black soil in the Genetic Soil Classification of China [1]. These soils
are also named phaeozems in the World Reference Base for Soil Resources (WRB). Black soil is an
extremely precious natural resource, which is suitable for agricultural production. Thus, the application
of precision agriculture is related to food security worldwide [2]. Precision agriculture is defined
as a set of modern agricultural operation technology and management systems based on spatial
variation, positioning, timing and quantitative implementation supported by information technology.
Many studies have shown that topography affects the spatial distribution of biomass, organic matter,
and soil types [3,4] and affects crop yields. However, topography factors are usually obtained
from DEMs, and the corresponding accuracy largely depends on the resolution of the DEM [5,6].
Thus, selecting suitable methods to improve the accuracy of SRTM data in cultivated land areas is
important and challenging.

At present, the acquisition methods of land surface DEMs mainly include field surveys,
map digitization, light detection and ranging, and interferometric synthetic aperture radar (In-SAR)
approaches [7,8]. The above methods are not widely used in agriculture due to limitations related
to the observation area, accuracy, efficiency, acquisition cost and data set size. Most countries can
obtain low-accuracy DEMs from NASA’s SRTM. However, high-quality lidar-derived DEMs are only
freely available in a small number of countries [9]. Therefore, in many other developing countries,
including China, high-precision DEMs are still lacking for cultivated land. In recent years, methods of
generating high-quality DEMs from publicly obtained DEM products with remote sensing data can be
divided into two categories. First, DEMs of different qualities can be fused to generate high-quality
DEMs. For example, the optical stereo pair (Cartosat-1) and InNSAR pair data sets are created with feature
level fusion and Kalman optimal interpolation technology to assimilate discrete elements and generate
high-quality DEMs [10]. Ajibola et al. [11] merged low-quality and high-quality DEMs produced
with multi-rotor drone UAVs to improve DEM quality. Although the above methods improved the
accuracy of the DEMs considered, they ignored the different characteristics of the DEMs at different
spatial scales. The selected DEM and assimilation method led to improved high-precision DEMs
becoming unstable. Second, low-quality DEMs and optical remote sensing images can be processed
with neural network methods to improve the DEM accuracy. For example, a multispectral image
(Landsat OLI 8, the OLI represents operational land imager) at 30 m was combined with SRTM data,
an artificial neural network (ANN) was used for training, and a high-precision DEM was obtained [12].
Kulp et al. [9] used the vegetation cover index, neighbourhood altitude, population density, land slope
and local SRTM deviation related to ICESat (ICESat represents the Ice, Clouds, and Land Elevation
Satellite mission, part of NASA’ Earth Observing System (EOS), was launched in January 2003 from
Vandenberg Air Force Base.) altitude observations as inputs; then, lidar data were used as the actual
ground data to train a multilayer perceptron (MLP) neural network, and the vertical accuracy of
the SRTM DEM was improved. However, they can not explain the interaction between topography
and input variables. In our study, the screening variables were based on the comprehensive effects
among the environment, vegetation and topography. In addition, the above studies are mainly aimed
at dense forest zones and urban development zones, but are not applicable to other land use types,
especially for the improvement of the accuracy of SRTM in cultivated land, so it is necessary to deeply
study the improvement method of SRTM in cultivated land zones. Finally, in terms of modeling
methods, compared with the above methods, the back-propagation neural network (BPNN) not only
has a strong ability in nonlinear mapping, but also BPNN has a strong ability in generalization and fault
tolerance [13,14], which increases the applicability of the model in other sites. Notably, the NDVI has
been used as the input variable to improve SRTM data [15]. In cultivated land areas, the spatiotemporal
variations in the NDVI are affected by three dominant factors: moisture, heat and surface vegetation
cover [16]. Moreover, topography is a key factor that may affect many environmental variables, such as



Remote Sens. 2020, 12, 3401 3 0f 20

moisture, heat, and solar radiation [17]. There is a close relationship between topography and the
NDVL. Soil moisture is related to the climate, soil, topography and vegetation. Studies have shown that
topographic changes can lead to the redistribution of soil moisture, and spatial changes in soil moisture
reflect the spatial distribution of topographic attributes [18]. Topography not only affects the spatial
distribution of moisture but is also the most important factor that affects the distribution of surface
solar radiation at the local scale [19]. In flat areas, solar radiation is highly correlated with topography,
which can be determined through remote sensing image interpolation. Moreover, the introduction
of a DEM can avoid the necessity of ground surveys and improve the accuracy of solar radiation
prediction in complex topographic areas [20]. Therefore, the selection of variables closely related to
the topography of cultivated land can influence SRTM data and subsequent agricultural production.
Although the selection of terrain-related inputs in different areas may improve the accuracy of SRTM
DEMs, there is no clear method for improving SRTM data in cultivated land areas. This is a problem
that requires further study. Thus, this paper took a typical black soil area as the study area. The main
purposes were as follows: (1) to evaluate the feasibility of NDVI, vertical drought index (PDI) and
potential solar radiation (PSR) to improve SRIM data under the correlation between these variables
and topography, and the topography and surface material distribution of a typical black soil area
(taken as the study area); (2) to improve the accuracy of SRTM data and determine the best method to
obtain high precision DEM by comparing the SLR and BPNN methods; (3) to validate the applicability
of the method by assessing two untrained validation zones; (4) to assess the quality of the high-precision
DEM obtained by comparison with the optical stereo pair (ZY-3 DEM) and the high-precision UAV
DEM. This method provides a reference for quickly obtaining high-precision DEMs in cultivated
land areas.

