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Abstract: Harnessing the fire data revolution, i.e., the abundance of information from satellites,
government records, social media, and human health sources, now requires complex and challenging
data integration approaches. Defining fire events is key to that effort. In order to understand the spatial
and temporal characteristics of fire, or the classic fire regime concept, we need to critically define fire
events from remote sensing data. Events, fundamentally a geographic concept with delineated spatial
and temporal boundaries around a specific phenomenon that is homogenous in some property, are key
to understanding fire regimes and more importantly how they are changing. Here, we describe
Fire Events Delineation (FIRED), an event-delineation algorithm, that has been used to derive fire
events (N = 51,871) from the MODIS MCD64 burned area product for the coterminous US (CONUS)
from January 2001 to May 2019. The optimized spatial and temporal parameters to cluster burned
area pixels into events were an 11-day window and a 5-pixel (2315 m) distance, when optimized
against 13,741 wildfire perimeters in the CONUS from the Monitoring Trends in Burn Severity record.
The linear relationship between the size of individual FIRED and Monitoring Trends in Burn Severity
(MTBS) events for the CONUS was strong (R? = 0.92 for all events). Importantly, this algorithm is
open-source and flexible, allowing the end user to modify the spatio-temporal threshold or even
the underlying algorithm approach as they see fit. We expect the optimized criteria to vary across
regions, based on regional distributions of fire event size and rate of spread. We describe the derived
metrics provided in a new national database and how they can be used to better understand US fire
regimes. The open, flexible FIRED algorithm could be utilized to derive events in any satellite product.
We hope that this open science effort will help catalyze a community-driven, data-integration effort
(termed OneFire) to build a more complete picture of fire.

Keywords: data harmonization; event-builder algorithm; fire regimes; open fire science; satellite
fire detections

1. Introduction

What is a fire? Defining the spatial and temporal boundaries of fire events is critical for
understanding the drivers and trends in fires [1], ecological consequences [2], and adaptation
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implications [3]. Answering this question is fundamental to defining fire regimes, and the spatial and
temporal characteristics of fire events in a strict sense [4-6], i.e., size, frequency, intensity, severity,
seasonality, duration, and rate of spread. Remote sensing has increased our capacity to quantify some
of these characteristics at large spatial scales, such as frequency, intensity, size, and severity [7-9].
However, there is an even greater potential to inform our understanding of changing fire and resilience
of ecosystems and society if we are able to delineate events in remote sensing fire products that preserve
the temporal characteristics. We can then better understand whether ecosystem state transitions
depend on fire intensity and speed or how communities in the wildland-urban interface (WUI) may be
vulnerable to rapid fire spread.

There are generally three classes of information that satellite sensors capture about fire activity:
active fires based on thermal threshold exceedance [10-12], fire radiative power as a metric of heat
flux [13-15], and a burned area derived from a change detection algorithm [16-18], sometimes also
informed by active fire detections [19]. These fire properties are estimated at the pixel level, which
ranges in size for these products from 10 s to 1000 s of meters. In order to explore fire activity patterns,
these pixel-level detections are aggregated in some way, necessitating the assumption of homogenous
fire characteristics across that pixel. Global burned area products tend to underestimate total burned
area due to missing small fires [20] and within-fire burned area due to underestimation of burned areas
within an event [21]. Further, global scale studies explore total burned area summed across larger
units or the density of hot pixels as a metric of fire frequency [8,22-24], which leaves an understanding
of actual events missing. Given the abundance of satellite fire data (e.g., Table 1), and that they do
not “see” the same aspects of fire [12], we fundamentally need landscape-scale event delineation to
integrate across products and build a greater understanding of how fire regimes vary at regional and
global scales [25]. With event-level delineations, we can then also calculate a critical but less understood
property of fire regimes—the daily fire spread rate. MODIS-based burned area products [26,27] use
sub-daily images to estimate the date a pixel burned. As such, they are uniquely suited to provide
estimates of fire spread rate and duration, but only if we can say which pixels are all part of the same
event. There have been some attempts to characterize fire spread using active fire products, but the
code and resulting data products are not publicly available [28]. Defining events from MODIS-based
products enables capturing fire events, from small to large events at a global-scale, providing key
metrics on fire regimes and how they are changing.

Table 1. Studies using spatio-temporal moving window algorithms for delineating fire events.

Satellite Fire . o o
Study Purpose Product Spatial Criteria Temporal Criteria
Examined
. environmental and
Archibald et al. anthropogenic MODIS MCD45 * Adjacency 8 days
2009 . .
drivers of fire in
South Africa
Tested whether
cheatgrass
MODIS MCD45, .
Balch et al. 2013 occurrence RMGSC $ 2 pixels (1000 m) 2 days
increases fire
activity
Hantsen et al. 2015 Explored global fire MODIS MCD45 Adjacency 14 days

size distribution

Aggregated raster
grids from burn
date to event
objects

Frantz et al. 2016 MODIS MCDé64 * 10 pixels (5000 m) 5 days
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Table 1. Cont.

