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Abstract: Leaf area index (LAI) is an important vegetation parameter. Active light detection and ranging
(LiDAR) technology has been widely used to estimate vegetation LAI. In this study, LiDAR technology,
LAI retrieval and validation methods, and impact factors are reviewed. First, the paper introduces
types of LiDAR systems and LiDAR data preprocessing methods. After introducing the application
of different LiDAR systems, LAI retrieval methods are described. Subsequently, the review
discusses various LiDAR LAI validation schemes and limitations in LiDAR LAI validation. Finally,
factors affecting LAI estimation are analyzed. The review presents that LAI is mainly estimated from
LiDAR data by means of the correlation with the gap fraction and contact frequency, and also from the
regression of forest biophysical parameters derived from LiDAR. Terrestrial laser scanning (TLS) can
be used to effectively estimate the LAI and vertical foliage profile (VFP) within plots, but this method
is affected by clumping, occlusion, voxel size, and woody material. Airborne laser scanning (ALS)
covers relatively large areas in a spatially contiguous manner. However, the capability of describing
the within-canopy structure is limited, and the accuracy of LAI estimation with ALS is affected by the
height threshold and sampling size, and types of return. Spaceborne laser scanning (SLS) provides the
global LAI and VFP, and the accuracy of estimation is affected by the footprint size and topography.
The use of LiDAR instruments for the retrieval of the LAI and VFP has increased; however, current
LiDAR LAI validation studies are mostly performed at local scales. Future research should explore
new methods to invert LAI and VFP from LiDAR and enhance the quantitative analysis and large-scale
validation of the parameters.

Keywords: leaf area index (LAI); vertical foliage profile (VFP); terrestrial laser scanning (TLS);
airborne laser scanning (ALS); spaceborne laser scanning (SLS)

1. Introduction

Leaf area index (LAI) is defined as one half the total green leaf area per unit ground surface area [1].
It is listed as an essential climate variable by the global climate change research community (GCOS) and
is a critical variable in processes such as photosynthesis, respiration, and interception [2,3]. The field
LAI can be measured using direct sampling or indirect optical methods [4–7]. With a direct sampling
method, the LAI can be directly obtained by harvesting vegetation leaves through the collection of leaf
litter or destructive sampling [8]. With an indirect optical method, the LAI is estimated from the canopy
gap fraction or transmittance using the Beer–Lambert law. The LAI values obtained from ground
measurement are often used as references for remote sensing validation. However, these methods are
labor-intensive and time-consuming, and the deployment over large areas is difficult.

The LAI estimations from remote sensing data show the most promise for accurate estimations in
large scales. Existing techniques can be divided into two main categories, that is, passive optical remote
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sensing and active light detection and ranging (LiDAR) remote sensing. Passive optical remote sensing
has been widely used to estimate the LAI [9–12]. Based on both theoretical models and observations,
the LAI and vegetation indices (VI) strongly correlate [13]. One major issue in estimating the LAI from
the vegetation index calculated from passive optical sensors is the LAI saturation [7,14,15].

LiDAR is an active remote sensing technology for indirect LAI measurements, which alleviates the
saturation problem because of the direct detection of the vertical structure [16]. LiDAR has been applied
in many studies for the retrieval of the forest LAI [17–21]. The LAI is estimated from LiDAR data
based on the correlation with the gap fraction, which is derived from various laser penetration metrics
(LPMs) [19,22]. The LAI can also be estimated through allometric relationships using forest biophysical
parameters derived from LiDAR data such as the canopy height and foliage density [23–25]. A few
review papers have pointed out that LAI can be effectively estimated from the LiDAR technology [6,7],
but further understanding is still required regarding the LAI retrieval methods from different platforms
and the basic rationales of the retrieval methods.

This work provides a review of LiDAR technology and the LAI estimation with LiDAR, LAI
validation studies, and factors affecting the LAI estimation. Different LiDAR systems, data, and
measurement principles are described in Section 2. The methods and applications of LiDAR to LAI
estimation are specified in Section 3. The literature on LAI validation studies is discussed in Section 4.
In Section 5, factors affecting the LAI estimation are reviewed based on LiDAR data. The prospects
of the application of LiDAR to LAI estimation are discussed in Section 6, and the conclusions are
summarized in Section 7.

2. LiDAR Technology

2.1. Types of LiDAR Systems

The LiDAR systems can be divided into three categories, that is, discrete return, full waveform,
and photon-counting, based on the detection methods [26]. A conceptual diagram of different LiDAR
systems is shown in Figure 1. When the laser signal is reflected back to the sensor, discrete return
systems record clouds of points representing intercepted features. For example, when light hits different
parts of the tree in a forest, the first, second, and third returns are recorded (Figure 1b). Discrete return
systems systematically sample and record the X, Y, and Z (elevation) values, producing a high-density
three-dimensional (3D) point cloud. In addition to the time, intensity information is recorded [27].Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 29 

 

 
Figure 1. Conceptual diagram of different light detection and ranging (LiDAR) systems (signals 
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systems. 
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emit laser pulses having footprints ranging from 1 cm to 5 cm. TLS systems can be classified into 
discrete return and full-waveform models by how they record the energy returning to the sensor 
(Table 1). Discrete return TLS measures the surrounding 3D space using millions to billions of 3D 
points, which are commonly presented in a point cloud [36]. Most discrete return TLSs record a single 
range for each laser shot. The TLS point cloud data provide the 3D distribution of canopy at 
individual tree or stand level and have been widely used for the estimation of the vegetation LAI 
[20,37]. The full waveform TLS records the light reflected from objects along the laser path, which can 
be calibrated to power units. Full waveform data can be used to improve the vegetation foliage 
extraction in forest stands with the fully digitized return pulse [38]. Such data have been used to 
measure the LAI, foliage profile, and stand height [30,39,40]. Based on the scanning geometry of TLS, 
near-range objects are more frequently sampled than far-range objects, which may limit its broad 
application. Figure 2 shows two examples of the TLS data: the point cloud data of a forest sample 
plot based on single-scan data colored by height (Figure 2a), and the TLS intensity image of the 
Harvard Forest, observed from Echidna Validation Instrument (EVI) full-waveform data (Figure 2b). 
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Figure 1. Conceptual diagram of different light detection and ranging (LiDAR) systems (signals
returned from trees and the ground). (a) Intersection of the laser illumination area with the tree
crown and signals received with the (b) discrete return, (c) full waveform, and (d) photon-counting
LiDAR systems.

In contrast, full-waveform LiDAR systems digitize the entire reflected energy, resulting in complete
submeter vertical vegetation profiles. Within a forest environment, the full waveform indicates the
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forest structure (i.e., from the top through the crown and understory to the ground) (Figure 1c) [16,26].
In contrast to discrete return and full-waveform systems, photon-counting LiDAR (PCL) systems are
unique. They operate based on the concept that a low-power laser pulse is transmitted, and the utilized
detectors are sensitive at the single-photon level. Based on this type of detector, any returned photon,
whether from the reflected signal or solar background, can trigger an event within the detector [26,28].
An individual photon could be reflected from anywhere within the vertical canopy, the probability
distribution function (PDF) of that reflected photon would be the full waveform (Figure 1d).