2. Materials and Methods

2.1. Study Area

The study area is located in Dongxing Village, Hailun, Heilongjiang Province, China, on the
northeastern part of the Songnen Plain and west of the Lesser Hinggan Mountains; this area varies
in elevation from south to north (Figure 1b). The region lies between 47°25’46”N and 126°55'19”E
and has an area of 23.02 km?, and average altitude of 241.98 m (Figure 1b). The study area has a
cold temperate continental semi-humid climate with an average annual precipitation of 500-600 mm.
The annual active cumulative temperature is 2200-2400 °C. The main crop was soybean in 2016,
and the management practices were uniform throughout the growing season (June, July, August and
September of the year). The landscape is typical of a black soil area.
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Figure 1. Study area (a): The location of study area in China (red point); (b): Location of the study site
(1) and validation site (2, 3); (c): Three-dimensional plot of the topography of the study; the red circle in
Figure 1c corresponds to the red circle in Figure 1b, indicating the three-dimensional structure of the
erosion ditch and the spatial location of the erosion ditch, respectively.

2.2. Topography Data Acquisition and Preprocessing

The DEM data used in this study include three different kinds: SRTM data, DEM data extracted
from optical stereo-images (2Y-3 DEM) and UAV DEM data. Although SRTM data are vertically
referenced to the EGM96 geoid, the Chinese elevation datum is the 1985 national elevation datum.
Different elevation datums will lead to vertical deviations in DEM data. Therefore, we converted the
SRTM data to the 1985 elevation datum and performed projection, horizontal and vertical corrections.

2.2.1. SRTM

The SRTM project is a joint endeavour of the National Aeronautics and Space Administration
(NASA), the National Geospatial-Intelligence Agency, and the German and Italian Space Agencies,
and it was launched in February 2000. The SRTM uses dual radar antennas to acquire interferometric
radar data, which are processed to obtain digital topographic data; the corresponding data set
includes the most complete, high-resolution DEM data for the Earth. SRTM data were downloaded
(http://earthexplorer.usgs.gov/) and clipped to the extent of the study area. Studies have shown that
low-pass filtering can remove known random speckle noise in SRTM data [21]. Therefore, the SRTM
data was processed by a low-pass filter (SRTM low-pass filter, SRTM_LOW). In addition, the PSR in
June, July, August and September were extracted from SRTM as the input variables of the improved
SRTM DEM model.

2.2.2. DEM based on Optical Stereo Image Extraction (ZY3 DEM)

In this paper, optical stereo images at the 1C level were obtained on 12 May 2018. The geographical
range was 126°31'117-127°23’25”E and 47°6'20”"-47°25’26”N. The data quality was high, and the cloud
content was 0%. The texture and geometric structure of the land surface were clear. The front and
back images of ZY-3 were used to cover the whole study area, and the overlap was 100%. To improve
interpretability, the image was processed by colour stretching and image enhancement. Based on the
ground control points and connection points, we extracted a DEM with a resolution of 5 m.
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2.2.3. DEM based on Unmanned Aerial Vehicle (UAV DEM)

The DJI (DJ-Innovations) M600 Pro UAV (SZ DJI Technology Co., Shenzhen, China) was used as a
remote sensing platform equipped with a RedEdge 3 camera (Table 1). The weather was clear and
cloudless, and the wind speed was less than level 1 on 15 April 2018, reflecting suitable conditions for
flight. The flying altitude was 110 m, and the actual altitude was 109.5 m. The filtered images and
POS (Position and Orientation System) data were input into Pix4D mapper software, and we adjusted
the processing parameters according to the configuration of the camera. After running the software,
the application automatically generated the connection points and performed space-three calculations
with the POS data, thereby obtaining precisely oriented elements and the coordinates of the encrypted
points for each aerial image. After the point cloud was encrypted, the software automatically generated
a digital surface model, which was used as the basis for digital differential correction to orthorectify
each image. The vertical accuracy of the UAV DEM was verified to be 0.1 m based on actual ground
points, so the UAV DEM was used as the reference DEM.

Table 1. Technical specifications of unmanned aerial vehicle (UAV) and multispectral cameras.