Satellite Fire . .. I
Study Purpose Product Spatial Criteria Temporal Criteria
Examined global GFED4s %, MODIS  Local spread rate x Spatlally varymg
Andela et al. 2017 fire activi MCD64 distance fire persistence
ty threshold
Derived patch
functional traits
and other MODIS MCDeé4, .
Laurent et al. 2018 morphological MERIS 1 pixel (500 m) 3,5,9,and 14 days
features of fire
events
Andela et al. 2018 Created global fire MODIS MCD64 1 pixel (500 m) Spatially varying

atlas product

* MCD45: MODIS Collection 5.1 burned area product; * MCD64: MODIS Collection 6 burned area product;
$ RMGSC: USGS Rocky Mountain Geographic Science Center fire perimeter data; * GFED4s: Global Fire Emissions
Database version 4 product.

There are several different approaches for delineating fire events based on proximity of burned
area or hot pixels in space and time. Some studies have clustered the MODIS active fire hotspots
(MODIS MOD14) to delineate events in Europe and northern Africa [29] and Indonesian tropical
rainforests [26,27] to understand what drives large fires. Others have used clustering of MODIS
burned area (MODIS MCD64) pixels [7,8,30,31]. Most studies require pixel adjacency (Table 1),
but a more relaxed spatial criteria facilitates exploring fires that have unburned patches within their
perimeters—critical refugia that are necessary for regeneration [21]. This approach is also less likely to
over-segment events that are imperfectly detected, due to low fire severity or cloudiness, for example.

Given the number of studies that use the MODIS burned area product (e.g., studies in Table 1) and
emerging new fire data products [12,17,25-27,32] that conduct some sort of event delineation as part of
the processing, there is a great need to develop an open and well-documented algorithm for defining
fire events from remotely sensed detections of fire. Moreover, event delineation enables joining of
different data products to build a more complete picture of regional and global fire. Better delineation
of the boundaries of events could lead to better estimates of total burned area, as well as exploration of
derived spatiotemporal metrics around events that constitute the fire regime (e.g., event size, event
shape, ignition point, unburned refugia within a fire, and fire spread rate). Many of the algorithms
that have been developed previously were used and optimized for one specific analysis, and the code
was not published for further development and reuse [7,33-35]. Furthermore, decisions were often
made that lessened the computational cost, but relied on assumptions that are often not universally
applicable. Most notably, data were often aggregated into a single yearly layer, which resulted in the
artificial aggregation of pixels that burned multiple times in one year, and the artificial segmentation of
events that started in one year and ended in the next [34-36].

Further, there is a need to better validate the temporal and spatial thresholds, as this selection can
substantially alter the number of detected fire events. Fire metrics can be sensitive to how boundaries
are delineated [37]. Moreover, we expect the optimum temporal and spatial thresholds to vary based
on size distribution and spread differences that will vary across ecoregions (e.g., fast, large grassland
fires vs. small, slow temperate forest fires) and land use types (e.g., agricultural fires vs. deforestation
fires). Even so, ground-based delineations of fire perimeters also have their challenges, and incident
command delineations may overestimate wildfire perimeters, as delineating unburned patches is
difficult on the ground. Additionally, multiple fire patches may start independently and in proximity
(e.g., when a lightning storm starts multiple events), which then merge into one fire complex.

Here, we (i) develop an open, refined, and adaptable algorithm for defining events; (ii) derive
events and companion metrics for fires in the CONUS from the MODIS MCD64 burned area product,
based on the optimum spatial and temporal thresholds; (iii) validate the MODIS-derived events against
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the Monitoring Trends in Burn Severity (MTBS) product, which is manually derived from Landsat
imagery [38]; and (iv) demonstrate how defining events enables us to explore additional metrics of
the fire regime across the US. Here, we define an event [39] as a geographic concept with delineated
spatial and temporal boundaries around a specific phenomenon that is homogenous in some property
and distinct from adjacent areas. The algorithm is designed in a way that makes it adaptable to data
source, regional context, and even event type: the spatiotemporal criteria can be altered, and it can
be used with newer burned area or active fire products (e.g., Fire_cci based on MODIS images at
250 m resolution [26] or VIIRS [12]), or even different types of phenomena (e.g., bark beetle outbreaks,
or floods).

2. Materials and Methods

2.1. Study Area and Data Acquisition and Processing

The study area was CONUS. We chose this study area because of the availability of other fire
datasets like MTBS [38], which we were able to use to gauge the accuracy of our aggregation of burned
pixels to events from the MCD64 dataset. We used the MODIS Collection 6 MCD64 burned area
product [27] [available at ftp://fuoco.geog.umd.edu/MCD64A1/C6/]. These data contain five layers at
500-m resolution: burn date, first day, last day, a quality assessment, and error. The data are available
worldwide, via a sinusoidal projection that is divided into 648 tiles (268 of which are terrestrial),
each with 2400 rows and columns at 463-m resolution. We downloaded the entire monthly time series
available for each tile that overlaps with CONUS, and extracted the burn date layer.