For different platforms, LiDAR can be categorized into three groups: terrestrial laser scanning
(TLS), airborne laser scanning (ALS), and spaceborne laser scanning (SLS). The main characteristics of
LiDAR systems used for the estimation of the vegetation LAI are presented in Table 1.

Table 1. Main characteristics of different LiDAR systems for LAI estimation.

Platform Detection
Method

Footprint
Size Capability Limitation References

Terrestrial Discrete return
Full waveform 1–5 cm

Derive leaf area
density and vertical

LAI distribution.

Different sampling
frequency for upper and

lower canopy, complicated
data processing.

[29–32]

Airborne Discrete return
Full waveform

0.1–3 m
10–30 m

Estimate understory
and overstory LAI.

Poor penetration, expensive
data acquisition. [17–19]

Spaceborne Full waveform
Photon counting 12–70 m

Derive vertical LAI
distribution over a

large scale.
Terrain impact, data gaps. [33–35]

TLS is a ground-based LiDAR technology that acquires 3D details. Typically, these TLS systems
emit laser pulses having footprints ranging from 1 cm to 5 cm. TLS systems can be classified into
discrete return and full-waveform models by how they record the energy returning to the sensor
(Table 1). Discrete return TLS measures the surrounding 3D space using millions to billions of 3D
points, which are commonly presented in a point cloud [36]. Most discrete return TLSs record a single
range for each laser shot. The TLS point cloud data provide the 3D distribution of canopy at individual
tree or stand level and have been widely used for the estimation of the vegetation LAI [20,37]. The full
waveform TLS records the light reflected from objects along the laser path, which can be calibrated
to power units. Full waveform data can be used to improve the vegetation foliage extraction in
forest stands with the fully digitized return pulse [38]. Such data have been used to measure the
LAI, foliage profile, and stand height [30,39,40]. Based on the scanning geometry of TLS, near-range
objects are more frequently sampled than far-range objects, which may limit its broad application.
Figure 2 shows two examples of the TLS data: the point cloud data of a forest sample plot based on
single-scan data colored by height (Figure 2a), and the TLS intensity image of the Harvard Forest,
observed from Echidna Validation Instrument (EVI) full-waveform data (Figure 2b).
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ALS is deployed on fixed or rotary-wing aircraft, which is a data source for multiscale LAI 
estimation [42]. ALS covers relatively large areas in a spatially contiguous manner. The difference 
between TLS and ALS is that the ground laser pulse returns from TLS are limited due to the scanning 
geometry [43]. ALS systems can be classified as discrete and full-waveform. The ALS point cloud 
data are acquired at altitudes between 500 and 3000 m using a small laser pulse footprint ranging 
from 0.1 m to 3 m. The ALS point cloud data are the most common type of data used in forest 
inventory applications and several system developers and an increasing number of commercial 
vendors support the acquisition and analysis [44]. The ALS full-waveform data are typically acquired 
at higher altitudes (up to 20,000 m) using a large footprint ranging from 10 m to 30 m. A common 
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Figure 2. Terrestrial laser scanning (TLS) data examples. (a) A forest plot based on single-scan TLS
data colored by height; (b) Example of Echidna Validation Instrument (EVI) full-waveform-intensity
image of the Harvard Forest Plot 01 (42◦31′51” N, 72◦10′55” W), 2007 [41].

ALS is deployed on fixed or rotary-wing aircraft, which is a data source for multiscale LAI
estimation [42]. ALS covers relatively large areas in a spatially contiguous manner. The difference
between TLS and ALS is that the ground laser pulse returns from TLS are limited due to the scanning
geometry [43]. ALS systems can be classified as discrete and full-waveform. The ALS point cloud data
are acquired at altitudes between 500 and 3000 m using a small laser pulse footprint ranging from
0.1 m to 3 m. The ALS point cloud data are the most common type of data used in forest inventory
applications and several system developers and an increasing number of commercial vendors support
the acquisition and analysis [44]. The ALS full-waveform data are typically acquired at higher altitudes
(up to 20,000 m) using a large footprint ranging from 10 m to 30 m. A common ALS full-waveform
data system is the airborne Land, Vegetation, and Ice Sensor (LVIS) [45]. Figure 3 shows the point
cloud data of a forest plot (colored by height), with an average point density of 4.3 points/m2 obtained
by an ALS (upper), and the LVIS waveform data with a footprint size of 20 m (lower).
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from Google Earth®, and the right panel is a waveform return where the upper and lower peaks come 
from the forest canopy and the ground surface, respectively. 
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Compared with the ALS and TLS, which have insufficient spatial coverage, the SLS is more suitable 
for forest surveys at global scales [47]. The Geoscience Laser Altimeter System (GLAS) is a spaceborne 
full-waveform LiDAR system onboard the Ice, Cloud, and land Elevation Satellite-1 (ICESat-1) 
[48,49]. The GLAS full-waveform data provide the first spaceborne laser altimetry data for Earth 
observations and have been applied for LAI estimations [33]. Figure 4 shows an example of the GLAS 
data with a footprint size of 70 m. The follow-on to the ICESat mission, ICESat-2, launched in 
September 2018, carries the Advanced Topographic Laser Altimeter System (ATLAS), a LiDAR 
system that utilizes the photon-counting technology [35]. The ICESat-2/ATLAS data have potential 
for the estimation of the forest canopy cover and LAI [50]. In addition, the Global Ecosystem 
Dynamics Investigation (GEDI) installed on the International Space Station (ISS) was launched in 
December 2018 [34]. The GEDI measures the forest canopy height and canopy vertical structure. 
GEDI provides the raw waveforms (Level 1B) and the LAI and vertical profile data (L2B) from the 
Land Processes Distributed Active Archive Center (LPDAAC) (https://lpdaac.usgs.gov/data/get-
started-data/collection- overview/missions/gedi-overview/). 

(a) 
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Figure 3. Airborne laser scanning (ALS) data examples. (a) Airborne point cloud data colored by
height (4.3 points/m2); (b) airborne large-footprint full-waveform data—Land, Vegetation, and Ice
Sensor (LVIS)—~20 m in diameter (44◦2′59” N, 71◦17′18” W), 2009 [46]. The image in the left panel is
from Google Earth®, and the right panel is a waveform return where the upper and lower peaks come
from the forest canopy and the ground surface, respectively.

SLS is deployed onboard satellites and can be classified into full-waveform and photo counting.
Compared with the ALS and TLS, which have insufficient spatial coverage, the SLS is more suitable for
forest surveys at global scales [47]. The Geoscience Laser Altimeter System (GLAS) is a spaceborne
full-waveform LiDAR system onboard the Ice, Cloud, and land Elevation Satellite-1 (ICESat-1) [48,49].
The GLAS full-waveform data provide the first spaceborne laser altimetry data for Earth observations
and have been applied for LAI estimations [33]. Figure 4 shows an example of the GLAS data with a
footprint size of 70 m. The follow-on to the ICESat mission, ICESat-2, launched in September 2018,
carries the Advanced Topographic Laser Altimeter System (ATLAS), a LiDAR system that utilizes the
photon-counting technology [35]. The ICESat-2/ATLAS data have potential for the estimation of the
forest canopy cover and LAI [50]. In addition, the Global Ecosystem Dynamics Investigation (GEDI)
installed on the International Space Station (ISS) was launched in December 2018 [34]. The GEDI
measures the forest canopy height and canopy vertical structure. GEDI provides the raw waveforms
(Level 1B) and the LAI and vertical profile data (L2B) from the Land Processes Distributed Active Archive
Center (LPDAAC) (https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/gedi-
overview/).

