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Abstract: Vegetation products based on microwave remote sensing observations, such as Vegetation
Optical Depth (VOD), are increasingly used in a variety of applications. One disadvantage is
the often coarse spatial resolution of tens of kilometers of products retrieved from microwave
observations from spaceborne radiometers and scatterometers. This can potentially be overcome by
using new high-resolution Synthetic Aperture Radar (SAR) observations from Sentinel-1. However,
the sensitivity of Sentinel-1 backscatter to vegetation dynamics, or its use in radiative transfer
models, such as the water cloud model, has only been tested at field to regional scale. In this
study, we compared the cross-polarization ratio (CR) to vegetation dynamics as observed in
microwave-based Vegetation Optical Depth from coarse-scale satellites over Europe. CR was obtained
from Sentinel-1 VH and VV backscatter observations at 500 m sampling and resampled to the
spatial resolution of VOD from the Advanced SCATterometer (ASCAT) on-board the Metop satellite
series. Spatial patterns between median CR and ASCAT VOD correspond to each other and to
vegetation patterns over Europe. Analysis of temporal correlation between CR and ASCAT VOD
shows that high Pearson correlation coefficients (Rp) are found over croplands and grasslands (median
Rp > 0.75). Over deciduous broadleaf forests, negative correlations are found. This is attributed
to the effect of structural changes in the vegetation canopy which affect CR and ASCAT VOD in
different ways. Additional analysis comparing CR to passive microwave-based VOD shows similar
effects in deciduous broadleaf forests and high correlations over crop- and grasslands. Though
the relationship between CR and VOD over deciduous forests is unclear, results suggest that CR
is useful for monitoring vegetation dynamics over crop- and grassland and a potential path to
high-resolution VOD.

Keywords: Sentinel-1; ASCAT; vegetation dynamics; Vegetation Optical Depth

1. Introduction

High-resolution monitoring of vegetation is of increasing importance for many research fields
and applications. With the increasing demand on food supply, increasing global temperatures and
changing precipitation patterns [1], timely and reliable information on crop status and productivity
is pivotal to improve land management practices and mitigate risk. In addition, forest disturbances,
such as fires, wind throws, and insect outbreaks, are sensitive to climate change and are expected
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to increase [2]. Since the processes responsible for these effects can occur at local to regional scale,
high-resolution data sets are needed for monitoring of vegetation.

Microwave remote sensing provides complementary information on vegetation to well known
visible, near infrared and short-wave infrared (VNIR) products, such as Normalized Difference
Vegetation Index (NDVI) and Leaf Area Index (LAI), and has the advantage that it is unhindered by
dust, clouds and smoke. The most widely used vegetation variable based on microwave data is the
Vegetation Optical Depth, which describes the attenuation of microwaves by vegetation and is sensitive
to water content in the above ground biomass including the woody component of vegetation [3,4].
Global VOD datasets are available from coarse-scale active and passive microwave observations [5–9].
One recent VOD dataset from passive microwave observations is the long-term Vegetation Optical
Depth Climate Archive (VODCA) dataset [7], which combines VOD retrievals using the Land
Parameter Retrieval Model from different sensors. This dataset was validated with MODIS Leaf
Area Index (LAI) and Vegetation Continuous Fields, showing similar spatial distributions, temporal
dynamics and trends. From active microwave observations Vreugdenhil et al. [6] retrieved VOD from
the Advanced SCATterometer (ASCAT) onboard the Metop satellites. The temporal variability in
the ASCAT VOD stems from the variability in the slope and curvature of the backscatter—incidence
angle relationship, which is sensitive to vegetation dynamics: an increase in vegetation increases the
slope. The ASCAT VOD corresponded to VOD from passive microwave observations, both in spatial
distribution as in temporal dynamics. Furthermore, over Australia ASCAT VOD corresponded to
MODIS LAI [10].

VOD datasets have been successfully used to study vegetation dynamics, such as trends and
inter-annual variability, and have been related to biomass and Gross Primary Production [10–12].
However, the coarse resolution of spaceborne passive microwave radiometers and active microwave
scatterometers, and the existing VOD datasets retrieved from their observations has often been a
limiting factor, since it does not allow to study local processes and differences between land cover types
as the signal is integrated over a large region often covering multiple land cover types. High-resolution
VOD products, retrieved from active microwave Synthetic Aperture Radar observations, enable
monitoring of vegetation at the local scale and could improve our understanding of vegetation
dynamics per land cover type. Furthermore, VOD is an important parameter in many soil moisture
retrieval algorithms [5,8,13] and high-resolution VOD could improve soil moisture retrievals.

With the Copernicus Sentinel-1 series, high temporal and fine spatial resolution co- and
cross-polarized backscatter time series have become available from the C-Band Synthetic Aperture
Radar (CSAR). This provides the opportunity to monitor Earth’s ecosystems at unprecedented
resolution. Several studies have already demonstrated the sensitivity of co- and cross-polarized
backscatter to vegetation using different high-resolution SAR systems. High correlations have been
found between the cross ratio of VH/VV backscatter (CR), in situ and remotely sensed NDVI over
croplands using either Spaceborne Imaging Radar-C (SIR-C), Envisat ASAR or Sentinel-1 CSAR [14–18].
Veloso et al. [15] found a correspondence between the temporal trajectories of CR and NDVI for major
crop types in a test region in the southwest of France. Vreugdenhil et al. [16] quantified the sensitivity
of Sentinel-1 CR to biomass and vegetation water content using in situ samples from four major crop
types in a small agricultural catchment in Austria. In this study, a strong correlation was found between
vegetation water content and CR for corn and winter wheat. Khabbazan et al. [17] obtained similar
results over a larger test region in the Netherlands, where CR was found to be sensitive to changes in
water content and biomass of crops. These studies also found a sensitivity of CR to structural changes
in the vegetation. El Hajj et al. [18] have retrieved VOD from Sentinel-1 VV and VH backscatter
observations over non-irrigated agricultural fields in a test area of 50 × 50 km in Catalonia, Spain
using a Water Cloud Model. Medium to good correlation coefficients between Sentinel-1 VOD and
NDVI from Sentinel-2 were found over different crop types.