2.2. Accounting for Pixels That Burn More Than Once Per Year (Intra-Annual Reburns)

Some other studies that have aggregated pixels into fire events from the MODIS burned area
product have aggregated the input data to a yearly time-step [34,35], taking either the earliest or
latest burn date in the case of pixels that burn twice in one year. This assumes a minimal occurrence
of pixels that actually burn twice in one year (e.g., the land burns first in spring and then again in
fall). Aggregating the monthly data to yearly time steps makes the processing of the data much less
complex and computationally costly (i.e., it allows for a two-dimensional moving window). However,
aggregation at a yearly timescale presents two problems. First, the occurrence of pixels that burn more
than once within a year would result in separate events being collapsed, resulting in an underestimate
of burned area for the study area and an overestimate of duration. Second, fires that burn from one
year to the next become arbitrarily split into two events.

Prior efforts have justified ignoring intra-year or intra-season reburns based on an occurrence of
around 1% [34,35]. However we found that when we examined the study area tile by tile, some areas
experienced much greater rates of intra-year reburns. To investigate whether reburned pixels would
have a confounding effect on our data, we examined the occurrence of pixels that burned multiple times
per year for each of the tiles overlapping CONUS for each year. We converted each monthly tile in
CONUS to binary (1 for burned, 0 for unburned), summed each monthly pixel per year, and calculated
the percentage of pixels that burned more than once per year, per tile. For all of CONUS (2001-2018)
except the tile that contains Florida, there were a total of 12,676 pixels that burned more than once in a
given year, or about 0.48% of pixels. The tile that includes Florida (h10v06), however, had a rate of
5% (sd 2.3%) of pixels that burned multiple times per year (Table 2). We suspect that this high reburn
occurrence is due to the year-round growing season combined with year-round occurrence of lightning
strikes and human ignition pressure. Intra-year reburns would present a problem if this algorithm
were expanded globally, because there are many ecosystems, especially in the tropics, with year-round
growing seasons combined with year-round anthropogenic ignition sources.
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Table 2. Number of reburned pixels per year, per tile calculated for 2001-2018 from the monthly MODIS
MCD64 burned area product.

Tile Mean Reburn % Std Reburn %
h08v04 0.17 0.18
h08v05 0.35 0.27
h08v06 1.35 1.05
h09v04 0.36 0.30
h09v05 0.23 0.19
h09v06 0.73 0.47
h10v04 0.12 0.09
h10v05 0.67 0.29
h10v06 5.12 2.31
h11v04 0.35 0.33
h11v05 0.32 0.35
h12v04 0.35 0.61
h13v04 0.32 0.29

Average per tile (excluding h10v06) 0.48 0.55

Because of the relatively high reburn occurrence, and also due to concern over segmenting winter
fires into multiple events, we decided not to aggregate the input rasters by year or fire season. Instead,
we created a space-time cube for each monthly tile for the entire time series, where the julian day of the
year for each pixel in each month layer was converted to a number along a continuous series starting
on 1 January 1970.

2.3. Defining Events with a Flexible, Fast Algorithm

We created a flexible, fast algorithm that automatically downloads, processes, defines events,
and calculates summary statistics for the entire coterminous United States (likely within ~30 min on a
normal laptop). To define events, we used a three-dimensional moving window to aggregate burned
pixels into distinct events. The algorithm takes as input a spatial variable, representing the number
of pixels, and a temporal variable, representing the number of days, within which to group burn
detections. It then aggregates by assigning each burned pixel an event identification number.

The data processing script downloads the entire time series of HDF files from the ftp server,
extracts the burn date layer from each monthly tile, and adds them to a three-dimensional netCDF data
cube. We used this data structure to maximize efficiency and speed. The event perimeter script reads
the netCDF file for each tile, where each band represents one month, and for each burned pixel the date
of fire detection is represented as the number of days since 1 January 1970. The netCDF file is converted
into a three-dimensional array, and the moving window traverses the array. To avoid unnecessary
computation, we did not check cells in which there was no burned area assignment throughout the
study period.

For each cell of the three-dimensional array where at least one fire detection occurred, the program
creates a mask identifying all burned pixels that fall within the spatial and temporal range of the
current cell. If the current cell is already part of an existing event, any new burned pixels are assigned
the event ID for that event. If it is a new event, the current cell and all overlapping cells are given the
next sequential event ID. If there are multiple event IDs within the mask, it means two perimeters have
grown together and they are merged into the first event ID. After the event perimeters are delineated
within each tile, all event perimeters that potentially overlap with an adjacent tile are flagged. After all
tiles are processed, the flagged events are partitioned and those that overlap spatially and temporally
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are merged. Finally, events across all tiles are merged into a final dataset and given a new sequential
event ID.

2.4. Sensitivity Analysis: Identifying the Optimal Spatiotemporal Parameters for Delineating CONUS
Fire Events

In order to find which combination of spatial and temporal variables outputs best defined fire
events for CONUS, we assessed how well the FIRED outputs matched fire perimeters from MTBS [38].
MTBS is a dataset of fire perimeters from 1984-2016 derived from Landsat satellite data. It has a
minimum size threshold of 404 ha in the western US and 202 ha in the eastern US (separated by
the 97th meridian). It documents 21,673 fire events throughout the entire US, and 13,741 in the
overlapping study area and timeframe, beginning in 2001. One problematic feature of the MTBS data
for this comparison is that fire complexes are not dealt with uniformly. Fire complexes are “two or
more individual incidents located in the same general area which are assigned to a single incident
commander or unified command [40].” In some cases, each fire patch is assigned its own ID number and
is represented as a single perimeter, and in other cases these complexes are lumped into a multipolygon
with a single ID number. To address this issue, we split all multipolygons into single polygons,
assigned unique ID numbers to each polygon, and then calculated the area for each individual polygon.
This way, our sensitivity analysis would objectively assess how individual polygons matched, without
the confounding factor of aggregated multipolygons.