Details Items Specifications
Imager size 4.8 mm X 3.6 mm
Imager resolution 1280 x 960 pixels
Lens focal length 5.5mm
RedEdge 3 camera Spectral bands Blue, green, red, red edge, near-infrared

8.2 cm/pixel (per band) at 120 m (400 ft.)

Ground sample distance AGL (Above Ground Level)

Capture speed 1 capture per second (all bands), 12-bit RAW
Weight 10 kg
Dimensions 1668 mm X 1518 mm X 727 mm
Max speed 65 km/h (Windless environment)
Satellite positioning systems GPS
DIIM600 Pro UAV Remote control operating frequency 2.400 « 2.483 GHz
Max operating distance 5km
Battery type TB48S
Capacity 5700 mAh

Slope, aspect and solar radiation features were extracted from the UAV DEM by ArcGIS 10.2.
By taking the north direction as zero degrees and dividing the slope direction every 45°, the southeastern
and southern slopes were classified as sunny slopes, and the northwestern and northern slopes were
classified as shady slopes. According to the actual situation in the study area, an area was considered
flat when the slope was less than 1.5°, the area at the foot of the slope was larger than that at the bottom
of the slope, and the slope classification zone (i.e., shady or sunny) was located between the top of
the slope and the bottom of the slope (Figure 2). The topography of the study area was divided into
ridge, shady, channel and sunny slope [22,23] classes to discuss the distribution of surface energy and
materials (PDI, PSR, and NDVI) for different topographic features.
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Figure 2. The slope, aspect and position maps of the training area a ((a): aspect, (b): slope, and (c):
slope position).

2.3. Remote Sensing Image Acquisition and Preprocessing

Cloud-free, orthorectified SPOT-6 (SPOT 6 is a satellite successfully launched by an Indian
rocket PSLV-C21.) high-resolution geometric (HRG; 6 m X 6 m resolution) images acquired on
9 June, 9 July, 8 August and 3 September, 2016, were obtained (Table 2). ENVI 5.1 was used to
perform radiometric calibration, atmospheric correction, and orthorectification, and ArcGIS 10.2
was used to clip the study area and calculate the NDVI [24]. Previous studies have shown that the
PDI, which uses soil line, can effectively measure the characteristics of soil moisture in the surface
layer [25]. Therefore, the Sentinel-2A image on 6 May 2016, was selected. Sentinel-2A provides
L1C (LIC represents Level-1C, it is the Sentinel-2 product types. High-level description is the top
of atmosphere reflectances in cartographic geometry.) atmospheric top-reflectance data processed
by geometric correction, and only additional atmospheric correction is required. The atmospheric
correction of the images was performed with SNAP software provided by the European Space Agency
(ESA; atmospheric correction expands the reflectivity data set by 10,000 times). Bare soil images were
used to obtain pure bare soil pixels, and the near-red and red bands were used to calculate the soil line.
The corresponding expression is [25]:

Rnir =Mx Rred +1, (1)

where R,;, is near-red band reflectance; R, is red band reflectance; M is the soil line slope; and I is the
slope of a soil line at the ordinate.
The expression for calculating the PDI based on the soil line is as follows [25]:

1
PDI = W(Rm‘d + M X Ryir), 2)
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Table 2. Topography and Remote Sensing Data Acquisition and Processing.

Source Name Implication References

SRTM SRTM_LOW SRTM processed by low-pass filter [12,21]

Downhill direction in which the value of a pixel changes

Aspect most in the direction of its adjacent pixels. [7,26]

UAV DEM Slope The maximum rate ﬁ;gg;%i :: ;?fe?irection of a pixel to [26,27]
Slope position Reflect the geomorphological position of the slope [22,23]

PSR Reflect the sunshine on the whole surface of the study area [28,29]

ZY3 DEM - DEM based on Optical Stereo Image extraction [30,31]
SPOT-6 NDVI Reflect crop growth and nutritional information [32,33]
PDI Reflect the moisture content of the soil [25,34]

Notes: SRTM represents the Shuttle Radar Topography Mission. DEM represents digital elevation model;
ZY3 represents Optical Stereo Image. SRTM_LOW represents DEM after SRTM has been processed by low-pass
filtering; aspect, slope and slope position were extracted from UAV DEM respectively; PSR, NDVI and PDI represent
potential solar radiation, normalized vegetation index and perpendicular drought index, respectively.

2.4. Methodology

The study area was divided into three subareas for the experiments, and site 1 (an undulating
region with erosion gullies; 2551 pixels) was used to train the improved SRTM model. Site 2 (1965 pixels)
without erosion gullies and site 3 (3123 pixels) with erosion gullies were used as validation sites to
assess the applicability of the improved SRTM method. Then, 13 variables related to the NDVI, PDI,
PSR and SRTM in June, July, August and September were used as the input variables of the SLR model
and BPNN model. In May 2016, field measurements were performed in the study area; an iRTK2
Global Positioning System (GPS) station with a positioning accuracy of a few centimetres was used.
Precise coordinates and elevations were obtained to determine the accuracy of the UAV DEM. The UAV
DEM and SRTM DEM were used as the reference DEM and input variable, respectively. In addition,
the assessment of the resulting DEM included comparisons with the DEMs produced by a simple
denoising method (SRTM_LOW) and commercially available optical stereo-images (ZY3 DEM).