These studies show the potential of Sentinel-1 for crop monitoring and the sensitivity of CR to
vegetation dynamics; however, results are limited to specific test sites. Furthermore, if the goal is
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obtaining high-resolution VOD, the retrieval approaches often require ancillary information bare soil
backscatter, crop type or field delineations. Hence, these methods are currently not yet applicable on a
continental to global scale. In addition, the method proposed by Vreugdenhil et al. [6] to obtain VOD
from Metop ASCAT backscatter observations is not applicable to Sentinel-1 observations as it needs
backscatter observations under a large range of incidence angles to obtain a robust slope estimate. One
study has compared HV cross-polarized backscatter coefficients from the Aquarius radar on-board the
Satélite de Applicaciones Científicas (SAC)-D satellite to VOD retrieved from the Microwave Imaging
Radiometer Aperture Synthesis on-board the European Space Agency’s Soil Moisture Ocean Salinity
(SMOS) satellite on a global scale, at 1◦ spatial resolution, Rötzer et al. [19] with the goal to obtain VOD
from backscatter observations. In their study, a global linear relation between HV backscatter and
VOD was found. Furthermore, the slope in the relation between HV and VOD did not vary between
different vegetation types.

Although the different studies have demonstrated the potential of (high-resolution)
cross-polarized backscatter and CR for vegetation monitoring, large scale quantitative assessments
of the sensitivity of Sentinel-1 CR to vegetation dynamics are still missing. Hence, the objective
of this study is to quantify the relation between Sentinel-1 CR and VOD over Europe and explore
the sensitivity of CR to vegetation dynamics as observed in VOD and investigate a possible route
to high-resolution VOD from CR. For this purpose, we use VOD retrieved from active microwave
observations at C-band from Metop ASCAT, as this is a similar wavelength and measurement concept
as for Sentinel-1 CSAR. This ensures that the compared products have a similar penetration depth,
i.e., are sensitive to the same part of the vegetation. Furthermore, by using active microwave remote
sensing products we assume that any effects of vegetation structure will occur in both products. First,
we explore the theoretical basis for synergies between CR and ASCAT VOD based on the physical
background of active microwave observations and scattering mechanisms. Second, we quantify
the relation between CR and VOD temporally and spatially using correlation analysis and linear
regression per land cover type. We also compare Sentinel-1 CR to C-Band VODCA dataset from
passive microwave observations [7] to further assess the sensitivity of CR to vegetation dynamics
and explore the potential of high-resolution VOD by combining active and passive microwave
observations. This study advances from previous research as it provides the first large scale comparison
of high-resolution Sentinel-1 backscatter to VOD and is of great relevance to obtain high-resolution
VOD estimates from Sentinel-1 CSAR observations at regional to continental scale.

2. Physical Background of Active Microwave Remote Sensing

In active microwave remote sensing of natural land surfaces, scattering can originate from the
soil, the vegetation or an interaction between the two. In general, different scattering mechanisms
contribute to the backscattering signal; surface scattering, volume scattering and interaction scattering.
In all scattering mechanisms the dielectric properties of the medium play an important role in the
amount of energy scattered to the sensor, where an increase in dielectric constant generally increases
backscatter. The most important dynamic driver for dielectric constant in soil and vegetation is the
moisture content, and hence backscatter generally increases with increasing moisture content.

Scattering from a soil surface is also affected by the roughness of the surface. Scattering from
a perfectly smooth surface consists of only specular reflected scattering, where energy is scattered
away from the sensor, in a forward direction at the mirrored incident angle. However, soils are usually
not perfectly smooth and scattering is a combination of specular and diffuse scattering, where most
energy is reflected in the specular direction but some is reflected back to the sensor through diffuse
scattering (Figure 1b). Here, the amount of backscatter decreases with increasing incidence angle
(Figure 1a), i.e., the slope of the backscatter-incidence angle relationship is steep. A perfectly rough
soil surface will lead to diffuse (lambert) scattering only, which is independent of incidence angle and
scatters uniformly in all directions. If the roughness of soils does not change, changes in backscatter
are assumed to be linearly related to changes in soil moisture.
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Vegetation mainly causes volume scattering, in which it is assumed that dielectric inhomogeneities
are randomly distributed within the volume, such as a vegetation canopy. The amount of backscattered
energy is proportional to the number of dielectric inhomogeneities within the volume. Hence,
volume scattering increases with increasing water content in the vegetation. Energy is scattered
in all directions equally, as can be seen for VV backscatter in Figure 1c. As a perfect volume scatterer
scatters incoming radar pulses in all directions, backscatter does not change with incidence angle,
i.e., the slope of the backscatter-incidence angle relationship is flat (Figure 1d). Interaction scattering
occurs when microwaves interact with both soil and vegetation and can be a combination of surface
and volume scattering.

Moreover, volume scattering also leads to depolarization effects, where multiple scattering can
cause a change in polarization. This is illustrated in Figure 1c, where the return of the H-polarized
backscatter is stronger in vegetation than for bare soils (Figure 1b). Hence, a cross-polarized receiving
antenna, such as CSAR on-board the Sentinel-1 satellites, may receive less energy from smooth bare
soils than from vegetated surfaces. And the received energy for a cross-polarized receiving antenna
will increase with increasing vegetation density. Scattering from smooth to medium rough surfaces
on the other hand, does not lead to depolarization and more energy is received by a co-polarized
receiving antenna (Figure 1b). A combination of co- and cross-polarized backscatter, such as the CR of
VH and VV backscatter, will be more sensitive to vegetation changes as the ratio is less sensitive to
changes in soil moisture and soil-vegetation interaction [15].