We ran the fire event classifier for all spatiotemporal combinations between 1-15 days and
1-15 pixels (463-6945 m), resulting in 225 spatiotemporal combinations for CONUS. For each
combination we matched the FIRED events that were >404 ha in the west and >202 ha in the
eastern US to the associated MTBS wildfire perimeter.

An accuracy assessment was conducted for each spatiotemporal combination of the FIRED events,
based on how well they matched the MTBS events. For each unique fire polygon in the MTBS database,
we extracted the ID numbers for each FIRED event overlapping the MTBS polygon. Then, for each
unique FIRED event, we extracted each MTBS ID that overlapped. We then calculated the ratio of the
number of unique MTBS events that contained a FIRED event divided by the number of unique FIRED
events that contained at least one MTBS event, with the optimum value being one. We used this ratio
to approximate the spatio-temporal combination that minimized both over- and under-segmentation
of the FIRED events based on known MTBS fire perimeters.

Based on the ratio that minimized both over- and under-segmentation, we estimated an optimal
combination for the US of 5 pixels (2315 m) and 11 days. We calculated commission and omission
errors for both the FIRED events and the MTBS events.

2.5. Calculating Statistics for Each Event, and Daily Statistics within Events

Once the optimal spatial-temporal aggregation level was identified, we created two vector products
for CONUS: one where individual pixels were aggregated to polygons representing each fire event, and
one where individual pixels were aggregated to each date within each event. For the event-level vector
product, we calculated ignition location and date, duration, spread rate (burned area/duration), burned
area, date of maximum growth, area burned on the dates of maximum and minimum growth (the date
with the highest burned area per event), and the mean daily area burned for each event. We also
extracted the mode of the International Geosphere-Biosphere Programme land cover classification
from the MODIS MCD12Q1 landcover product for the year before the fire [41], and the Community for
Environmental Cooperation’s level 1-3 ecoregions [42], for each event (Table 3). Ecoregions are areas
where soil, climate, vegetation, and other properties of ecosystems are generally similar. The Center for
Environmental Cooperation has a nested product, with 3 levels of progressively finer grained ecoregion
delineations. For the daily-level vector product, we calculated the daily burned area, cumulative
burned area per day, days since ignition, mode landcover per day, and mode ecoregion per day,
in addition to the metrics calculated for the event-level product (Table 4). In addition, the algorithm
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has a third output: a table with each burned pixel as a single row, with coordinates, burn date, and the
event identification number derived from the algorithm. This raw output is provided so the end-user
can use and manipulate the raw data in any way they see fit.

Table 3. Attributes included in the event-level FIRED product.

Attribute Units
Ignition date, day of year, month, year, location
Duration days
Burned Area km?2, ha, acres, pixels
Fire Spread Rate pixels/day, kmz/day, ha/day, acres/day
Maximum, Minimum, and Mean Spread Rate km2/day, ha/day, acres/day, pixels/day, date (max only)
Land Cover (for the year before the fire) mode land cover classification/event
Ecoregion mode ecoregion, Levels 1-3

Table 4. Attributes included in the daily-level FIRED product.

Attribute Units
Daily Burned Area km?2, ha, acres, pixels
Daily Landcover mode land cover classification / day
Daily Ecoregion mode ecoregion, Levels 1-3
Cumulative Burned Area km?, ha, acres, pixels
Ignition Date (of the whole event) date
Last Burn Date (of the whole event) date
Duration (of the whole event) days
Event Day days from ignition date
Percent Total Area percent (%)
Percent Cumulative Area percent (%)
Fire Spread Rate (of the whole event) pixels/day, kmz/day, ha/day, acres/day

2.6. Comparison of FIRED Events to MTBS Events and the National Interagency Fire Center Estimates

In order to understand how well the FIRED algorithm delineated event size, we compared the
estimates of burned area from FIRED events to the estimates of burned area for MTBS events for the
subset of events that were captured by both products. Because MTBS does not account for unburned
patches within a fire perimeter when they calculate burned area, many burned area estimates reported
by MTBS are likely overestimations. Thus, comparing the area burned by the two products represents a
trade-off between imperfect satellite detection from MODIS and imperfect burned area reporting in the
perimeters that drive selection by the MTBS product. With those caveats in mind, we co-located those
events captured by both products (i.e., they overlapped in space and time) and compared estimated
area burned at the event level using two approaches. First, to compare all fire events, we created
a linear regression model where the FIRED-determined area burned predicted MTBS-determined
area burned. Second, to understand how that relationship varied with size class, we binned the fire
events into 50 equal size classes and created a linear model on each subset. The expectation was that
FIRED-based burned areas would be consistently less than the MTBS-based burned areas. In addition,
due to lower burn detection by MODIS for smaller fires [32], we expected the models at smaller size
classes to explain less of the variation than for large sizes. We also acquired the total yearly burned
area and fire counts from the National Interagency Fire Center (NIFC) for CONUS to understand how



Remote Sens. 2020, 12, 3498 8 of 18

FIRED and MTBS products compared to the aggregation of all reported wildfires (note, NIFC does not
include intentional land use fires or prescribed burns).