https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/gedi-overview/
https://lpdaac.usgs.gov/data/get-started-data/collection-overview/missions/gedi-overview/
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reflectors is labor-intensive because of obstructions. Therefore, several reflector-free registration 
methods have been applied to overcome difficulties associated with the placement of artificial 
reflectors [56–59]. After the data registration, noise removal and ground filtering were handled 
together. The noises in point cloud data, that is, the unreasonably high or low elevation values, are 
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abrupt and large [64,65]. Slope-based methods are affected by complex terrain. Mathematical 
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mathematical morphology-based methods, surface-based methods gradually approximate the 
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based methods is to create a surface that is close to the bare ground [55,66]. After filtering the data, 
ground points are used to produce a digital elevation model (DEM). The height of LiDAR returns is 
normalized with respect to the corresponding DEM. The relative height above the DEM can be used 
to remove understory vegetation [37,67] and the height threshold can be used to separate ground 
returns and canopy returns [23]. 

Figure 4. Example Geoscience Laser Altimeter System (GLAS) data, ~70 m in diameter (44◦5′10” N,
71◦17′43” W), in 2004. Image in the left panel is from Google Earth®, and the right panel is a
waveform return where the upper and lower peaks come from the forest canopy and the ground
surface, respectively.

2.2. Data Preprocessing

Preprocessing of the point cloud data includes registration, noise removal, and ground filtering
(Figure 5) [51,52]. During the multiple scans, the data of all scan locations must be registered into
a single-point cloud dataset with a common coordinate to clip overlapping points and resolve the
point redundancy [53,54]. Two registration methods can be used: the reflector registration and the
reflector-free registration method [55]. Commercial TLS scanners provide reflectors to be placed in
each scan. However, this method is limited in forestry applications because few natural tie points
can be found. Therefore, artificial reflectors are used as tie points for registration [31]. The placement
of artificial reflectors is labor-intensive because of obstructions. Therefore, several reflector-free
registration methods have been applied to overcome difficulties associated with the placement of
artificial reflectors [56–59]. After the data registration, noise removal and ground filtering were
handled together. The noises in point cloud data, that is, the unreasonably high or low elevation
values, are often randomly distributed. The simplest way to identify such outliers is to examine
the frequency distribution of elevation values [60,61]. Subsequently, non-ground points and ground
are separated by ground filtering methods [61,62]. Filtering methods can be mainly categorized
into three groups: slope-based, mathematical morphology-based, and surface-based methods [63].
Slope-based methods are based on the assumption that the change of the slope of the terrain is
generally gradual in a neighborhood, while the change of the slope between buildings or trees and
the ground is very abrupt and large [64,65]. Slope-based methods are affected by complex terrain.
Mathematical morphology-based methods use mathematical morphology to remove non-ground
points [62]. The window size is critical for mathematical morphology-based methods. In contrast
to slope-based and mathematical morphology-based methods, surface-based methods gradually
approximate the ground surface by iteratively selecting ground points from the original dataset.
The core of surface-based methods is to create a surface that is close to the bare ground [55,66].
After filtering the data, ground points are used to produce a digital elevation model (DEM). The height
of LiDAR returns is normalized with respect to the corresponding DEM. The relative height above the
DEM can be used to remove understory vegetation [37,67] and the height threshold can be used to
separate ground returns and canopy returns [23].
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Figure 5. Preprocessing of the point cloud data.

Preprocessing of the full waveform data includes smoothing, the identification of signal start
and end points, and Gaussian decomposition (Figure 6). Because of the rough shapes of waveforms,
the estimation of initial values results in a large number of modes with narrow widths and low
amplitudes. Therefore, it is necessary to smooth the waveforms to obtain a smaller number of
modes [68]. To identify the signal start and end points, each received waveform is first smoothed
using a Gaussian filter with a width similar to that of the transmitted laser pulse [69,70]. A threshold
above the background noise level is then used to obtain the signal start and end points. The signal
start and end points are the first and last bin locations at which the waveform intensity is larger than
the threshold above the mean background noise in the waveform [71]. Different thresholds have
been used in the literature including 3 times the standard deviation [70,72,73], 4 times the standard
deviation [74], or 4.5 times the standard deviations [75–77]. There is no consistent optimal threshold
that can be applied to all sites [69]. Finally, a Gaussian decomposition algorithm (Equation (1)) is used
to decompose the filtered waveform into a series of Gaussian peaks, where the last peak of decomposed
components corresponds to the ground surface [78]:

min


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ f (x) −∑n

i=1
|ai|exp

− (x− µi)
2

2σ2
i


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 (1)

where f(x) is the LiDAR waveform; a least-squared method is used to compute the model parameters;
ai, µi, and σi are the amplitude, location, and width of a decomposed Gaussian peak; and n is the
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number of decomposed Gaussian peaks. The absolute value of ai is used in Equation (1) to avoid
decomposed Gaussian peaks with negative amplitudes.
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3. LAI Retrieval Methods

3.1. Gap-Based Methods

The LAI is mainly estimated from LiDAR data by means of the correlation with the gap
fraction [6,21,22,30,31,79,80]. The theoretical basis of gap-based methods is the Beer–Lambert law [81]:

P(θ) = e−G(θ)·LAI/ cosθ (2)

where P(θ) is the canopy gap fraction at zenith angle θ.
Based on the above equation, the light attenuation in vegetation canopies can be represented by

the light extinction as a function of the LAI [22,82]:

LAI = −
1
k

ln(I/I0) (3)

where I is the below-canopy light intensity, I0 is the above-canopy light intensity, k is the extinction
coefficient, and I/I0 is the fraction of light transmitted through the canopy.

However, the gap fraction cannot directly be measured by LiDAR but is derived from LiDAR
metrics. Various LPMs are used as proxies for I/I0 to estimate LAI. For point cloud data, the LPM can
be calculated as the ratio of the number of ground returns to the number of total returns or the number
of sky pixels to the number of total pixels (number-based ratio) and the ratio of the sum of intensity
values of ground returns to the sum of intensity values of total returns (intensity-based ratio) [19,83].
For the waveform data, the LPM can be calculated by the ratio of the ground return energy to the total
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return energy (ground-to-total energy ratio) [18,84,85]. Based on different LiDAR data characteristics,
a variety of LPMs can be used for the estimation of the LAI (Table 2).

Table 2. Summary of different laser penetration metrics (LPMs) used for LAI estimation.