Figure 1. Scattering mechanisms of VV and VH polarized backscatter, where (a,b) show the relation
between backscatter and incidence angle and scattering mechanisms for bare soils, and (c,d) the relation
between backscatter and incidence angle and scattering mechanisms for vegetation.

3. Data

3.1. Metop ASCAT Vegetation Optical Depth (VOD)

3.1.1. Sensor Characteristics

In this study, we use Vegetation Optical Depth (VOD) retrieved from the Advanced
SCATterometers on-board EUMETSAT’s Metop-A and Metop-B satellites [6]. ASCAT instruments are
real aperture radars providing VV polarized backscatter observations at C-band (5.255 GHz). ASCAT
has two sets of three fan-beam antennas, which observe Earth’s surface under a range of different
incidence angles; 34◦–65◦ for the fore- and aft antenna and 25◦–55◦ for the mid-antenna. The spatial
resolution of ASCAT is 25–34 km, which is resampled to a 12.5-km grid. A nearly global coverage
is achieved after 1.5–2 days, although small gaps are present at the equator. Full global coverage is
achieved after three days.

3.1.2. Algorithm Description and Processing Steps

ASCAT VOD is obtained using a retrieval algorithm that is based on the TU Wien soil moisture
retrieval algorithm as used in the EUMETSAT Satellite Application Facility on support to operational
hydrology and water management (HSAF) [20] and a water-cloud model. In the TU Wien soil
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moisture retrieval algorithm, the vegetation is parametrized using the slope and curvature of the
backscatter—incidence angle relationship. An increase in vegetation density will increase volume
scattering and will therefore lead to a less steep slope in the backscatter—incidence angle curve (as
in Figure 1d). In order to ensure a robust estimation and to obtain a large enough range of incidence
angles, the slopes and curvatures are averaged for a certain time period using a kernel smoother with
a half width window of 21 days [21,22]. Before the kernel smoother is applied, observations that are
taken during frozen soil or snow cover conditions are masked. The vegetation parameters from the TU
Wien soil moisture retrieval algorithm are combined with a water cloud model to retrieve VOD. Hence,
the temporal variations in ASCAT VOD are controlled by variations in slope and curvature. The retrieval
of ASCAT VOD is described in detail in Reference [10]. The sensitivity of ASCAT VOD to vegetation
dynamics has been validated using Leaf Area Index and passive microwave VOD in Reference [6,10].

3.2. Sentinel-1 Cross-Polarization-Ratio (CR)

3.2.1. Sensor Characteristics

The Sentinel-1 satellites carry a C-band (5.405 GHz) Synthetic Aperture Radar (CSAR) side-looking
radar instrument and provide, in their default mode over land, Ground Range Detected (GRD)
Interferometric Wide-swath (IW) backscatter observations in VV and VH polarization at a 20 m
resolution. The satellites follow a exactly repeating orbit pattern, with a revisit time of one Sentinel
satellite of 12 days. With Sentinel-1A and -1B in operation, and with a ground swath width of 250 km,
the local temporal revisit time is 1.5–4 days over Europe (all orbits active), but globally this decreases to
6–12 days due to the acquisition scheme that is limited by energy constraints (down to only 1–2 orbits).
Observations from identical observation geometry are identifiable by the so-called relative orbit
number. Within the swath, the incidence angles range from 29.1◦ to 46.0◦ over flat terrain. Locally,
the incidence angle of the actual observations depends on the relative orbit number. For this study,
VV- and VH- polarized backscatter data was available from three years (2016–2018).

3.2.2. Algorithm Description and Processing Steps

The Sentinel-1 backscatter data is geocoded, radiometrically corrected, and spatially resampled to
the Equi7Grid [23] at a 500-m sampling. This data serves also as an input to the Copernicus Global Land
Service (CGLS) soil moisture products, and the pre-processing and resampling is described in detail by
Bauer-Marschallinger et al. [24]. For this study, VH backscatter data are additionally pre-processed.
To reduce the influence of outliers carrying very high or low backscatter values (e.g., originating from
corner reflectors, shadow regions, noise), which generally do not reflect vegetation signals, a low- and
high-pass filter is applied during resampling to 500 m. This filter is set to −20 dB ≤ σ◦ ≤ −5 dB for VV
polarization (following Reference Bauer-Marschallinger et al. [24]), and, respectively, to −26 dB ≤ σ◦ ≤
−11 dB for VH polarization to ensure a good representation of vegetation signals in the resampled
data. The last step involves a difference formation (in dB domain) of the resampled VH and VV images
to finally compute CR at 500 m-sampling.

3.3. Auxiliary Data

Frozen soils and snow cover affect the microwave signal and backscatter is not representative
of vegetation when soils are frozen or if snow cover is present. As demonstrated by Lievens et
al., in Reference [25], CR is sensitive to variations in snow depth. Therefore, the Global Land Data
Assimilation System (GLDAS) v2.1 Noah soil temperature (Layer1, 0–10 cm) and snow depth [26] is
used to mask ASCAT VOD, VODCA, and CR data. GLDAS data is available at a 0.25◦ sampling every
three hours.

The results are spatially investigated using the ESA Climate Change Initiative Land Cover (ESA
CCI LC) map from 2010 (Figure 2). The ESA CCI LC map is available at 300 m spatial sampling and
resampled using the mode to grid of the Sentinel-1 data, the Equi7Grid at 500-m sampling. For this
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study, the results are discussed according to land cover type. For ease of analysis similar types of land
cover classes were merged into one class. An overview of the merging is given in Table 1. Only land
cover classes which cover more than a 100 gridpoints are used in the analysis per land cover class.
Cities, water bodies, permanent snow and ice, flooded areas are excluded as the microwave signals
more affected by buildings, snow and ice, and open water.

The VODCA dataset is a long-term VOD dataset based on passive microwave observations
from several satellites [7]. The retrieval of VOD is done with the land Parameter Retrieval Model [5].
VODCA produces separate VOD datasets from different spectral bands. VODCA is available in C-, X-,
and Ku-Band at 0.25◦ spatial sampling. For this study, we used the C-Band VODCA product from
2016–2018.