2.4.1. Stepwise Linear Regression (SLR) Model

An SLR model was used to construct the relationship between input variables and the
high-precision DEM. The SRTM data, NDVI, PSR and PDI in June, July, August and September
were used as input variables in the SLR model. Variables that caused multicollinearity were filtered
and removed. The SLR model can be expressed as follows [35,36]:

Z(x) :ﬁo+ZﬁiXPi+é‘, @3)
i-1

There is a constant term in the formula, and f is the regression coefficient, p; is the independent
variable and ¢ is the residual. The SLR model was implemented in SPSS statistics 22.

2.4.2. Back Propagation Neural Network (BPNN) Model

A BPNN is a multilayer feed-forward neural network composed of an input layer, a hidden
layer and an output layer. It is a training algorithm that includes two processes. The first one is to
feed forward the values to generate output. The second one is to calculate the error between the
output and the target output, then back propagate this error to the lower layers, to update both weight
matrices and bias vectors. The BPNN algorithm has high self-learning potential and wide applicability,
thus, it is an effective method for solving nonlinear problems [14,37]. When establishing the BPNN
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prediction model, trainlm was selected as the training function, and sigmoid and purelin were selected
as the transfer functions of the hidden layer and output layer, respectively; after many training steps,
the numbers of nodes in the hidden layer and output layer were set as 1 and 1, respectively.

2.5. Assessment

According to the improved method, the spatial model similarity between the high-precision
DEM and the reference DEM was evaluated based on the root mean square error (RMSE),
correlation coefficient (R?) and bias [12]. As shown in Formulas (4)—(6), in addition to the comparison
with the reference digital elevation model (UAV DEM), the high-precision DEM was also compared
with SRTM_LOW and ZY-3 DEM.

RMSE = \/ ?—1(1{111' - EDi)z’ @
o ", (ED; —ED) x (RD; - RD) , o
\/ Z?:l(EDi - E)Z X Z?Zl(RD,- - @)2
. Y. ED;
Bias = ﬁ, ©)

where ED; is the evaluated DEM elevation at pixel i, RD; is the reference DEM elevation at pixel i,
and  is the total number of pixels.

3. Results

3.1. The Relationship between Topography and NDVI, PSR and PDI

The three-dimensional (3D) spatial distributions of topographic factors and the NDVI, PSR and
PDI in June, July, August and September are shown in Figures 3 and 4. Aspect was closely related to
PSR because according to Figures 3b, 2a and 4e-h, the potential solar radiation in the north, northwest
and northeast directions was lower than that in the south, southwest and southeast slopes in June,
July, August and September. In addition, from July to September, the spatial differences in the PDI
in areas with large topography fluctuations and high slopes are significant, and the soil moisture
in these areas is generally higher than that in flat areas. Table 3 presents the correlation analysis
results for the topography and input variables. The correlation coefficient between the NDVI and
topography in June was only —0.023. There was no significant difference in the NDVI for different
topographic features in June, mainly because soybean crops were in the early stage of emergence and
jointing. Moreover, the study area was a black soil area, the soil was fertile, and the rainfall total was
sufficient. The growth of crops mainly depends on the natural fertility of the soil, so the topography
had little effect on the growth of crops in June. In July, soybean began to enter the flowering stage,
the NDVI at different positions varied, and the growth difference gradually increased. As shown in
Figures 3 and 4e-h, although the spatial pattern of solar radiation from June to September was similar,
the NDVI remained heterogeneous. Therefore, the PSR was not the main factor that caused the low
NDVI. Notably, this trend was caused by topography and the soil erosion in cultivated land areas
(Figure 1) [38,39] (e.g., there is an obvious erosion gully at longitude 123.916 and latitude 47.22 in
Figure 3). The correlation between the PDI and soil moisture was negative, and the PDI was low at
that area, indicating that the soil moisture was high. The groundwater in the area near the erosion
gully underwent seepage, and water collected at the bottom of the erosion gully, resulting in excessive
soil moisture in the erosion gully. In addition, erosion by water at the surface greatly reduced the
organic matter and microbial contents of the soil, which limited the development of the biological
components and internal structure of soybean. Therefore, the soybean grew slowly, and the NDVIin
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the plant canopy was low (Figure 4b). In addition, the NDVI in July was negatively correlated with
topography (—0.327, p < 0.01), which further indicated that the effect of topography on surface moisture
inhibits crop growth. However, when soybeans entered the scab stage in August, a large amount of
moisture was needed. At this time, there was a positive correlation between the NDVI and topography
(0.162, p < 0.01). This result indicated that the effect of topography on surface moisture in August
promoted crop growth. Although the coefficient of variation (CV) of the NDVI in August (0.017) was
less than that for the NDVI in July (0.024), the crop growth was relatively uniform, and waterlogging
was still observed in erosion gullies with large slopes and topographic fluctuations. When soybean
was in the full ripening stage (September), the crop components still contained a large amount of
chlorophyll, and the contents of lutein and anthocyanin were low. At this time, the spectral response
pattern of crops was similar to that in the peak growth period; thus, the NDVI was relatively high.
These results demonstrated that the NDVI was closely related to topography and affected by surface
matter during the crop growth period. Therefore, the spatiotemporal relationship between crops and
topography was used to improve the SRTM DEM.
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Figure 3. Spatial distribution characteristics of topographic factors ((a): slope; (b): aspect; (c):
relief degree of the land surface (RDLS)).
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Figure 4. Normalized differential vegetation index (NDVI), potential solar radiation (PSR) and
perpendicular drought index (PDI) spatial distributions from June to September ((a—d) represent the
June, July, August, and September NDVIs; (e-h) represent the June, July, August, and September PSRs;
(i-k), and (1) represent the June, July, August, and September PDISs, respectively).