Data LPM Description Symbol

Point cloud
Number-based ratio

Ratio of ground (or sky)
return number to the
total return number

Nground
Ntotal

or
Nsky
Ntotal

Intensity-based ratio
Ratio of ground return
point intensity to the
total intensity value

Iground
Itotal

Full waveform Ground-to-total energy
ratio

Ratio of ground return
energy to the total return

energy

Eground
Etotal

For point cloud data from TLS, the gap fraction can be calculated by the ratio of the number of sky
pixels to the number of total pixels [79]. Two methods are commonly used for the LAI estimation from
point cloud data based on the gap fraction theory. One is a two-dimensional (2D) approach and the
other is a 3D approach [20]. The main steps of the 2D method are as follows (Figure 7): (1) The 3D point
cloud data are first converted to the spherical coordination system using spherical projection; (2) data
from the hemisphere are then converted to a plane; that is, the 3D point cloud data are converted to
2D raster images using geometrical projection; (3) 2D raster images are divided into sky and foliage
elements, and the gap fraction is calculated from the ratio of the number of sky pixels to the number of
total pixels; and (4) the gap fraction is used to retrieve the LAI. Danson et al. [79] estimated the forest
canopy gap fraction from TLS point cloud data based on the 2D method. The results showed that the
gap fraction obtained from TLS data is similar to the gap fraction measured in the field. Zheng et al. [20]
converted the 3D point cloud data to 2D raster images using two geometrical projection techniques
and estimated the effective LAI (LAIeff). They reported that the stereographic projection-based TLS
LAIeff model is more robust than the Lambert azimuthal equal-area projection TLS LAIeff model.
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LAI derived from TLS point cloud data using 2D method is in good agreement with the field LAI
data. However, the 3D structural information of the scanned canopy is lost and the gap fraction must
be obtained from the original 3D data. In 3D-based methods, the main steps to estimate LAI include
(Figure 8): (1) the point cloud data are voxelized and a voxel-based tree model is produced from the
registered point cloud dataset; (2) gap fraction of the layer is calculated by the number of empty voxels
and total number of incident laser beams that reach each horizontal layer; (3) the LAI of each horizontal
layer is calculated by using the gap fraction in the layer and extinction coefficient; and (4) the LAI of
tree is cumulated from the first horizontal layer to the last layer. Takeda et al. [86] divided the TLS
point cloud data into horizontal and vertical elements, calculated the gap fraction for each voxel, and
estimated the plant area index (PAI). The PAI estimate from TLS is in good agreement with the field
data (R2 = 0.69). Zheng and Moskal [31] proposed a voxel-based algorithm to quantitatively identify
the canopy structure and directly predict the LAIeff from TLS. The results showed that the voxel-based
method explains 88.7% of the LAIeff of the field measurement. These results show that TLS provides
direct, nondestructive estimates of the LAI.
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The LPM can also be calculated as the ratio of the number of ground returns to the number of
total returns [19,83,87]. Figure 9 shows the flowchart of LAI estimation based on return number or
intensity: (1) the ground and canopy returns are separated according to the height threshold; (2) the
gap fraction is calculated as the ratio of the number of ground returns to the number of total returns
(or the ratio of the sum of intensity values of the ground returns to the sum of intensity values of
the total returns); and (3) the LAI is determined using the gap fraction based on the Beer–Lambert
law. The LAI obtained from ALS point cloud data using the number-based ratio is in good agreement
with the field LAI [22,23,88]. Aside from the number of returns, the ALS point cloud data intensity is
increasingly used in remote sensing applications. Zhao and Popescu [19] used the ratio of the sum of
intensity values of the ground returns to the sum of intensity values of the total returns to estimate
the LAI. In addition, the forest LAI can be reliably estimated using the LPM based on intensity alone,
with R2 = 0.610 [83].
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The full-waveform LiDAR records a continuous distribution of returned energy and can be used
to characterize the LAI and vertical LAI profile. For the full waveform, the LPM can be calculated as
the ratio of the ground return energy to the total return energy (ground-to-total energy ratio) [18,84,85].
The main steps to estimate LAI based on ground-to-total energy ratio are as follows: (1) the ground and
canopy returns are separated using height threshold/Gaussian decomposition; (2) the ground-to-total
energy ratio is used to calculate the LPM; and (3) the LPM is used to estimate the LAI (Figure 10).Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 29 
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The separation of the ground and canopy returns is a key step to calculate the ground-to-total
energy ratio. Different separation methods have been applied. A simple method is based on the height
threshold; that is, the ground return energy is calculated using the height above the ground and below
the height threshold. A height threshold of 2.0 m has been used to separate the ground and canopy
when calculating the ground-to-total energy ratio. Based on the method, the GLAS-predicted and
field-measured LAI are in good agreement [84,89]. However, the height threshold varies depending on
the location and species. Therefore, the Gaussian decomposition method is incorporated to derive the
LAI and vertical foliage profile (VFP) using LiDAR. Tang et al. [18] used the Gaussian decomposition
method [90] to decompose full-waveform data into multiple Gaussian functions. The last peak of
all decomposed Gaussian components is assumed to be the ground peak and the last Gaussian fit
represents the ground return [78,91]. The gap fraction was calculated using laser energy returns from
the canopy and ground and used to estimate the LAI and VFP [15,18,33]. The ability to derive the LAI
and VFP facilitates large-scale LAI mapping using LiDAR, and it frees the requirement for associated
field data.

3.2. Contact-Based Methods

The basis of contact-based methods is the contact frequency, calculated as the probability of a
beam penetrating the canopy coming into contact with a vegetative element [32,92]. The contact
frequency N(θ) between a light beam and vegetation element in the direction (θ) is given by

N(θ) = G(θ)
LAI

cosθ
(4)

where G(θ) is the projection function that corresponds to the fraction of foliage projected on the plane
normal to the solar direction.

For TLS point cloud data, the main steps to estimate LAI based on contact frequency include the
following (Figure 11): (1) the point cloud data are voxelized, and a voxel-based tree model is produced
from the registered point cloud dataset; (2) the contact frequency of the layer is calculated from the
number of intercepted laser beams and total number of incident laser beams that reach each horizontal
layer (Equation (5)); (3) the LAI of each horizontal layer is calculated by using the contact frequency of
the laser beams in the layer and projection function (Equation (6)); and (4) the LAI of the entire tree is
cumulated from the first horizontal layer to the last layer.

N(k) =
nI(k)

nI(k) + nP(k)
(5)

where N(k) is the contact frequency of laser beams in the kth layer, nI(k) is the number of laser
beams intercepted by the kth layer, nP(k) is the number of laser beams passing through the kth layer,
and nI(k) + nP(k) is the total number reach the kth layer.

LAI(k) = N(k)·
cosθ
G(θ)

(6)

where LAI(k) is the LAI of the kth horizontal layer within the canopy.
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Hosoi and Omasa [32] developed a voxel-based canopy profiling (VCP) method based on the
contact frequency for accurate LAD and LAI estimation using TLS point cloud data. First, they produced
a voxel-based tree model, where the voxel is defined as a volume element in a 3D array. In each
horizontal layer, the voxel was then assigned a different attribute value. For example, a voxel with
attribute 1 indicates that the laser beams are intercepted, and a voxel with attribute 2 reflects that
the laser beams pass through. The contact frequency of the layer is calculated by the number of
intercepted laser beams and total number of incident laser beams. Finally, the contact frequency of each
horizontal layer is calculated from the bottom canopy layer (lowest horizontal layer) to the top canopy
layer (highest horizontal layer), and the LAIs of each horizontal layer and entire tree are obtained.
The authors demonstrated that the LAD and LAI can be computed by directly counting the contact
frequency based on the precise voxel model. The error of the best LAD and LAI estimations was 0.7%.
The contact frequency calculated from TLS point cloud data utilizing the voxel-based approach can
also be used to estimate different LAI layers in savanna trees [93]. The VCP method is one of the
methods used to estimate the LAI and VFP from TLS point cloud data. The method converts point
cloud data into a voxel-based 3D model that can reproduce each tree. The voxel model computes LAD
and LAI by directly counting the contact frequency for each layer and the whole canopy. However,
voxel-based approaches are usually associated with time-consuming data acquisition and registration.
In addition, the accuracy of these approaches depends on the voxel size.