Table 1. Table of merged CCI Land Cover Classes, the original classes within one merged class and
total amount of gridpoints per class. The merged CCI Land Cover map is shown in Figure 2.

CCI Land Cover
Class

Original Climate Change Initiative (CCI) Land Cover Class No.
Gridpoints

Cropland Cropland, rainfed
Herbaceous cover
Tree or shrub cover
Cropland, irrigated or post-flooding
Mosaic cropland (>50%)\natural vegetation (tree, shrub, herbaceous cover)
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)\mosaic cropland

20,491

Tree cover BD Tree cover, broadleaved, deciduous, closed to open (>15%)
Tree cover, broadleaved, deciduous, closed (>40%)
Tree cover, broadleaved, deciduous, open (15–40%)
Tree cover, mixed leaf type (broadleaved and needleleaved)

3811

Tree cover NE Tree cover, needleleaved, evergreen, closed to open (>15%)
Tree cover, needleleaved, evergreen, closed (>40%)
Tree cover, needleleaved, evergreen, open (15–40%)

6809

Shrubland Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
Shrubland
Evergreen shrubland
Deciduous shrubland

1355

Grassland Grassland 2439

Sparse Sparse vegetation (tree, shrub, herbaceous cover) (<15%)
Sparse shrub (<15%)
Sparce herbaceous cover (<15%)

2090

Bare areas Bare areas 1287

Figure 2. ESA CCI Land Cover Map resampled to the Advanced SCATterometer (ASCAT) grid at
12.5 km using the dominant land cover type per gridcell and legend and merged for different land
cover classes as indicated in Table 1.
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4. Methods

4.1. Spatial Resampling and Orbit Normalization

To compare ASCAT VOD to Sentinel-1 CR, a resampling of Sentinel-1 CR to the spatial resolution
of ASCAT is necessary. To exclude any effect of resampling methods on the results, different resampling
methods are tested on Sentinel-1 VV backscatter as this provides a direct comparison with ASCAT
VV backscatter. Arithmetic mean, median, and geometric mean were used for resampling which
are listed in Table 2 and were applied to unmasked backscatter data in the linear domain. Applying
the geometric mean to the linear domain backscatter is mathematically the same as applying the
arithmetic mean to the backscatter in the decibel domain. Lastly, for the backscatter time series with
the best performing resampling method, the unique orbits were normalized to the time series mean.
This method is similar to as what was done by Reference Lievens et al. [25] in order to take out the
effect of the different orbit geometries. For each resampling method, including the normalized time
series, Pearson correlation (Rp), bias, and Root Mean Squared Error (RMSE) were calculated between
resampled Sentinel-1 VV backscatter and ASCAT VV backscatter. Only gridpoints were used if the
correlation between the two datasets was significant, i.e., p < 0.05, and at least 180 paired observations
were present. Based on the results, which are shortly described in Section 5.1, the CR is resampled
to the grid of ASCAT VOD and VODCA using the most suited resampling method, i.e., using the
arithmetic mean over the linear backscatter.

4.2. Temporal Matching, Masking, and Smoothing

Sentinel-1 data has the lowest temporal sampling, varying from 1.5–4 days depending on location
(see Section 3.2.1). ASCAT VOD has a temporal sampling of 1–2 days (see Section 3.1.1); hence,
ASCAT VOD is temporally matched to the closest Sentinel-1 observation. This means all analysis are
carried out on the temporal sampling of Sentinel-1. Backscatter from periods when soils are frozen or
when soils were covered with snow were masked with GLDAS Noah snow water equivalent and soil
temperature data. Here, CR was temporally matched to the closest GLDAS Noah model output. All
data is masked when soil temperature is below 2 ◦C and snow cover is more than 5 kg/m2.

Since ASCAT VOD is calculated using a kernel smoother, as described in Section 3.1.2,
the resampled CR was temporally smoothed using the same kernel smoother with the same half
width window of 21 days. The kernel smoother was also applied to the VODCA dataset to obtain the
same temporal smoothing.

4.3. Spatial and Temporal Analysis

CR and ASCAT VOD are compared to each other both spatially and temporally. ASCAT VOD is
temporally matched to Sentinel-1 CR and both datasets are masked for frozen soils and snow cover as
described in Section 3.3. Results are then masked for topographic complexity. Complex terrain can lead
to changes in backscatter which are not necessarily related to changes in vegetation. Here, the masking
is done spatially, at the grid of Metop ASCAT using GTOPO30 data. The standard deviation of the
terrain is calculated per pixel and normalized between 0% and 100% for all pixels. All areas are masked
with a value higher than 20%.

The relationship between CR and ASCAT VOD is first assessed in terms of spatial patterns
by the temporal mean for different ESA CCI LC classes. Only ESA CCI LC classes are used in
the analysis where more than a 100 gridpoints are available. These are croplands, grasslands,
shrublands, deciduous broadleaf forests, needleleaf evergeen forests, sparse vegetation, and bare
areas. The temporal correspondence between the two datasets is quantified by Pearson correlation
coefficients (Rp). Temporal correlation is only calculated when a total of 180 observation pairs was
available over the three-year period. Only significant correlations (p < 0.05) are used in the analysis.
Furthermore, for the seven land cover classes time series are visually analyzed and a representative
example for certain land cover classes is presented. In addition, the linear relation between CR and
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ASCAT VOD is quantified through regression parameters between the resampled CR and ASCAT
VOD to assess the potential to synergize CR and ASCAT VOD. To assess the regression parameters
between CR and ASCAT VOD per land cover type, only ASCAT gridpoints with a homogeneous land
cover, i.e., fraction of majority land cover is higher than 0.8, are used.