Figure 5 reflected the interaction between PSR and the PDI for different topographic characteristics
in June, July, August and September. PSR and the PDI increased initially and then decreased from
June to September. Figure 6 shows the rainfall and temperature data from June to September, and
the trends are consistent with the phenological characteristics in Northeast China. From June to
September, the distribution of PSR was uniform, and the difference in incident illuminance was low
among different topographies, but the CV of soil moisture was significantly different at different slope
positions (Table 4); this finding suggested that topography was an important factor that influenced the
PDLI. In Table 4, there was no significant difference in NDVI CV among different slope positions in June,
and the crop growth was uniform. However, the CV of NDVI between different slope positions in
July was greater than that of NDVI between different slope positions in June. The CV of NDVI on
the shady slope was the largest, and there were obvious spatial differences in crop growth. When the
crop entered the scab stage in August, the CV of NDVI was the smallest and the growth was the best.
In September the crop matured gradually, and the CV of NDVI among different slope positions was
significantly higher than that in August. However, crops on shady slopes grow poorly in July and
August, which delayed the growth period of crops. Therefore, the CV of NDVI in shady slopes was
the smallest in September. To sum up, topography is also an important factor affecting crop growth.
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Table 3. Correlation coefficient between topography and variables from June to September.
UAV DEM DNVIe DNVI7 DNVI8 DNVI9 PSRé6 PSR7 PSR8 PSR9 PDI6 PDI7 PDI8 PDI9 SRTM
UAV DEM 1
DNVIg -0.023 1
DNVI; —0.327 ** 0.143 ** 1
DNVIg 0.162 ** 0.157 ** 0.903 ** 1
DNVIy —0.498 ** 0.142 ** 0.270 ** 0.460 ** 1
PSR¢ 0.228 ** 0.368 ** -0.024 —-0.231 ** —-0.311 ** 1
PSRy 0.263 ** 0.393 ** 0.008 —0204 ** —0.317 ** 1.000 ** 1
PSRg 0.245 ** 0.384 ** -0.008 —-0.218 ** —0.314 ** 0.999 ** 1.000 ** 1
PSRy 0.228 ** 0.385 ** —0.024 —0.231 ** —0.311 ** 1.000 ** 0.999 ** 1.000 ** 1
PDI¢ 0.229 ** 0.353*  —0.274** —0.488 ** —0.471 ** 0.873 ** 0.866 ** 0.870 ** 0.873 ** 1
PDI, 0.275 ** 0.143 ** 0.974 ** 0.903 ** 0.352 ** —0.062 ** -0.032 —0.047 * —0.062 ** —-0.318 ** 1
PDIg 0.194 ** 0.340 ** 0.908 ** 0.937 ** 0.402 ** 0.033 0.059 ** 0.046 * 0.033 —0.255 ** 0.913 *** 1
PDIy —0.427 ** 0.161 ** 0.357 ** 0.506 ** 0.874 ** —-0.270 ** —0.273 ** —0.272 ** —-0.270 ** —0.420 ** 0.338 ** 0.446 ** 1
SRTM 0.923 ** -0.007 0.280 ** 0.106 ** —0.533 ** 0.332 ** 0.362 ** 0.346 ** 0.332 ** 0.310 ** 0.229 ** 0.167 ** —0.452 ** 1

Notes: * is significant at the 0.05 level; **’ is significant at the 0.01 level. (UAV DEM: DEM based on Unmanned Aerial Vehicle. NDVIs, NDVI;, NDVIg and NDVIy represent the normalized
differential vegetation index in June, July, August, and September, respectively; PSR6, PSR7, PSR8 and PSR represent the potential solar radiation in June, July, August, and September,
respectively; PDIg, PDI;, PDIg and PDIy represent the perpendicular drought index in June, July, August, and September, respectively; SRTM: the Shuttle Radar Topography Mission.)
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Figure 6. Daily average temperature and rainfall in the study area. ((a-d) represent the rainfall and

temperature in June, July, August and September, respectively.)