3.3. Biophysical Regression Methods

The LAI can be estimated from the regression of forest biophysical parameters derived from
LiDAR, such as LiDAR height and foliage density metrics [19,94,95]. The main steps are as follows:
(1) LiDAR metrics are extracted from LiDAR data; and (2) LiDAR-derived metrics are used to estimate
the vegetation LAI using allometric relationships. A multivariate linear regression model [94] and
partial least squares regression model [96] utilize the height and foliage density metrics to estimate
the LAI of the forest. In addition, LiDAR intensity data are increasingly used in estimation of LAI,
and intensity metrics are related to the LAI [25]. The combination of the height and intensity metrics
has a higher predictive power [19,83].
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3.4. Model Inversion Methods

Physical radiative transfer (RT) models have been implemented to simulate LiDAR data under
specific forest stand representations and LiDAR specifications [97–101]. The LAI can be retrieved from
LiDAR data using the model inversion method. Sun and Ranson [100] developed a 3D model that
successfully simulates full-waveform data by building a 3D forest stand scene, which is divided into
cells with specific characteristics. Koetz et al. [102] adapted the model of Sun and Ranson [100] and
inverted a 3D LiDAR waveform model to estimate the fractional cover and overstory LAI of a coniferous
forest. The LAI estimate agreed well with the field measurements (RMSE = 0.41). Ma et al. [103]
used the canopy height derived from LiDAR and canopy structure information derived from the
geometric-optical mutual shadowing (GOMS) model to estimate the large-scale forest LAI. Based on
the comparison of their results with the field LAI, the highest R2 values were 0.73. However, their study
failed to retrieve the vertical distribution of canopy. Based on the assumption that the gap probability
is the reverse of the vertical canopy profile, the vertical distribution of the gap probability can be
derived [104], and the LAI and vertical foliage area volume density (FAVD) profile can be directly
retrieved from ALS full-waveform data using an RT model [105].

3.5. Method Comparison

Table 3 summarizes the performance of different methods to estimate LAI from the LiDAR data.
Among the gap-based category, the 3D method shows the best performance with R2 = 0.89 and
RMSE = 0.007 because the method could improve the accuracy of gap fraction for each layer and
provide information about the light penetration condition within the canopy. In contrast, the accuracy
based on return intensity is relatively low, because the LiDAR intensity is affected by many factors,
such as laser power, incidence angle, object reflectivity, and range of the LiDAR sensor to the object [106].
The other three categories give moderate estimation accuracy with R2 > 0.69. The regression methods
are relatively simple to apply; however, these methods are not universally applicable and need ground
LAI measurements. The voxel-based model not only computes LAD and LAI by directly counting the
contact frequency for each layer, but also provides the contact frequency information for the whole
canopy. However, the voxel-based approaches are usually associated with time-consuming data
acquisition and registration processes. In addition, the accuracy of the approaches depends on the
voxel size. The LiDAR RT model could simulate LiDAR data under specific forest stand representations
and sensor specifications. However, the model is usually complicated and requires many data inputs.
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Table 3. Comparison of different methods to estimate LAI from the LiDAR data. DHP: digital hemispherical photography.

Categories Methods Advantages and Disadvantages R2 RMSE References

Gap-based

2D method Based on commonly accepted theories adopted in DHP, easily applicable in
practice. Lacks 3D structural information of the scanned canopy. 0.71 1.03 [20]

3D method
Improves the accuracy of gap fraction for each layer and provides the light
penetration information within the canopy. The voxel resolution directly

determines the level of details for the canopy structure.
0.89 0.007 [31]

Number-based ratio The penetration metrics are related to LAI, whereas the selection of height
threshold and plot size greatly affects the effectiveness of the metrics. 0.70 N/A [23]

Intensity-based ratio
The intensity metrics are related to LAI. The combination of intensity and

other metrics could provide a higher predictive power. However, the LiDAR
intensity value needs to be corrected.

0.61 0.66 [83]

Ground to total energy
ratio

An effective method to derive LAI and VFP from large footprint waveforms.
Estimation of the canopy vertical structural information is affected

by topography.
0.69 0.33 [91]

Contact-based Voxel-based method

Compute LAD and LAI by directly counting the contact frequency for each
layer, and provide the contact frequency for the whole canopy. The methods

are usually associated with time-consuming data acquisition and
registration processes, and the accuracy depends on the voxel size.

N/A 0.14 [32]

Biophysical
regression

Regression of LiDAR
metrics

Approximate LAI from LiDAR metrics, relatively simple to apply. Not
universally applicable and need ground LAI measurements. 0.69 0.13 [94]

Model inversion LiDAR RT model Simulate LiDAR data under specific forest stand representations and sensor
specifications. Complicated and require many data inputs. 0.73 0.67 [105]
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4. LAI Validation

Different schemes that have been used to validate the LiDAR LAI include direct comparison
methods, scaling-up strategies, and the intercomparison of multiple products.

Field measurements, typically limited to a point or very small area, are vital because they are
the basis for all validation studies. Based on the direct comparison method, field measurements
and the LAI from different LiDAR systems are directly compared. The field LAI obtained from
destructive sampling was used to validate the TLS LAI and LVIS LAI; the LAI derived from LiDAR
and destructive sampling were in excellent agreement [18,32]. In addition, the LAI from digital
hemispherical photography (DHP) and LAI-2200 are commonly used to validate the LAI from different
LiDAR platforms [19,23,30,107,108]. Because of the spatial scale mismatch between field measurements
and remote sensing estimation, it is usually difficult to use this method for global validation.

Based on the scaling-up strategy, the field LAI is scaled up via different platforms for the
validation with SLS LAI products, thus bridging the scale differences between the field LAI and the
LAI derived from SLS. The TLS provides an additional indirect ground-based technique to estimate
the LAI. The LAI derived from TLS can be used as field measurement [109–111]. The LAI can be
validated using scaling-up strategy at multiple spatial scales through LiDAR remote sensing [91].
First, the ground-based (DHP, LAI-2200, TLS) LAI is related to aircraft observations of the LAI. Then,
the ALS observations of the LAI are used to validate the LAI derived from SLS tracks that intersect
the aircraft coverage. The upscaling validation method has been widely used in the remote sensing
community [112]. However, this method may be affected by several factors. First, ground LAI
derived from photos, TLS, and LAI sensors may be inconsistent among themselves. Second, errors are
introduced by the scale mismatch between ground field data and ALS. Third, different data sources are
based on varying spatial footprints and viewing geometries, which may complicate LAI validation.

Multiple products can be compared to determine the relative quality of land products.
The intercomparison method has been used as a proxy to assess the temporal and spatial consistency.
The LiDAR-derived LAI values are aggregated to the resolution of the passive satellite LAI products to
evaluate all LAI data. The GLOBCARBON [19] and MODIS [113] LAI products have been used to
compare with the LiDAR-derived LAI map. The registration between LiDAR and the satellite LAI
maps is important because misregistration could severely bias the pixel-by-pixel comparison.