5. Results

5.1. Resampling Methods

Table 2 shows the results for the different resampling methods and the time series normalization
(Normalized in Table 2). Spatial maps of the statistical metrics of the resampling of the normalized
time series using the arithmetic mean in the linear domain are also shown in Figure 3. Comparing
the different methods, excluding the normalized time series, Rp is very similar for all methods. In the
metrics that quantify absolute deviation, i.e., bias and RMSE, the arithmetic mean resampling method
results in the lowest deviations between Sentinel-1 and ASCAT VV backscatter. Hence, the resampling
using the arithmetic mean in the linear domain is the preferred method with a bias of 0.522 dB and
RMSE of 0.769 dB. The normalization of the orbits to the time series mean leads to an additional
improvement in the temporal dependency, where the median Rp increases from 0.701 to 0.802.
Although the bias increases slightly to 0.618 dB, the RMSE decreases to 0.759 dB with the normalization.
The spatial maps (Figure 3) show that the largest absolute deviations occur over Scandinavian mountain
regions and heavily urbanized areas such as the Netherlands, Ruhr area and large cities such as France,
London, Berlin, Milan, and Madrid. Even though the urban areas are masked based on the CCI
Land Cover data, large bias and RMSE is still visible over urbanized areas, where bias and RMSE are
larger than 1.6 dB. Furthermore, upon visual inspection, no pattern in Rp, bias, and RMSE which is
related to vegetation is found. There is, however, a striping pattern in bias and RMSE. This pattern is
reflecting the Sentinel-1 orbit pattern that yields a spatially heterogeneous coverage frequency, which
is discussed in detail by Reference Bauer-Marschallinger et al. [24]. Concluding, for this study, CR is
resampled using the arithmetic mean over the linear backscatter. Subsequently, for every gridpoint,
the unique orbits are normalized to the time series mean.

Table 2. The distribution over Europe of Pearson correlation coefficient (Rp), bias, and RMSE results
for the different resampling methods which were performed using either the arithmetic mean, median
or geometric mean in the linear domain. The last column indicates the results for the unique orbit
normalized backscatter time series from the resampling using arithmetic mean in the linear domain,
which are also shown in Figure 3. Results were masked for topography and cities and gridpoints
were only included when Rp was significant, i.e., p < 0.05, and more than 180 observation pairs
were available.

Metric Quantile Arithmetic Mean Median Geometric Mean Normalized

0.05 0.391 0.380 0.387 0.634
0.25 0.602 0.600 0.601 0.746

Rp 0.50 0.701 0.700 0.700 0.802
0.75 0.773 0.772 0.772 0.844
0.95 0.852 0.853 0.851 0.895

0.05 −0.296 −0.372 −0.232 −0.193
0.25 0.189 0.157 0.245 0.283

Bias 0.50 0.522 0.555 0.579 0.618
dB 0.75 0.854 0.911 0.916 0.961

0.95 1.536 1.636 1.647 1.726

0.05 0.417 0.421 0.425 0.345
0.25 0.574 0.588 0.595 0.515

RMSE 0.50 0.769 0.810 0.805 0.759
dB 0.75 1.026 1.089 1.076 1.058

0.95 1.649 1.758 1.748 1.784
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Figure 3. Maps of Rp (a), bias (b), and Root Mean Squared Error (RMSE) (c) between normalized
and resampled Sentinel-1 VV backscatter and Metop ASCAT VV backscatter. Only gridpoints with
a significant correlation, i.e., p < 0.05, and more than 180 observation pairs are shown. Furthermore,
results were masked for topography and cities.

5.2. Spatial Analysis of CR and ASCAT VOD

Figure 4a,c, respectively, show the median CR and ASCAT VOD scaled between their respective
minimum and maximum (i.e., a range between 0 and 1, to ease the comparison) over Europe for the
period 2016–2018 at the grid of ASCAT. The data is temporally masked for frozen soils and snow
cover and spatially masked for topography and cities. The medians from both ASCAT VOD and
CR correspond to well-known vegetation patterns over Europe. To assess the synergies between the
products in representing vegetation, median values of CR and ASCAT VOD are illustrated per ESA CCI
LC class in Figure 4b,d. Croplands show low values, which are lowest in southern Europe and increase
slightly to the northern regions. Croplands have low median CR and ASCAT VOD values compared to
grasslands, due to the large difference in vegetation cover between growing season and inter-cropping
season when lands are often bare and the different climates in which croplands are located. Highest
values in CR and ASCAT VOD are found over forests. In ASCAT VOD, needleleaf evergreen forests
have slightly lower median values than broadleaf deciduous forests; however, the variation is larger.
Needleleaf evergreen forests are located in very different climates, most notably in northern and
northeastern Europe, i.e., in Scandinavia, Eastern Germany, Poland, Ukraine, Belarus and Russia, and
southern Europe, i.e., the south of France and Iberian peninsula. Shrublands have similar median
values as grasslands, for both CR and ASCAT VOD. However, the range of shrublands varies more in
both CR and ASCAT VOD. Grasslands can be found in northwestern Europe and especially the UK
and Ireland and have relatively high median CR and ASCAT VOD values. From all land cover classes,
lowest values in CR and ASCAT VOD are found in sparsely vegetated areas and bare areas. These are
located mainly in dry regions in Spain and Turkey and mountainous regions in Scandinavia. From
Figure 4, it is evident that spatial patterns between median CR and VOD correspond and show similar
distributions over the ESA CCI LC classes.

Figure 5 demonstrates the potential of high-resolution Sentinel-1 CR (b) in comparison to the
coarse-resolution ASCAT VOD (c) for a detail of the Rhine Valley which is flanked by the forested
regions of the Vosges in the west and the Black Forest in the east (a). Note that Sentinel-1 CR is masked
for topography. The advantage of high-resolution Sentinel-1 CR is evident from the high spatial detail.
Although ASCAT VOD shows higher median values over the forests of the Vosges and Black Forest
and lower values for the agricultural area in the Rhine Valley, smaller forest regions within the Rhine
Valley are not visible. With Sentinel-1 CR, one can clearly distinguish between smaller forests and
agricultural areas located within the Rhine Valley. This demonstrates the large potential of Sentinel-1
CR for monitoring vegetation at high spatial detail and especially for different land cover types.
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Figure 4. Scaled (between minimum and maximum) Sentinel-1 cross-polarization ratio (CR) (a) and
scaled ASCAT Vegetation Optical Depth (VOD) (c) and respective boxplot per CCI Land Cover (LC)
class (for classes which cover more than 100 gridpoints) for median CR (b) and median VOD (d). Data is
temporally masked for snow cover and frozen soils and spatially masked for topography and cities.