Table 4. Statistical table of coefficient of variation (CV) of normalized differential vegetation index
(NDVI), perpendicular drought index (PDI) and potential solar radiation (PSR).

Ccv June July August September
channel 0.083 0.037 0.032 0.154
shady 0.057 0.018 0.009 0.161
NDVI ridge 0.040 0.106 0.006 0.059
sunny 0.050 0.023 0.016 0.119
a 0.058 0.024 0.017 0.189
channel 0.152 0.069 0.064 0.065
shady 0.065 0.047 0.029 0.061
PDI ridge 0.034 0.026 0.018 0.036
sunny 0.056 0.057 0.042 0.058
a 0.094 0.054 0.041 0.066
channel 0.017 0.008 0.011 0.018
shady 0.008 0.004 0.005 0.008
PSR ridge 0.009 0.004 0.006 0.010
sunny 0.006 0.002 0.004 0.006
a 0.018 0.008 0.012 0.018

3.2. Improving SRTM Data with the SLR and BPNN Models

The SRTM data and PSR in June and July and the NDVI in June, July and September were
used as variables in the SLR model. Table 2 shows the detailed parameters of the SLR model.
The unstandardized coefficient indicated that the inclusion of auxiliary variables improved the SRTM
data. The correlation coefficients of the NDVI in June, July and September were —17.674, 3.532 and
2.610, respectively (Table 5), thus suggesting that the NDVI is an important variable for improving the
SRTM DEM,; conversely, the correlations between the SRTM data and PSR in June and July were low.
This finding indicated that the influence of topography on the NDVI varies from June to September.
Moreover, the significance of all independent variables used in the calculation was less than 0.01
(Table 3). This result was statistically verified.
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Table 5. Stepwise multivariate regression model analysis.

Unstandardized Coefficients Normalized Coefficient t Significance
Beta Standard Deviation Beta
Constant  —414.784
SRTM 0.715 0.008 0.814 94.425 0
PSR¢ —-0.136 0.007 -3.965 —-19.765 0
PSRy 0.182 0.010 3.760 18.641 0
NDVIg -17.674 1.228 -0.113 —14.398 0
NDVI, -3.532 0.251 -0.103 -14.079 0
NDVIy -2.610 0.847 -0.022 -3.081 0.01

In the BPNN method, after repeated training, it was determined that the best number of nodes in
the hidden layer was 1. The R? value of the BPNN model was higher than that of the SLR model in
Table 6. In addition, the accuracy of the two models was higher than that of ZY3 DEM and SRTM_LOW
at both the modelling site and the validation site, thus improving the accuracy of the SRTM data.
This finding indicates that the selection of input variables is objective and accurate.

Table 6. Accuracy evaluation of different models at the training site.

Training Site
Model Type R?; RMSE; Bias;

SLR 091 1.00 0.98
BPNN 0.98 0.54 1.00

Notes: R;2: coefficient of determination at training site 1; RMSE;: root mean square error at training site 1;
RMSE;: root mean square error at training site 1.

3.3. Test Site Evaluation

As shown in Table 6, the R? and RMSE of the BPNN method were 0.980 and 0.54 m, respectively,
and the R? and RMSE of the SLR method were 0.918 and 1.00 m, respectively. The results demonstrated
that the model accuracy after BPNN training was higher than that based on the SLR model;
thus, the BPNN model was used to improve the SRTM data at sites 2 and 3. Figure 7 shows the spatial
distribution of different DEMs at site 2, including the generated high-precision DEM, UAV DEM,
SRTM DEM, SRTM_LOW and ZY3 DEM. As assessed based on the spatial pattern, the generated
high-precision DEM was consistent with the UAV DEM and yielded a significant improvement over the
original SRTM DEM. Table 7 indicates that the error of the improved SRTM DEM using both linear and
nonlinear models was significantly lower than that of the original SRTM DEM, SRTM_LOW and ZY3
DEM. The RMSE of the improved SRTM decreased significantly from 15.25 for the original SRTM DEM
to 0.94 m, thus accounting for approximately 93% of the improvement at site b. Moreover, the RMSE
and bias were better than those for SRTM_LOW (RMSE of 15.25 m and bias of 0.93) and ZY3 DEM
(RMSE of 5.01 m and bias of 0.97).
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Figure 7. Comparisons of DEMs at site 2: (a) unmanned aerial vehicle digital elevation model
(UAV DEM); (b) Shuttle Radar Topography Mission digital elevation model (SRTM DEM); (c¢) SRTM
low-pass filter (SRTM_Low); (d) Improved SRTM and (e) optical stereo-images (ZY3 DEM).