Current validation studies are mostly performed at local scales. The results indicate a significant
correlation between airborne LiDAR and the field-derived LAI at the plot scale in a tropical forest,
with R2 = 0.58 and RMSE = 1.36 [96], and a moderate agreement (R2 = 0.63, RMSE = 1.36) between LVIS
and the field-derived LAI at tower footprint scales in tropical rainforest [18]. Based on a large-scale
validation method, R2 and RMSE values of 0.69 and 0.33 were obtained between the LVIS LAI and
GLAS LAI at GLAS tracks in the Sierra National Forest [91]. The LiDAR-derived LAI was evaluated
using the MODIS LAI product, yielding R2 and RMSE values of 0.86 and 0.76 in mixed coniferous
forest [113]. However, the LAIs derived from ALS or SLS still lack sufficient ground validation and
intercomparison validation using existing global LAI products generated from passive optical sensors.
The LiDAR also has the capability to provide the LAI vertical profile, from site [18] to regional and
continental [15,114] scales. Due to the lack of ground-measured data on the LAI vertical profile of the
forest, the LAI vertical distribution map has not been completely validated. Existing validation work
is mainly based on limited site or observation tower data [114].

5. Impact Factors

Several factors should be considered in the estimation of LAI with LiDAR technology (Table 4).
The gap fraction theory is based on the assumption of a random distribution of foliage elements [6].
However, in reality, leaves are generally clumped rather than randomly distributed, and thus the
LAI estimation must be corrected by considering the error caused by foliage clumping, which leads
to underestimations of the LAI [37]. Therefore, several traditional clumping algorithms based on
the gap size analysis theory [115] and gap size distribution method [37] were implemented in TLS.
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The vertical distribution profile of the forest CI can also be calculated from TLS and used to correct
the clumping effect of the LAI at different heights [116]. These studies proved that the CI can be
successfully estimated using TLS [117]. In contrast, the estimation of the CI using ALS and SLS is
rare. Yang et al. [78] presented a physical method with the gap fraction model to estimate the LAI
by correcting the between-crown clumping in discontinuous forest using GLAS data. Based on the
correction, R2 and RMSE values of 0.83 and 0.39, respectively, were obtained. However, it is difficult
to use SLS to quantify the clumping because the CI is highly variable and changes even in the same
forest. The footprint size of ALS and SLS is too large for the detection of small gaps. Therefore,
the quantification of the clumping effect remains an ongoing task in ALS and SLS.

The height threshold and sampling size of LiDAR data are key factors affecting the accuracy of
the LAI estimation [83,118]. However, there is no optimal sampling size and height threshold when
estimating the vegetation LAI. In some cases, the height threshold of LiDAR was set to a constant
value, such as 2 m, to separate the ground and canopy returns in ALS point cloud data [22] and
separate the ground and canopy when calculating a ground-to-total energy ratio in GLAS [84,89].
A threshold of 3.6 m was used to calculate the LPM value in a temperate forest [19]. In other cases,
the height threshold of LiDAR was related to the setup height of the ground measurement. The setup
height of the fisheye camera (i.e., 1.25 m) was used to separate ground and vegetation returns [119].
For the LiDAR plot radius, a common choice is to use the same LiDAR sampling size as that used to
collect field plot data [94,120]. On the other hand, the sampling size of LiDAR is related to the canopy
height. A radius size of the LiDAR sampling scale equivalent to the entire forest canopy height [24]
and 0.75 times the tree height [17] was used to calculate the LPM value. However, the choice of a
variable radius is difficult: optimum values range from 75% to 100% of the canopy height [19,119].
In summary, the accuracy of the LAI estimation using LiDAR strongly depends on the height threshold
and sampling size [121]. However, the height threshold and sampling size are site-specific, and there
are no clear guidelines for the determination of an appropriate value.
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Table 4. Factors affecting the LAI estimation from LiDAR data.

Factor Description Mitigation Method Advantages and Disadvantages References

Clumping effect
Leaves are not randomly distributed but

clumped, which may cause the
underestimation of the LAI.

Estimate CI and make clumping
correction.

The CI can be successfully estimated
using TLS, whereas it is rare to estimate

CI from ALS and SLS.
[37,78,115,116]

Footprint size

The relative contribution of the
vegetation and terrain signal of

waveforms is different under different
footprint sizes.

Study the influence of footprint size
by LiDAR model and obtain optimal

footprint size.

A large footprint size contains sufficient
gaps for the detection of the underlying

ground. However, the ALS and SLS
footprint sizes are too large for the small

gap detection.

[34,122]

Height threshold and
sampling size

The height threshold is critical for the
separation of ground and vegetation
returns. The sampling size affects the

LiDAR and field LAI comparison.

Set the height threshold similar to the
ground measurement, and the

sampling size the size of field plot.

The accuracy of the LAI estimation is
highest with the optimal height threshold
and sampling size. However, the optimal

value is site-specific.

[17,19,24,119,121]

Occlusion
Vegetation elements intercept laser beams
and stop them from being in contact with

further material along the path.

Acquire data from multiple TLS
scans, or combine TLS and ALS data.

Easy to eliminate blind regions and
overcome the occlusion effects. However,

it will increase the measurement work
and the data size.

[32,92]

Topography

The slope can blur the boundary between
vegetation and ground return and affects

the accuracy of the canopy vertical
structure estimation.

Filter out larger slopes, or
compensate the terrain effect using
slope-adaptive waveform metrics.

Can compensate the terrain stretching on
the forest waveform. However, the
performance decreases for complex

terrain.

[71,77,91,110,123]

Types of return

LiDAR returns are from different canopy
layers; using all returns is more effective
than using only the first and last returns

in deriving LPM.

Calculate LPMs using all returns.

Increases the effective pulse density and
the sensitivity to smaller gap sizes.

However, the method is not applicable
for LiDAR intensity data.

[22,87,88,95,124,125]

Voxel size Different voxel sizes significantly affect
the gap fraction and LAI estimation.

Determine voxel size based on the
minimum element size of the object,
or based on the TLS characteristics.

Can obtain higher LAI accuracy with the
optimal voxel size. However, it is

difficult to determine the optimal voxel
size, which depends on many factors.

[92,126,127]

Woody material
Woody materials (i.e., stems and
branches) may lead to the LAI

overestimation.

Joint use of leaf-on and leaf-off LiDAR
data; or make use of the geometric
and radiometric features in TLS.

Foliar and woody materials can be
effectively separated using TLS.

However, the classification method used
in TLS is not applicable to ALS and SLS.

[37,128–130]
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The relative contribution of the vegetation and terrain signal of waveforms is different under
different footprint sizes [71]. Pang et al. [122] studied the effects of footprint size on the precision of
canopy height estimates by means of simulation. They found that footprints with a diameter between
25 m and 30 m would be ideal to level the effects of vegetation height and terrain slope on waveform
length. Milenković et al. [131] studied the influence of footprint size on the precision of forest biomass
estimates from spaceborne waveform LiDAR. They recommend an optimal footprint size that is similar
to the size of the field plots, i.e., 20 m diameter in their case. Dubayah et al. [34] demonstrated that
~25 m is the optimal footprint size for GEDI. The suggestion is that the size is large enough to capture
the entire canopy of larger diameter trees and small enough to limit the vertical mixing of vegetation
and ground signals caused by surface slope.