2.7. Data and Code Availability

Code for the python command line interface used to download data, classify events, calculate
event- or daily-level statistics, and write tables and shapefiles is available as the “firedpy” python
package at www.github.com/earthlab/firedpy. R code for the analysis presented here is available at
https://github.com/earthlab/modis-fire-events-delineation. R code for the sensitivity analysis, tables,
and figures is available at www.github.com/admahood/fired_optimization. Data is available at CU
Scholar [DOI: https://doi.org/10.25810/3hwy-4g07].

3. Results

3.1. Classification Accuracy Assessment

The MODIS-derived events had a 55% omission and 62% commission error, compared to the
MTBS reference dataset, based on a confusion matrix that compares when FIRED and MTBS identify
the same events (Table 5). An additional 24,163 events were detected below the MTBS size thresholds
and were not included in these calculations. The omission of 8721 events by FIRED, when compared to
MTBS, may be due to detection limitations inherent to the MODIS burned area product. For example,
clouds and/or smoke may obscure burned areas [32], low-severity burns may be obscured by intact
canopy cover in forested regions, or there may be other detection differences across ecoregions.

o FIREDrueMTBS g5, 11,412
Commission Error = = =0.62
(FIREDtmeMTBS fatse + FIREDtrueMTBS 4y ) (11,412 +7,054)

FIRED 4, MTBS7
Omission Error = fulse e = 8 721 = (0.55
(FIRED fatseMTBStrue + FIRED ;e MTBS ) (8,721 +7,054)

Table 5. Confusion matrix for comparison between FIRED events and MTBS events, where both
products were above the MTBS-determined size threshold of 404 ha in the western US and 202 ha in
the eastern US. The last column provides the number of small events that were delineated by FIRED
below these size thresholds.

MTBS True MTBS False (Commission) MTBS False (Commission)
FIRED True 7054 11,412 (over threshold only) 24,163 (under threshold only)
FIRED False (Omission) 8721 - -

3.2. Comparison to MTBS

There were approximately 3.3 times more wildfire events and 65,000 km? (18%) more burned area
captured in the FIRED product, compared to MTBS (Figure 1). The FIRED burned area represents 97% of
the National Interagency Fire Center (NIFC) reported totals from 2001-2017 (Table 6). The relationship
between area burned for the FIRED events and the MTBS events was strong (R =0.92, Figure 2A),
and the area reported by MTBS was always higher than the FIRED events (the points are all above
the 1:1 line in Figure 2A) at the event level. As event size increased, the R?> improved from below
0.6 for fires below 50,000 hectares to above 0.8 for fires over 70,000 hectares (Figure 2B). The MODIS
MCD64A1 burned area product consistently underestimated burned area reported by MTBS for fires
below 100,000 hectares. This consistent underestimation is not necessarily a flaw with the FIRED
product, rather it is partially due to the fact that MTBS does not account for unburned patches within
a fire perimeter when they calculate burned area, and burned area is consistently overestimated by
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MTBS. The burned area captured by MODIS MCD64A1, and thus FIRED, was much closer to the
NIFC totals (Table 6). This is likely because the MCD64A1 product captures many more small fires
than MTBS. However, the MCD64A1 product does not generally capture the smallest fires, below
12.6 ha [32]. There is a dramatically larger count of individual events reported by NIFC, which includes
many fires as small as 0.4 ha.

B. FIRED

Ss08s 2’

Fire Frequency
(# fires)

R

25-100

Bumed Area (km?) %
<

. 110

100250 . 0.3

250500 ® a0-50

| B ® 50
Figure 1. A comparison of the spatial distribution of fire events from the (A) MTBS and (B) FIRED
products from 2001-2017 aggregated to 50 km? pixels shows a similar distribution of fire events and
burned area in general, but the FIRED algorithm picks up many more events and burned area in the
midwest, southeastern US, and eastern Washington.

Table 6. Fire events and burned area by level one ecoregion, 2001-2016. National Interagency Fire
Center statistics compiled from https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html.