Table 7. Accuracy evaluation of different digital elevation models (DEMs) at testing sites.

Accuracy Verification of 2 Accuracy Verification of 3

Model Type
R2, RMSE, Bias, R2?3 RMSE;  Bias
SLR 0.90 2.68 095 090 2.59 0.98
BPNN 0.94 0.94 1.01 0920 1.23 1.01
SRTM 0.86 15.25 093 085 14.95 0.93
SRTM_LOW  0.87 15.25 093 085 14.95 0.93
ZY3 DEM 0.88 5.01 097  0.88 3.41 0.98

Notes: R?,: coefficient of determination at testing site 2; RMSE,: root mean square error at testing site 2;
RMSE;: root mean square error at testing site 2 and R2;: coefficient of determination at testing site 3; RMSEj3:
root mean square error at testing site 3; RMSE3: root mean square error at testing site 3.

Figure 8 shows the spatial distribution of different DEMs at site 3, including the generated
high-precision DEM, UAV DEM, SRTM DEM, SRTM_LOW and ZY3 DEM. Both the high-precision
DEM generated and the reference UAV DEM showed the specific location of the erosion gully.
Therefore, the generated high-precision DEM was most consistent with the UAV DEM and yielded
a significant improvement over the original SRTM DEM. Moreover, the RMSE of the high-precision
DEM decreased significantly from 14.95 for the original SRTM DEM to 1.23 m, thus resulting in an
approximately 91% improvement at site ¢; additionally, the RMSE and bias were better than those for
SRTM_LOW (RMSE: 14.95 m and bias: 0.93) and ZY3_DEM (RMSE: 3.41 mand bias: 0.98). The accuracy
of the generated DEM in both the non-erosion gully undulating region 2 and erosion gully undulating
region 3 further validated the applicability of the method.
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Figure 8. Comparisons of DEMs at site 3: (a) UAV DEM; (b) SRTM DEM; (c) SRTM_Low Pass Filter;
(d) Improved SRTM and (e) ZY3_DEM.

4. Discussion

4.1. Comparison of SLR and BPNN Model Performance in Improving the SRTM DEM

In this study, the NDVI in June, July, August and September and the variables that influence
crop growth were used to improve the SRTM DEM in the study area via the linear SLR and nonlinear
BPNN methods. Notably, the relationships among topography, crops and the factors that influence
crop growth were assessed. The BPNN displayed the optimal ability to improve the SRTM data
by providing sufficient useful information. Similar conclusions were reported by Wendi et al. [12],
who improved SRTM data using data mining techniques and found that an MLP neural network was
the best method of improvement. In contrast, the SLR model performed slightly worse than the others
because it was based on traditional linear regression. Kulp et al. [9] demonstrated that the performance
of a BPNN model was better than that of an SLR model, potentially because the DEM was affected by
multifactor synthesis and was not as effective as the neural network in solving nonlinear problems.

The performance of the SLR model was slightly lower than that of the BPNN. This finding
is associated with the collinearity among the predictors. Although the input variables can reflect
the environmental characteristics that influence crop growth from different perspectives in this
study, based on the relatively fixed spectral characteristics and response mechanism of soybean,
the extracted vegetation feature information will inevitably have a certain degree of collinearity.
Moreover, in the complex field environment, crop growth is determined by the interactions among
various soil-influencing factors. Therefore, it is inevitable that there will be multicollinearity among
the environmental factors that affect plant growth. In the SLR model, the collinearity problem was
assessed through multicollinearity diagnosis and the variance inflation factor (VIF), as shown in Table 8.
In principle, VIF > 10 indicates a collinearity problem [40]. The VIFs of PSR4 (VIF: 1098.460) and
PSRy (VIF: 1110.645) were higher than 10, indicating that the SLR model had a collinearity problem.
Thus, the stability of the SLR model was poor.
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Table 8. Variance inflation factors (VIFs) for the stepwise linear regression (SLR) model.

SRTM PSR¢ PSRy NDVIs NDVIy NDVI;
Tolerance  48.3% 0.1% 0.1% 59.8% 69.1% 69.3%
VIF 2.070 1098.460  1110.645 1.672 1.448 1.443

4.2. Exploring the Relationship between Topography and the Crop Growth Mechanism

This study included two main findings. According to the relations among topography, crops,
and the corresponding environmental factors, the feasibility of using different variables as inputs to
improve the SRTM DEM was discussed. The applicability of this method was assessed via validation
studies at sites 2 and 3, and a fast method of obtaining a high-precision DEM was provided for plain
undulating regions.