Occlusion plays an important role in the spatial distribution of the density of the point cloud [92,132].
Occlusion effects are caused by material intercepting laser beams and stopping them from being in
contact with material along their path, which results in a relatively lower inner-canopy point density
and underestimation of the LAI [43]. Occlusion effects typically occur when single-scan LiDAR is
applied to complex forest canopies. The addition of scans is an effective strategy to alleviate the
occlusion [133]. Multiple scans can be used to obtain detailed information on the 3D distribution of the
canopy, leading to an increase in the amount of data for forests and contributing to the solution of
problems associated with a short zenith range [126,127,134]. However, multiple scans significantly
increase the field work and size of the datasets, and biophysical parameter estimations cannot be
directly compared with other instruments. The combination of TLS and ALS data is another strategy
that may solve occlusion effects for very dense crowns because the profiles obtained by ALS and TLS
complement each other, eliminating blind regions and yielding more accurate LAD profiles than by
using each type of LiDAR alone [135].

Topographic effects can lead to significant errors in the vertical distribution of the plant area,
with an RMSE up to 66.2% [134]. The slope affects the accuracy of the vertical LAI distribution because
it can blur the boundary between vegetation and ground signals in a LiDAR waveform. The ground
peak gradually decreases and finally disappears as the terrain slope increases, making their separation
difficult and potentially leading to errors in the LAI and VFP estimates. To identify the accurate ground
return and minimize the slope-induced error, Yang et al. [123] extended the geometric optical and
radiative transfer (GORT) vegetation LiDAR model to consider the effect of the surface topography.
The slope effect on waveforms was then assessed using model simulations. Filtering out a larger slope
is an effective method to reduce the effect of the terrain [136,137]; for example, GLAS footprints were
filtered using a cutoff slope threshold of 20 [91]. Although significant progress has been made regarding
the use of waveforms on slopes below 20◦, the effect of the terrain slope on the estimation of forest
parameters has not been thoroughly addressed, especially for steep slopes (i.e., >20◦). Wang et al. [71]
proposed slope-adaptive waveform metrics for the estimation of the forest aboveground biomass (AGB).
They used a model to calculate waveforms of bare ground with known terrain slopes to compensate the
terrain effect. However, the model performance decreases for complex terrains including bumps or pits.
The terrain conditions are always simpler for small footprints than for larger footprints. The waveform
LiDAR with a small footprint may limit the vertical mixing of vegetation and ground signals caused
by the slope [122].

LiDAR returns can be reflected back from different layers of canopies, e.g., crown surfaces,
inside or below top crowns, and the ground [19]. For various LAI estimation methods, it is important
to note that the LPM is sensitive to the gap fraction regardless of the gap size. The penetration rate
based on the first return might be insensitive to small gaps because the ALS footprints are too large
to penetrate such gaps [87]. Heiskanen et al. [124] reported that the LPM utilizing the first and last
returns to derive the ALS penetration rate is more sensitive to the gap fraction variations because the
returns from different part of canopy are considered. Therefore, the LPMs calculated from both the
first and last returns may be the best predictors of LAI [95]. Richardson et al. [22] further proved that
the ALS penetration rate calculated from the first and last returns strongly correlates with the field
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LAIeff estimates (R2 > 0.9). Hence, the LPM utilizing the first and last returns is recommended for
LAI estimation.

The voxelization procedure involves the specification of the voxel size, which has a marked impact
on the LAI estimation, because it significantly affects the gap fraction estimation [126]. Different voxel
sizes have been used to produce voxel-based tree models. Van der Zande et al. [92] defined voxel size
based on the minimum size of the object element, which ensures a number of point cloud data in each
voxel. However, several small gaps between leaves can easily be overlooked. More recently, voxel size
has been defined based on TLS characteristics [127]. For example, the voxel size is defined depending
on the range and scan resolution of the TLS [32]. Grau et al. [138] assessed the effect of the voxel size
on LAI estimation using a simulation framework based on the discrete anisotropic radiative transfer
(DART) model. They found that voxel size is site-specific, and to obtain good accuracy of estimation,
voxel size should be varied in different forest scenes.

Because woody components are sources of error in indirect LAI estimations, the separation of foliar
and woody materials is crucial for the accurate estimation of the LAI [139]. The quantitative evaluation
of the contribution of non-photosynthetic canopy components to the LAI will be helpful to improve
the LAI estimation accuracy. A possible approach is the joint use of leaf-on and leaf-off LiDAR data.
The wood area index (WAI) is generally estimated during leaf-off periods and subtracted from the total
plant area index. First, the effective woody area index (WAIeff) is estimated under leaf-off conditions,
and the effective PAI (PAIeff) is estimated under leaf-on conditions. Subsequently, the LAIeff is obtained
by subtracting WAIeff from PAIeff [110]. However, this method is not suitable for evergreen vegetation
such as coniferous forests. Another approach is based on the use of leaf-on LiDAR data and makes
use of the geometric and radiometric features. Geometric features (linear features, random features,
and surface features) have been utilized to quantitatively evaluate the contribution of woody material to
the LAI using TLS point cloud data [128,140], and the shape, normal vector distribution, and structure
tensor of TLS data features have been used to separate various tree organs [129]. Zhu et al. [130]
proposed an adaptive radius near-neighbor search method to accurately separate foliar and woody
materials in a mixed forest using TLS point cloud data. They reported that the use of a combination of
radiometric and geometric features outperforms either one of them alone, yielding an average overall
accuracy of 84.4% for mixed forests. However, due to the lower point density and bigger footprint of
ALS and SLS relative to TLS, the classification method used in TLS is not applicable to ALS and SLS.
The quantitative evaluation of the contribution of non-photosynthetic canopy components to the LAI
of a forest stand must be focused on in the future.

6. Future Prospects

The major advantage of LiDAR technology is its capability to characterize the vertical vegetation
structure at different heights [15]. LiDAR-derived LAIs have been used in the validation of the passive
satellite LAI products [19,112]. We expect the use of LiDAR LAI will increase with the growing
availability of high-quality LAI data derived from LiDAR. Different LiDAR data provided by the
different lidar systems have been used to estimate LAI. However, there is no universal LiDAR metric
for LAI estimation; therefore, the selection of proper LiDAR metrics is crucial for LAI estimation.
More field measurements and novel LiDAR metrics are necessary for improved LAI estimation in
the future.

The ALS observations act as a validation link between field and satellite data [91]. However, the
relatively high cost of ALS flight mission has significantly limited its applications. As an alternative
platform for ALS, the unmanned aerial vehicle (UAV) costs less but can provide denser points. Therefore,
UAV provides an effective platform for LAI estimation [141] and acts as a validation link between field
and satellite data [21]. The TLS provides an additional indirect ground-based technique to estimate the
LAI [109–111]. However, TLS data acquisition is highly time-consuming and labor-intensive. A new
backpack LiDAR system was developed for efficient and accurate forest inventory applications, and the
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derived LAD fits well with the TLS estimates (R2 > 0.92, RMSE = 0.01 m2/m3) [142]. A backpack LiDAR
system may provide an alternative platform for TLS data acquisition.

The increasing availability of LiDAR data will greatly enhance the LAI estimation. Fusion of
multiple LiDAR data from different systems, platforms, and temporal observations is also a continued
research direction [14].