MTBS FIRED NIFC
Level 1 Events Burned Events Burned Events Burned
Ecoregions Area (km?) Area (km?) Area (km?)
Eastern
Temperate 5644 47,116 20,556 103,615 - -
Forests
Great Plains 3350 94,068 11,818 112,907 - -
Marine West 2 379 249 978 - -

Coast Forest
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Table 6. Cont.
MTBS FIRED NIFC
Level 1 Events Burned Events Burned Events Burned
Ecoregions Area (km?) Area (km?) Area (km?)
Mediterranean 368 17,971 1,432 21,251 - -
California
North
American 1739 80,430 5,689 72,012 - -
Deserts
Northern 134 2,130 141 2086 - -
Forests
Northwestern
Forested 1614 81,189 3,815 68,006 - -
Mountains
Southern
Semi-Arid 159 5,494 260 4459 - -
Highlands
Temperate 431 19,374 447 13,674 - -
Sierras
Tropical Wet 266 4818 1,394 19,424 ; ;
Forests
Com‘iﬁg‘mous 13,727 352,967 45,801 418,414 1,153,896 432,733
A 250,000 B c
1.004 1.50
200,000
o 0757 1.25
N g
g 150,000 T °
] 3 ]
_;2' l:,l 050 g 1.00
cé 100,000 E a
= &
>

50,000

o
[
@

0.001

0.75

0.50 1

0 50,000 100,000 150,000

FIRED (hectares)

200,000

)

50,000 100,000 150,000 200.000

MTBS Area (hectares)

0 50,000 100,000 150,000 200,000

MTBS Area (hectares)

Figure 2. A comparison of burned area for individual fire events delineated by both products. Panel (A)
shows the relationship between area burned for MTBS and FIRED events. While the relationship is
generally strong (R? = 0.92 for all events), it is weaker for smaller fires. For panels (B,C), we binned the
data into 50 equal size classes (each bin spans ~ 5000 hectares) and ran a linear regression (MTBS burned
area predicted by FIRED burned area) on each bin. Panel (B) shows the R? values, which do not
consistently stay above 0.8 until about 70,000 hectares. Panel (C) shows the relationship between the
slope of the regression line for each size class bin, illustrating that the MODIS MCD64A1 burned area
product consistently underestimates burned area for fires below 100,000 hectares, which may be an
artifact of MTBS, not including unburned patches within its perimeters.

3.3. Ecoregion Comparisons between FIRED and MTBS

One of the primary differences between the two products is the detection of small fires, which is a
function of the ~200-ha and ~400-ha cut-off for the eastern and western US in the MTBS product [38].
In the east and central US, where fires are generally smaller, FIRED captured 37,724 fires while MTBS
captured 11,008 fires (Figure 1, Table 5). There were several ecoregions where FIRED captured more
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events, but less burned area (e.g., in North American Deserts; Table 5). This is either due to the lack of
smaller events in the MTBS dataset, or that MTBS does not delineate unburned patches within its fire
perimeters, and so can overestimate burned area for many fires (e.g., see Figure 3).

A. FIRED events B. Global Fire Atlas events (57 events)
MTBS Name ) . ) ) .

D Moonshine Bay
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Figure 3. Comparison of (A) FIRED and (B) Global Fire Atlas delineated events for the Sour Orange
fire (started 9 February 2007), the Moonshine Bay fire (started 24 February 2007), and a third unnamed
event, FIRED event #29790 (started 28 December 2007, and continued into March of 2008). The FIRED
product joins the two intra-year burns (#25211) and delineates a third event (#29790) that reburns
some of the same pixels. The dark outlines, bold and dashed, show the MTBS fire perimeters for the
Sour Orange and Moonshine Bay fires. Note that MTBS does not include unburned patches within
perimeters. Panel (B) shows the Global Fire Atlas (with an abridged legend showing 3 of 57 colors),
which segments the same MODIS burned area pixels into 57 events and provides no delineation of
overlapping reburns.

Ecoregions with the highest maximum daily fire spread rates were those with large areas of
grasslands—the Great Plains and desert ecoregions (Table 7). However, the three ecoregions with the
highest mean daily fire spread rates were all forested ecosystems—the temperate Sierras, southern
semi-arid highlands, and northern forests—and these ecoregions also had the highest variability in fire
spread rates.

Table 7. Summary statistics of daily fire spread rate by level 1 ecoregion.

Fire Events Fire Spread Rate (ha/day)
. Lower Upper

Level 1 Ecoregions n Max 95%tile Mean 95%tile SD SE

Eastern Temperate 20,556 2756 9 43 119 60 0.4
Forests

Great Plains 11,818 13,584 12 95 279 293 2.7

Marine West Coast 249 301 7 ) 143 45 238
Forest

Mediterranean 1432 5883 11 126 497 329 8.7

California
North American 5689 14,620 1 137 481 487 6.5

Deserts

Northern Forests 141 2442 10 144 614 312 26.3
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Table 7. Cont.

Fire Events Fire Spread Rate (ha/day)
. Lower Upper
Level 1 Ecoregions n Max 95%tile Mean 95%tile SD SE
Northwestern
Forested Mountains 3815 3878 10 105 415 233 3.8
Southern Semi-Arid 260 1755 17 162 550 244 15.2
Highlands
Temperate Sierras 447 6365 16 194 627 541 25.6
Tropical Wet Forests 1394 1220 8 45 117 85 2.3

4. Discussion

Remote sensing has fundamentally changed our ability to quantify fire, and has consequently
challenged how we define fire events. The active fire, burned area, and fire radiative power and
severity products [12,14,15,17,18,27,38] have expanded how we can conceptualize fire regimes. Key to
translating this wealth of information is defining fire events in space and time so that we can understand
how modern fire regimes are changing. Parallel efforts such as the Global Fire Atlas (based on the
MODIS MCD64 product [27]) have converged on identifying the same need, with a key motivation to
improve global fire modeling [30]. We argue that the need is more profound, that in order to understand
how fire regimes are changing at regional to global scales we need an open, and flexible methodology to
identify events and integrate fire data across sources based on these events. This event-based approach
could be utilized to derive events in any satellite product to build a more complete picture of fire.