At present, scholars have extensively studied the relationship between topography
and solar radiation, topography and NDVI, and topography and soil moisture [28,41-43].
However, the comprehensive effects of these factors have not been fully explained. Thus, this paper
mainly explored the comprehensive relationship among of these factors. As shown in Figure 4a—d,
even in plain areas, there are still significant differences in crop growth within cultivated land zones.
To explore the relationship between topography and crop growth in detail, according to the description
in Section 2.2.3, training site a (UAV DEM) was divided into four regions: channel, shady, ridge and
sunny regions. The CV of the NDVI reflected the uniformity of growth. In the process of crop ripening,
whether in the whole training area or at different slope positions, the spatial CV of the NDVI displayed
the following order: September (0.198) > June (0.058) > July (0.024) > August (0.017). The discreteness of
the spatial distribution of PSR and the PDI at different slope positions (Figure 5) was associated with the
increase in the NDVI CV in September. At different slope positions, the spatial evolution of the PDI and
PSR from aggregation to discretization influenced the spatial distribution characteristics of the NDVL
Crop growth gradually transitioned from uniform to heterogeneous. Moreover, the PDI and PSR at the
bottoms of slopes were larger than those at other slope positions, the CV of the NDVI at the bottoms of
slopes was the largest, and crop growth was heterogeneous at different slope positions; these trends
reflected the relation between topography and the PDI, PSR and NDVI. When the vegetation cover
type was the same, the temporal and spatial variations in the NDVI were affected by two dominant
factors: moisture and heat [16]. Additionally, topography was the key factor that influenced many
environmental variables (e.g., moisture, temperature, and solar radiation) [17]. Therefore, the NDVI,
PDI and PSR in June, July, August and September were introduced to improve the SRTM DEM, and the
results displayed satisfactory accuracy at validation sites 2 and 3.

4.3. The Significance and Limitations of Research

In this study, according to the relationship between topography and crops, the NDVI and auxiliary
data (PSR and PDI) were selected as inputs to improve the SRTM data. The results of this study
were obtained in a temperate continental climate and a hilly black soil region, and they provide a
reference for obtaining high-precision DEMs in similar climate areas. If we want to expand the area
of the improved SRTM DEM, we can train high-precision DEMs in a small area and use the SRTM
DEM for inversion to obtain regional-scale, high-precision DEM products. However, it must be noted
that this methodology would require a reference DEM with similar land cover characteristics and a
climatic area in which crops are planted once a year. Such land cover characteristics can be visibly
identified using Google Earth imagery. Although the proposed method has certain practical value
in filling the gaps in DEM data, it can still be improved. First, the environmental variables extracted
from high-quality remote sensing images may produce better accuracy than the considered variables.
Second, the relationship between topography and the surface material cycle can be further explored in
the future, including the relation between soil nutrients and topography. Third, we comprehensively
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combined the time series characteristics of multiple important variables to improve SRTM data and
increase the general applicability of the proposed model.

5. Conclusions

This study presented a new method for improving the accuracy of SRTM DEMs in cultivated land
areas. According to the relationship between topography and crop growth in cultivated land areas,
input variables were selected as auxiliary factors to improve SRTM data, and linear SLR and nonlinear
BPNN models were used for training. The trained models were validated at sites 2 and 3 to validate
the applicability of the method. Finally, the improved SRTM DEM was compared with the ZY-3 DEM
and high-precision UAV DEM.

(1) The results show that topography affects the redistribution of surface matter (solar radiation,
temperature, and soil moisture) and the growth of crops in cultivated land areas. The introduction
of the PDI, PSR and NDVI in the growing period can improve the accuracy of SRTM data.

(2) The result of nonlinear fitting was better than that of linear fitting, and a BPNN was the best
method for improving the accuracy of SRTM data. At validation sites 2 and 3, the R?; of the
BPNN was 0.940, R?3 was 0.920, RMSE, was 0.94 m, and RMSE3 was 1.23 m. The accuracy at the
two sites was improved by 93% and 91% compared with that obtained with the original SRTM
DEM,, respectively, and the spatial resolution was reduced to 1/5 times that of the original SRTM.

(3) At validation sites 2 and 3, the accuracy of the DEM obtained by the proposed method was higher
than that of the ZY-3 DEM and SRTM_LOW. This finding reflects the characteristics of erosion
gullies in the study area. The spatial pattern of the DEM obtained by the proposed method was
similar to that of the UAV DEM, which was close to the real surface pattern. Thus, the proposed
method is suitable for areas with erosion gullies and undulations in plains.

Finally, this study provided an effective example for obtaining high-precision DEMs in cultivated
land areas. The NDVI, PSR and PDI sequences exhibited excellent potential for improving SRTM
data during the crop growth period. The proposed method improved the spatial resolution and
vertical accuracy of SRTM data, enhanced the application value of SRTM DEMs and increased
the overall understanding of the spatial characteristics of DEMs. This approach can be used to
optimize the intelligent control of agricultural areas of production, such as by managing fertilizer and
chemical treatments.
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