(a) (b) (c)

Figure 5. ESA CCI LC Map and the location of the detail over the Rhine Valley (a). Median of Sentinel-1
cross-polarization ratio (CR) (b) and ASCAT VOD (c) over the Rhine Valley. Sentinel-1 CR is spatially
masked for topography at 500-m sampling. The legend of the ESA CCI LC map can be found in Figure 2.
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5.3. Temporal Analysis of CR and ASCAT VOD

On the coarse scale of ASCAT, the temporal correspondence between the two products is assessed.
Overall moderate correlations are found, with a median Rp of 0.68 over Europe (Figure 6a). Looking
at the temporal correspondence per land cover type (Figure 6b) shows overall correlations are
high and highest correlations, i.e., median Rp > 0.75, are found over croplands and grasslands.
Furthermore, moderately high correlations are found over shrublands, sparse areas, and bare areas.
Here, high correlations are observed in southern Europe. Low correlations are found in Scandinavia,
in areas where many observations are masked due to snow cover and frozen soil. In addition, the
presence of open water, i.e., lakes, can affect the backscatter signal, leading to low correlations. Negative
correlations are found over deciduous broadleaf forests with median Rp of −0.33. These negative
correlations for broadleaf deciduous forests are also clearly present in the correlation maps (Figure 6a).
Over needleleaf evergreen forests the temporal correlation is moderately low with a median Rp of
0.39. Here, the same pattern can be seen as for sparse and bare areas, where in lower latitudes
where needleleaf evergreen forests are present, such as in Germany, France, Poland, Portugal, and
Spain needleleaf evergreen forests show higher correlations than in higher latitudes, such as in
Scandinavia. Here, many observations are masked due to snow cover and frozen soils and open water
may affect backscatter.

Figure 6. Pearson correlation coefficient (Rp) between time series of Sentinel-1 CR and Metop ASCAT
VOD (a) for gridpoints where Rp is significant (p < 0.05) and with more than 180 observation pairs.
And corresponding boxplot of Rp between CR and VOD per ESA CCI LC class (for classes which cover
more than 100 gridpoints) (b). Data is temporally masked for snow cover and frozen soils and spatially
masked for topography and cities.

Figure 7 shows representative time series for four land cover types: deciduous broadleaf forest,
needleleaf evergreen forest, cropland and grassland. Figure 7a shows a time series of Sentinel-1 CR
and ASCAT VOD, and Sentinel-1 and ASCAT backscatter over broadleaf deciduous forest in Romania.
The time series of CR show unexpected behavior, with a decrease from March to May and increase
again strongly in October and November, which are periods of leaf emergence and leaf fall, respectively.
The Sentinel-1 VH backscatter decreases and increases more strongly than the VV backscatter in these
periods. From May to October there is a minor increase in CR. The ASCAT VOD shows different
behavior from year to year. In 2016, VOD increases from March to August. In 2017 and 2018, the VOD
initially increases but decreases shortly from end of April to June, around the same time as the decrease
in CR. ASCAT VOD increases again from June to August. A small increase can also be seen during this
time in CR.
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(a)

(b)

(c)

(d)

Figure 7. Time series of CR, smoothed using a kernel smoother (dark blue), single Sentinel-1 CR
observations (blue circles) and ASCAT VOD (light green), and Sentinel-1 VV (pink) and VH (brown)
and ASCAT VV (blue) backscatter over the period 2016–2018 for (a) broadleaf deciduous forest,
(b) needleleaf evergreen forest, (c) cropland, rainfed, and (d) grassland. The fractional coverage of the
land cover class per pixel is indicated.
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For needleleaf evergreen forest time series of a pixel in Germany are shown in Figure 7b.
The temporal dynamics in CR and ASCAT VOD are similar with highest values in summer and
autumn and lowest values in winter. The backscatter behavior over needleleaf evergreen forest is
similar for Sentinel-1 and ASCAT for VV backscatter. In all years, there is a slight decrease in backscatter
from March to May, followed by an increase until June-July. This period corresponds to the increase in
CR and ASCAT VOD. The decrease in VV backscatter of Sentinel-1 from March to May is stronger than
the decrease in VH, leading to increasing CR. The increase until June-July is stronger in VH backscatter,
leading to a further increase of CR in this period.

Figure 7c,d show time series of CR and ASCAT VOD over rainfed cropland in Poland and
grassland in Ireland. Both CR and ASCAT VOD increase at the beginning of the growing season,
in spring, and decrease in autumn. As a result, correlations are high, Rp = 0.93 and Rp = 0.84,
respectively. Both in croplands and grassland, the temporal dynamics of Sentinel-1 and ASCAT VV
backscatter are similar, with decreasing VV backscatter in spring, followed by a minor increase in
summer. As in needleleaf evergreen forest, the VV backscatter decreases stronger than VH backscatter
in both land cover classes, leading to an increase in CR. In the rainfed cropland, the inter-annual
variability is similar for CR and ASCAT VOD. In 2017, CR and ASCAT VOD both show a rapid
decrease in August. In 2016 and 2018, both show a slow decrease. Similar, in grasslands, both CR and
ASCAT VOD show highest values in 2018.