7. Conclusions

In this study, the LiDAR technology, LAI retrieval and validation methods, and factors affecting
LAI estimation were reviewed. The use of LiDAR has become an operational data collection option for
the retrieval of the LAI. All TLS, ALS, and SLS systems can provide the LAI and VFP.

LAI is mainly estimated from LiDAR data by means of the correlation with the gap fraction and
contact frequency, and LAI is also estimated from the regression of forest biophysical parameters
derived from LiDAR, such as LiDAR height and foliage density metrics. The TLS provides detailed
information on the within-canopy structure at individual tree or stand levels and accurate LAI and
VFP distribution within plots. However, TLS data processing is complex and the spatial coverage of
TLS is limited. The ALS covers relatively large areas in a spatially contiguous manner and provides
multiscale LAI estimation. However, the description of the within-canopy structure is limited because
the penetration of the ALS point cloud data is poor in dense vegetation. The SLS provides information
regarding the canopy structure with near-global coverage and thus has the potential to produce the
global LAI and VFP. However, the accuracy of LAI estimation based on a large-footprint waveform is
affected by the terrain. In addition to the limitation of the LiDAR instrument itself, several factors
should also be considered in the estimation of LAI with LiDAR technology. Clumping and wood are
common factors for all LiDAR systems. The LAI estimation is also affected by occlusion, and voxel size
for TLS; sampling size, height threshold and sampling size, and types of return for ALS; and footprint
size and topography for SLS. Quantification of these factors remains an ongoing task for LiDAR
LAI estimation.

Direct comparison methods, scaling-up strategies, and the intercomparison of multiple products
are used to validate the LiDAR LAI. The results show that the LAI derived from LiDAR and reference
data were in good agreement. However, current LiDAR LAI validation studies are mostly performed
at local scales, such as limited site or observation tower.

Remote sensing techniques have provided powerful and effective tools for estimating the spatial
distribution of LAI for large areas. The LAI and VFP have been produced at a large scale using
ICESat-1/GLAS, whereas the operation of ICESat-1/GLAS was stopped in 2009. The ICESat-2/ATLAS
and GEDI are expected to provide vegetation structure information and large-scale LAI estimates.
The usage of LiDAR is expected to increase based on the capability to provide the LAI vertical profile.
Future research should explore LiDAR remote sensing inversion with respect to the LAI and VFP,
quantitative analysis, and the large-scale validation of the LAI and VFP.
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131. Milenković, M.; Schnell, S.; Holmgren, J.; Ressl, C.; Lindberg, E.; Hollaus, M.; Pfeifer, N.; Olsson, H. Influence
of footprint size and geolocation error on the precision of forest biomass estimates from space-borne
waveform LiDAR. Remote Sens. Environ. 2017, 200, 74–88. [CrossRef]

132. Lei, L.; Qiu, C.; Li, Z.; Han, D.; Han, L.; Zhu, Y.; Wu, J.; Xu, B.; Feng, H.; Yang, H.; et al. Effect of Leaf
Occlusion on Leaf Area Index Inversion of Maize Using UAV–LiDAR Data. Remote Sens. 2019, 11, 1067.
[CrossRef]

133. Zheng, G.; Moskal, L.M. Spatial variability of terrestrial laser scanning based leaf area index. Int. J. Appl.
Earth Obs. Geoinf. 2012, 19, 226–237. [CrossRef]

134. Calders, K.; Armston, J.; Newnham, G.; Herold, M.; Goodwin, N. Implications of sensor configuration and
topography on vertical plant profiles derived from terrestrial LiDAR. Agric. For. Meteorol. 2014, 194, 104–117.
[CrossRef]

135. Hosoi, F.; Nakai, Y.; Omasa, K. Estimation and Error Analysis of Woody Canopy Leaf Area Density Profiles
Using 3-D Airborne and Ground-Based Scanning Lidar Remote-Sensing Techniques. IEEE Trans. Geosci.
Remote Sens. 2010, 48, 2215–2223. [CrossRef]

136. Ballhorn, U.; Jubanski, J.; Siegert, F. ICESat/GLAS Data as a Measurement Tool for Peatland Topography and
Peat Swamp Forest Biomass in Kalimantan, Indonesia. Remote Sens. 2011, 3, 1957–1982. [CrossRef]

137. Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar.
J. Geophys. Res. Biogeosci. 2011, 116, 12. [CrossRef]

138. Grau, E.; Durrieu, S.; Fournier, R.; Gastellu-Etchegorry, J.P.; Yin, T.G. Estimation of 3D vegetation density
with Terrestrial Laser Scanning data using voxels. A sensitivity analysis of influencing parameters.
Remote Sens. Environ. 2017, 191, 373–388. [CrossRef]

139. Zou, J.; Zhuang, Y.; Chianucci, F.; Mai, C.; Lin, W.; Leng, P.; Luo, S.; Yan, B. Comparison of Seven Inversion
Models for Estimating Plant and Woody Area Indices of Leaf-on and Leaf-off Forest Canopy Using Explicit
3D Forest Scenes. Remote Sens. 2018, 10, 1297. [CrossRef]

140. Ma, L.X.; Zheng, G.; Eitel, J.U.H.; Magney, T.S.; Moskal, L.M. Determining woody-to-total area ratio using
terrestrial laser scanning (TLS). Agric. For. Meteorol. 2016, 228, 217–228. [CrossRef]

141. Guo, Q.; Su, Y.; Hu, T.; Zhao, X.; Wu, F.; Li, Y.; Liu, J.; Chen, L.; Xu, G.; Lin, G.; et al. An integrated UAV-borne
lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote Sens. 2017, 38,
2954–2972. [CrossRef]

142. Su, Y.; Guo, Q.; Jin, S.; Guan, H.; Sun, X.; Ma, Q.; Hu, T.; Wang, R.; Li, Y. The Development and Evaluation of
a Backpack LiDAR System for Accurate and Efficient Forest Inventory. IEEE Geosci. Remote Sens. Lett. 2020.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agrformet.2011.10.006
http://dx.doi.org/10.1109/TGRS.2015.2481492
http://dx.doi.org/10.3390/rs8110942
http://dx.doi.org/10.1016/j.jag.2017.09.004
http://dx.doi.org/10.1016/j.rse.2017.08.014
http://dx.doi.org/10.3390/rs11091067
http://dx.doi.org/10.1016/j.jag.2012.05.002
http://dx.doi.org/10.1016/j.agrformet.2014.03.022
http://dx.doi.org/10.1109/TGRS.2009.2038372
http://dx.doi.org/10.3390/rs3091957
http://dx.doi.org/10.1029/2011JG001708
http://dx.doi.org/10.1016/j.rse.2017.01.032
http://dx.doi.org/10.3390/rs10081297
http://dx.doi.org/10.1016/j.agrformet.2016.06.021
http://dx.doi.org/10.1080/01431161.2017.1285083
http://dx.doi.org/10.1109/LGRS.2020.3005166
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	LiDAR Technology 
	Types of LiDAR Systems 
	Data Preprocessing 

	LAI Retrieval Methods 
	Gap-Based Methods 
	Contact-Based Methods 
	Biophysical Regression Methods 
	Model Inversion Methods 
	Method Comparison 

	LAI Validation 
	Impact Factors 
	Future Prospects 
	Conclusions 
	References