There are several beneficial aspects of our approach that yield more appropriate delineation of
multi-year events, small fires, complexes, and intra-annual reburns, while also providing key output
metrics, e.g., daily fire spread and pre-fire landcover. The primary difference between FIRED and other
algorithms is that FIRED uses the entire monthly time series as a space-time cube input, upon which a
three-dimensional moving window is applied, compared to aggregating fire seasons or years into one
layer, upon which a two-dimensional moving window is applied. This enables proper identification
of intra-year reburns (Table 1), and ensures that fires at the end or beginning of months or years are
not arbitrarily split into multiple events (Figure 3). Second, because the FIRED database is based
on the MODIS MCD64 burned area product, it includes fire events as small as 21 ha (i.e., the size
of a single MCD64 pixel). The MCD64 burned area product is also informed by MOD14 active fire
detections [27], which may capture events smaller than 21 ha. The MOD14 active fire product has been
shown to theoretically detect fires as small as 4 m?, although such detections are rare (~90% omission
error) [32]. Small fire events greater than 12.6 hectares are more likely the events that are captured by
the MOD14 active fire product (10% omission error), and by extension the MODIS MCD64 burned area
product [32], and therefore are reflected in FIRED. The MTBS database, in contrast, has a minimum
threshold of 202 ha east and 404 ha west of the 97th meridian. Having small fires expands our ability
to understand how fire size and burned area are changing, beyond just the large events [43]. Smaller
events are difficult to capture systematically, but we know these events can be incredibly important
in the US, contributing large additional burned areas and emissions [20,44]. Third, the daily-level
product preserves the daily-scale information (i.e., daily polygons and ensuing metrics) for the larger
events. This elucidates whether large fire events are actually complexes of smaller independently
ignited fire patches, or if the large event is truly the product of a single ignition location (e.g., the Rim
Fire in Figure 4). This also allows users to link daily-level burned area data within a defined event to
daily or even sub-daily covariates (e.g., climate variables). Daily polygons should be used carefully, as
there is uncertainty associated with the burn dates estimated by the MCD64 product (Giglio 2018).
They found that 44% of burned grid cells were detected on the same day of an active fire, and 68%
within 2 days. Fourth, this product provides several attributes that are new pieces of information,
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refined across CONUS. For example, fire spread rate is a unique attribute, derived from events, which
is a critical piece of information not easily accessed in other datasets (e.g., MTBS). FIRED also provides
the landcover for the year before the fire for each event, a coarse metric of fuels information that
is critical for understanding ecosystem impacts and resilience. This annual landcover information
could enable exploration of when fire precipitates rapid vegetation transitions, particularly as woody
plant-dominated systems may lose their resilience to fire against a backdrop of warmer and drier
climates [45,46]. Last, FIRED is also the only automated, satellite-derived data product we are aware
of that captures intra-annual reburns. Intra-annual reburns will perhaps become more prevalent
in the future as the decline of resilience in some ecosystems leads to an acceleration of disturbance
regimes [47,48], particularly if novel ecosystems result from invasive, flammable plants [7,49].
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Figure 4. The 2013 Rim Fire, which lasted over a month and was more than 100,000 ha in total size
according to incident reports, as delineated by the (A) FIRED event product; (B) global fire atlas;
(C) FIRED daily event product; and (D) MTBS. The optimized spatial-temporal criteria we used allowed
us to correctly classify it as a single event, while the global fire atlas has segmented the Rim Fire into
14 separate events. The FIRED ignition point is estimated as the average location of all pixels occurring
on the first day of the event.

Another key advantage of this approach is that the algorithm is open-source and flexible; we hope
for community input and we expect it to improve over time. The spatio-temporal criteria can be altered
based on other information, regionally-specific fire perimeters such as Canada’s National Burned
Area Composite (https://cwfis.cfs.nrcan.gc.ca/datamart), or known delineations of intentional land use
fires or prescribed burns. Further, we anticipate that this algorithm has wide applicability to other
fire products and other efforts to build events based on any geospatial data that has both spatial and
temporal information. Previous studies, including this team’s previous efforts [7], have not made their
workflow and code publicly available, limiting the potential to facilitate community development of
an integrated, evolving global fire database.