To assess the possibility of combining CR and ASCAT VOD, and to further quantify their relation
per land cover type, a linear regression analysis was performed for pixels with homogeneous land
cover (i.e., land cover fraction of the mode > 80%) and for land cover classes covering more than
100 ASCAT pixels. Figure 8 shows the joint histograms of CR and ASCAT VOD observation pairs,
slope values, and number of observation pairs per land over class. As expected, largest differences
in slope exist between deciduous broadleaf forest and other land cover classes, with negative slope
values over deciduous forests. In needleleaf forests, no clear slope is visible. For cropland, grassland,
and sparse land cover, a clear positive slope is observed. When combining all observations, regardless
of land cover, a clear relation is observed between CR and ASCAT VOD. However, in the higher VOD
and CR range, some curvature is observed.

Figure 8. Joint histograms of Sentinel-1 CR and ASCAT VOD for the period 2016–2018 per CCI LC
class (for classes covering more than 100 ASCAT pixels), where the fraction of the majority class covers
an area larger than 80% of the ASCAT pixel. Data is temporally masked for snow cover and frozen
soils and spatially masked for topography and cities.
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5.4. Comparison of CR and VODCA

Figure 9 shows the results of the correlation between VODCA and Sentinel-1 CR. Spatial patterns
are similar, with high correlations over croplands and grasslands. Negative correlations are found
in broadleaf deciduous forests, and low correlations are found over needleleaf evergreen forests.
Over sparse vegetation and bare areas, correlations between CR and VODCA are lower than between
CR and ASCAT VOD (Figure 9a). In the spatial maps, it is evident that the low correlations occur in
(semi-) arid regions, e.g., central Spain.

Figure 9. Pearson correlation coefficient (Rp) between time series of Sentinel-1 CR and VODCA VOD
(a) for gridpoints where Rp is significant (p-value < 0.05) and with more than 180 observation pairs.
And corresponding boxplot of Rp between CR and VOD per ESA CCI LC class (b) for LC classes
which cover more than 100 gridpoints. Data is temporally masked for snow cover and frozen soils and
spatially masked for topography and cities.

6. Discussion

The results demonstrate the close correspondence of Sentinel-1 CR and Metop ASCAT VOD
over most land cover classes, especially over non-woody vegetation types. Spatial patterns in CR
and ASCAT VOD correspond. Furthermore, temporal correlations are high over many areas in
Europe. These results are promising with regard to using CR for vegetation monitoring, or obtaining
high-resolution VOD from Sentinel-1 CR or a combination of Sentinel-1 and ASCAT VOD. The potential
of CR for vegetation monitoring and as useful route to high-resolution VOD is emphasized over crop-
and grasslands by the high correlations between CR and ASCAT VOD and VODCA. This is emphasized
by the regression analysis, which shows a linear relationship between CR and ASCAT VOD for these
land cover classes. In addition, the temporal dynamics of VV backscatter in relation to VH backscatter,
are similar, where VV decreases or increases stronger than VH backscatter. A possible explanation for
this is that in spring the soil surface dries out more rapidly, subsequently decreasing VV backscatter.
Vegetation takes up (root zone) soil moisture and increases in density. The VH signal partly reflects the
springtime backscatter decrease as seen in VV backscatter, but this is less strong due to the increasing
water content in the vegetation.

Over forests, the temporal correlation between CR and both ASCAT VOD and VODCA is spatially
more variable. In forest, there is also no clear relation between CR and ASCAT VOD in the linear
regression analysis. For needleleaf forests, low correlations in some regions can be explained by the
challenging conditions for microwave remote sensing in these areas, i.e., open water, topographic
complexity, snow cover, and frozen soil conditions. Open water and topographic complexity are
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challenging on the coarse resolution of ASCAT. This can be overcome by the high spatial resolution of
Sentinel-1. Here, more research comparing high-resolution CR to other vegetation products, e.g., NDVI
or LAI, or field campaigns would be useful. Snow cover and frozen soil affect both CR and ASCAT
VOD. Especially over needleleaf evergreen forests backscatter can change strongly due to frozen
soils [27]. Hence, periods of frozen soils and snow cover are masked. This reduces the number of
observations of CR and ASCAT VOD, and can possibly lead to lower correlations. Over broadleaf
deciduous forest, it is evident that CR and ASCAT VOD and VODCA do not follow the same dynamics
over time. High values of CR are observed in winter and low values in summer. In addition, contrary
to grasslands and croplands, VH backscatter varies more over time than VV backscatter, suggesting
that changes in structure play a large role here.

Although CR shows a strong correspondence to ASCAT VOD over sparse vegetation and bare
areas, CR and VODCA do not correspond over bare areas in (semi-)arid regions (Figure 9a). A likely
cause for this is sub-surface scattering during dry conditions. Both structural effects and sub-surface
scattering effects are further discussed in the next sub-sections.

6.1. Vegetation Structure Effects

The structure of the vegetation plays a large role in the scattering mechanism through the
presence of leaves. The presence of leaves in forests may correspond to the assumption of a water
cloud, where the vegetation is seen as a volume with randomly distributed inhomogeneities, i.e.,
water molecules. However, when no leaves are present in forests, the stems and branches and soil may
dominate scattering.

A possible mechanism leading to high CR before leaf out, is that multiple scattering via
soil-vegetation interaction scattering via branches and stems causes strong depolarization, leading
to an increase in CR. After leaf out, the canopy attenuates the soil-vegetation interaction and volume
scattering is the main scattering mechanism. When leaves fall in autumn, the soil-vegetation interaction
starts to contribute again, increasing CR accordingly. ASCAT VOD shows opposite behavior, as seen
in Figure 7a, with an increase in April and decrease in October and November. However, ASCAT
VOD also shows a small decrease from end of April to June, which may be related to leaf emergence.
This temporal behavior was also observed by Reference Pfeil et al. [28] in the slope of the relationship
between incidence angle and backscatter over a pixel covered with cropland and broadleaf deciduous
forest in Austria. The increase in slope at the beginning of the year was attributed to the increasing
vegetation in croplands. The small decrease in April and May was attributed to leaf emergence,
which corresponded to in situ observations from the Pan European Phenology project (PEP725).

The time series, and the strong negative correlations between CR and ASCAT VOD over broadleaf
deciduous forest, show that Sentinel-1 CR is strongly affected by structural changes in vegetation,
more so than ASCAT VOD, or that ASCAT VOD is more sensitive to the vegetation dynamics of
small non-forested areas within the deciduous broadleaf forests. The effect of vegetation structure
is confirmed over needleleaf evergreen forests (Figure 7b). As the evergreen forests do not loose
their leaves, big changes in structure are not expected. As a result, both CR and ASCAT VOD
increase simultaneously in spring and decrease again in autumn. In addition, over areas where
reliable microwave observations are possible, i.e., no open water, frozen soil, snow cover, nor strong
topography, high correlations between CR and ASCAT VOD are found.

CR also shows negative correlations with VODCA over broadleaf deciduous forests. In addition,
earlier work compared ASCAT VOD to VOD from (AMSR-E) passive microwave observations and
found negative correlations between the two VOD products [6]. It was suggested that active microwave
based VOD may be affected by vegetation structure. Both the study from Reference Pfeil et al. [28]
and Vreugdenhil et al. [6] demonstrate that slope and VOD from active microwave observations
over deciduous broadleaf forests, or land cover types with strong structural changes, is still not
well understood.
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Reference Rötzer et al. [19] did observe positive correlations between cross-polarized backscatter
(HV from Aquarius SAC-D) and VOD from SMOS passive microwave observations. To assess if VH
is more sensitive to vegetation dynamics as observed in VOD, we calculated the Pearson correlation
coefficient between Sentinel-1 VH backscatter and ASCAT VOD, using the same resampling and
masking methods as for the comparison between Sentinel-1 CR and ASCAT VOD. As can be seen in
Figure 10, correlations are slightly higher over deciduous broadleaf and needleleaf evergreen forests
but are lower for all other land cover classes. For needleleaf evergreen forests, correlations only
improve in Scandinavia, but not for needleleaf evergreen forests in lower latitudes. One possible
explanation why VH correlates slightly better with ASCAT VOD over forests is that, over dense
forest, the signal does not penetrate to the soil. The ratio between VH and VV is calculated with the
assumption that the VV signal accounts for changes in soil scattering, which is largely controlled by
soil moisture. If the signal does not contain any soil signal, the ratio might be less appropriate, and VH
might better reflect vegetation dynamics.

6.2. Sub-Surface Scattering

Low correlations, which are observed over Europe’s (semi-) arid regions, especially in Spain,
demonstrate that active and passive products do not correspond here. As high correlations were
found over these regions between CR and ASCAT VOD, the low correlations between CR and VODCA
likely arise due to the difference in measurement principles of active and passive microwave remote
sensing. Over arid regions, such as central Spain, which usually have no or only sparse vegetation,
active microwave remote sensing can be affected by sub-surface scattering [29]. Due to the dry soil,
the signal penetrates deeper into the soil and the scattering mechanism changes from surface to volume
scattering. For both CR and ASCAT VOD, an increase in volume scattering leads to an increase in
CR and ASCAT VOD. VODCA is less affected by sub-surface scattering, and its C-band product uses
slightly different frequencies, i.e., has a different penetration depth. Hence, low correlations occur
between CR and VODCA. This emphasizes that care needs to be taken when combining active and
passive microwave products. Furthermore, it shows that the sub-surface scattering effect needs to be
further investigated and accounted for in both ASCAT VOD and CR.

Figure 10. Pearson correlation coefficient (Rp) between time series of Sentinel-1 VH backscatter and
Metop ASCAT VOD (a) for gridpoints where Rp is significant (p-value < 0.05) and with more than
180 observation pairs. And corresponding boxplot of Rp between VH backscatter and VOD per ESA
CCI LC class (b) for LC classes which cover more than 100 gridpoints. Data is temporally masked for
snow cover and frozen soils and spatially masked for topography and cities.
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7. Conclusions

This study presents the first large scale quantitative comparison of Sentinel-1 CR to ASCAT
VOD over Europe in the years 2016–2018. The results demonstrate a strong spatial and temporal
correspondence between CR and ASCAT VOD. The spatial patterns between CR and ASCAT VOD
are similar and follow vegetation patterns corresponding to land cover. Temporal correlation is
moderate, with median Rp = 0.68, but shows strong dependency on the land cover class. Strong
positive correlations, i.e., median Rp > 0.75, and a robust linear relation are found between Sentinel-1
CR and ASCAT VOD over croplands and grasslands. The linear relation suggests CR and ASCAT
VOD may be combined using regression parameters to develop a high-resolution VOD. Needleleaf
evergreen forests, sparse vegetation, and bare areas show varying correlation coefficients related
to the complexity of the region for microwave remote sensing, i.e., open water, terrain, and climate.
Comparing CR to VODCA similarly high correlations are found over grasslands and croplands. On the
other hand, the analysis, including the analysis of time series and VH backscatter to ASCAT VOD,
demonstrates once again the effect of vegetation structure on active microwave observations, as strong
negative correlations between CR, ASCAT VOD, and VODCA are observed over deciduous broadleaf
forests. In addition, the linear regression analysis shows no appreciable relation between CR and
ASCAT VOD. This emphasizes more research is needed over broadleaf deciduous forests, to reconcile
active microwave observations with vegetation dynamics. The comparison with VODCA also lays
bare the effect of sub-surface scattering in (semi-) arid regions, such as in central Spain.

The consistency between Sentinel-1 CR and ASCAT VOD over most land cover types, and VODCA
over crop- and grasslands, suggests that Sentinel-1 CR is a useful route towards high-resolution VOD,
either from Sentinel-1 alone or in combination with ASCAT VOD. We also conclude that, over forests
and (semi-) arid regions, more research is needed to identify the effect of vegetation structure and
sub-surface scattering on CR and active microwave VOD.
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