With the plethora of remote sensing data about fire and fire effects, there is a great need to delineate
events at large regional and global scales. There are at least three other recent studies that have created
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fire events from the MODIS burned area product (Table 1), two of which [34,36] have created global
fire event databases. In addition to the global efforts, Frantz et al. [35] created an algorithm based on a
study area in sub-Saharan Africa that uses a top-down multilevel segmentation strategy that starts by
defining potential ignition points and gradually refines the individual object membership. All three
efforts use an approach that starts by identifying potential ignition points and grows objects from the
ignition point using only adjacent pixels. The code for the algorithm created by Andela et al. [34] is not
publicly available, and the code created by Frantz et al. [35] is available upon request. Laurent et al. [36]
created a publicly available database, and the code is also available upon request. Their output data
contains what they term fire patch functional traits, including patch area and other morphological
features, but does not preserve daily fire spread information or polygons containing the perimeter
shapes of the derived events. Our approach differs in that we use a spatiotemporal window that can
capture isolated burned pixels that may be part of the same event, but may be isolated because of the
inability of the MODIS sensor to detect burned area in the area between patches due to cloudiness,
low vegetation density, low severity, or unburned patches (i.e., fire refugia) that are important elements
of an event. It is worth noting that the spatial-temporal thresholds we derived (i.e., 11-day window
and a 5-pixel distance) are much greater than those used in most previous studies (e.g., [12,34] but
see Frantz et al. [35]), leading to less artificial truncation, or oversplitting, of events. For example,
the Rim Fire that occurred in California in 2013 was delineated into more than 10 separate events by
the Global Fire Atlas algorithm, whereas our algorithm delineated a single event that more closely
matches the MTBS delineation (Figure 4). Future improvements could include (i) validation with
smaller events, such as those contained in the US-based National Incident Feature Service dataset,
formerly Geomac [50] or others; (ii) estimates of uncertainty around start and end dates of the fire
events; (iii) regionally varying thresholds based on fire regime characteristics; and (iv) development of
an optimization process that does not rely on already existing fire perimeter polygons. In the current
study, we were able to use the MTBS database to define the optimum spatial and temporal parameters
for delineating events in CONUS. Unfortunately, these types of data do not exist for many parts of
the world. We attempted to scale the FIRED product to the entire globe, and found that our spatial
and temporal parameters were inappropriate, particularly for the savanna biome where very high
proximity of fires in space and time led to severe aggregation of events. This highlights a substantial
need for global fire perimeter data [51], or development of an optimization approach that does not rely
on these external data.

This is a unique moment in the history of fire science, given the abundance of fire data across
spatial scales, that requires the fire science community to better coordinate efforts on fire data
harmonization challenges and opportunities. We see great potential to build a community-driven,
fire data infrastructure that we term OneFire. OneFire is a coordinated architecture that would enable
a community of researchers and stakeholders to use, repurpose, and contribute to fire data, code,
and workflows. The vision for OneFire is that it will be a coordinated, community-inspired data
architecture that connects and integrates the many global, national, and regional fire databases. This is
no small task, but integrating these datasets is key to unlocking a transformation in fire science and
rapidly accelerating new discoveries about why fire regimes are changing and how societies and
ecosystems are vulnerable. There is an enormous amount of data and work relevant for fire science that
could be leveraged, if only it were open, reproducible, and scalable. For example, we anticipate that a
newly published ICS-209-PLUS dataset (an integrated database of over 120,000 incident command
reports for the U.S. from 1999-2014) could be connected to MODIS FIRED events to join physical
attributes with social impact and response on a daily scale [52]. Social media information around
wildfires could also be leveraged and provide a view of social response that previously would not have
been possible [53,54]. Additional satellite sensors and their derived products, e.g., active fire, could be
leveraged to expand the detections per event and add other key properties like fire radiative power.
Key elements of a vision for OneFire include (i) identified fire events across many datasets utilizing
the FIRED event-builder algorithm or synergistic approach the delineates events in space and time;
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(ii) integration workflows that then connect those same events across data sources to build a fuller
suite of attributes around commonly identified events; (iii) data and computational infrastructure that
allows for community contributions of data, code, and compute environments; (iv) formal linkages to
other important climate, environment, and social data sources that provide insights into driving forces
or responses; and (v) support for community building, engagement, and training that facilitates large,
diverse team science. Ultimately, no single sensor is going to provide all the information we need
about fires, and we can never anticipate all the ways that such an integrated source of fire information
will get used. OneFire will help us build a fuller, global picture of fire.

5. Conclusions

There is a clear need to derive events from remotely sensed detections of fires, as event perimeters
are a key tool for exploring how the spatio-temporal properties of fire regimes are changing [55-57]
and how resilience to fire is changing [49,58,59]. Further, there are dozens of fire products available,
for the US and globally (Table 1), that could, if combined and harmonized, shed new insights on the
drivers and consequences of changing fire. Delineating fire events is key to this process, and we argue
that this US database and algorithm offer the opportunity to begin to build OneFire, a community
data-integration effort for fire science. No one research group can predict the variables that will be
needed for all studies, and there is no one satellite that captures all the needed information about fire.
We envision that our FIRED algorithm could be optimized at different scales to best capture regional
fire size distributions. This algorithm could also be adapted for use with other satellite-based fire
products, from active fire detections to burned area products, and particularly new efforts, such as the
BAECV [17] product or VIIRS [12]. Moreover, this algorithm could be utilized with any spatiotemporal
data and is not constrained to fire data. As other efforts are built to understand natural hazards, these
efforts may help to better delineate the spatial and temporal dimensions of floods, hurricanes, disease
outbreaks, and other events. The fire science community can better harmonize fire observations for a
larger network of researchers and practitioners who need this information to help society live more
sustainably with fire.
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