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Abstract: Adaptive Kalman filters (AKF) have been widely applied to the inertial navigation system
(INS)/global navigation satellite system (GNSS) integrated navigation system. However, the traditional
AKF methods suffer from the problems of filtering instability or covariance underestimation,
especially when the GNSS measurement disturbances occur. In this paper, an enhanced redundant
measurement-based AKF is developed to improve the filtering performance. The scheme is based on
the mutual difference sequence derived from the redundant measurement of INS. By using the mutual
difference sequence, the measurement noise covariance can be estimated without being affected by the
inaccuracy estimates, hence avoiding the risk of filtering divergence. In addition, the kernel density
estimation is used to estimate the GNSS measurement noise’s probability density to detect whether
the Gaussian properties of the measurement noise are maintained. When the noise statistics are far
from Gaussian distribution, the difference sequence will be modeled as an autoregressive process
using the Burg’s method. The real variance of the difference sequence can then be updated relying on
the autoregressive model in order to avoid the covariance underestimation. A field experiment was
carried out to evaluate the performance of the proposed method. The test results demonstrate that
the proposed method can effectively mitigate the GNSS measurement disturbances and improve the
accuracy of the navigation solution.

Keywords: adaptive Kalman filter; INS/GNSS integrated system; kernel density estimation (KDE);
measurement noise covariance estimation

1. Introduction

The integrated navigation system composed of the inertial navigation system (INS) and the global
navigation satellite system (GNSS) is being widely used to provide the complete navigation states
(i.e., position, velocity and orientation) due to their complementary characteristics [1]. In the integrated
system, INS as a self-contained system can provide high-bandwidth, low short-term noise outputs,
but its output accuracy degrades over time; GNSS solutions have long-term stability in an open sky
environment, but its update rate is low and the solution accuracy suffers from degradation when
the ideal navigation environment changes. Therefore, the fusion of the INS and GNSS information
using a Kalman filter (KF) can combine their advantages so as to prevent the drifting of INS solution
and smooth the GNSS position output [2]. Furthermore, considering the different architectures for
INS/GNSS integration, nonlinear filters such as extended Kalman filter (EKF), unscented Kalman filter
(UKF) and particle filter (PF) are commonly used to deal with the nonlinearity of the integrated system.
The method applied by the EKF algorithm for approximating these nonlinearities is the Taylor series.

Remote Sens. 2020, 12, 3500; doi:10.3390/rs12213500 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-7570-3948
http://dx.doi.org/10.3390/rs12213500
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/21/3500?type=check_update&version=2


Remote Sens. 2020, 12, 3500 2 of 19

In the EKF method, the nonlinear function is linearized through calculating the term of the first order
of the Taylor series about the state point. However, both the EKF and KF method can only obtain the
optimal estimates by the criterion of minimum mean square error when the statistical properties of the
system parameters are known and the measurement noises are in Gaussian distribution [3,4]. The UKF
method utilizes the unscented transformation to parameterize the first two moments of the random
state which undergo a nonlinear transformation. This kind of transformation does not require that the
noise distribution belongs to Gaussian. Moreover, it can obtain more accurate mean and covariance
than that achieved by nonlinear function approximation because of the notion that it should be easier
to approximate a distribution than to linearize a nonlinear function [5]. Although the UKF algorithm
seems to have considerable merit compared with the EKF method, the unknown statistical properties
of noise is still a stumbling block to its optimal estimation [6]. Different from the UKF method, which
is based on deterministic sampling, the PF method applies a large number of random particles to
approximately represent the states’ posterior density distribution [7]. The state estimates can be then
obtained from the posterior density distribution by using the Bayesian filtering theory [8]. Nonetheless,
due to the large number of samples, the PF method usually requires heavy computation burden.
Meanwhile, the degeneracy problem and sample impoverishment always haunt PF [9]. Therefore,
the computation cost and its own flaws limit the applications of PF in real-time navigation.

In practical integration navigation applications, especially in some challenging environments such
as urban canyons, foliage covered areas and open pits, the GNSS signals are subject to interference.
Therefore, the measurement noise statistic characteristics are uncertain and time varying. Besides,
the uncertainty involved in the system state model also has a serious influence on the process
noise covariance. Considering the noise covariance variation, the conventional KF and nonlinear
filters are usually unable to be directly used to estimate the navigation states. The inadequate prior
assumption of the noise covariance will significantly influence the localization performance of the
INS/GNSS integrated system and potentially will lead to filter divergence [10–12]. To improve the
performance of the integrated system, the concept of adaptive Kalman filter (AKF) was employed to
deal with the inadequate noise covariance [13,14]. Generally, these methods fall into four categories:
Bayesian methods, maximum likelihood estimations, covariance matching approaches, and correlation
techniques [15,16]. The basic idea of Bayesian methods is to obtain a recursion equation for the
posterior probability density function (PDF) of the state from the measurement and then estimate the
parameters by integrating the PDF. In the maximum likelihood estimation, the likelihood function is
maximized to obtain the noise statistic estimates. Although both of them are theoretically sound, they
require heavy computations and have been falling out of application in favor of INS/GNSS integration.
Covariance matching approaches balance the trade-off between the computation and the performance.
Yet the core idea behind these methods is intuitive. Thus, the matching method’s convergence is not
always accurate and gives biased covariance estimates [17]. Correlation techniques are fruitful in noise
covariance estimation, where a set of linear equations relating the components of the noise statistics to
the autocorrelation of the innovation or residual sequences are established. Through solving these
linear equations, the measurement or process noise covariance can be obtained. One of the most
popular correlation methods is innovation-based adaptive estimation (IAE), in which an estimate of
the noise covariance is provided by a linear transformation of the innovation covariance [18,19].

Although the IAE method can improve the accuracy of the INS/GNSS integration navigation
solutions by using the estimated noise covariance, the stability of the IAE method is compromised.
As well-known, the IAE method is based on the innovation, which is easily influenced by both the
contaminated measurements as well as inaccurate estimates. Therefore, the estimated covariance
using IAE has the risk to decline in accuracy and even results in filtering divergence, especially in
the case where the statistical properties of both measurement noise and process noise are needed
to be estimated [20]. Aiming for solving this problem, Zhang et al. [21] proposed a redundant
measurement-based adaptive estimation (RMAE) for the INS/GNSS integrated navigation system,
in which the INS solutions are used as redundant measurements to estimate the measurement noise
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covariances. As the estimates of the measurement noise covariance are only based on the measurements,
the RMAE method is immune to the state errors. In view of this advantage, Ge et al. [22] combined the
RMAE method with the algorithms for process noise covariance estimation so as to avoid the coupling
problem of estimating the measurement and process noise covariance simultaneously. In the INS/GNSS
navigation, however, the GNSS measurement noise may no longer be in a Gaussian distribution
and the measurements are correlated in time or even involve many random outliers, especially in
multipath afflicted environments. Thus, the measurement noise covariance obtained using RMAE
may be underestimated due to ignoring the autocorrelation when the mutual difference sequence
is non-Gaussian. To improve the position accuracy and reliability, Dhital et al. [23] assumed that
the GNSS measurement noise follows a heavy-tailed distribution in the challenging environments
such as deep canyons and adjusted the measurement noise covariance using a scalar based on
the acceleration consistency between the GNSS and INS. Ghaleb et al. [24] modeled the correlated
measurement residual sequence as a first-order autoregressive process AR(1), and then used the
Yule-Walker method to estimate the measurement noise covariance. The measurement residual
sequence collected in estimation, however, neglects the steady-state error of GNSS and INS. Therefore,
the measurement residual sequence is not capable of representing the measurement noises properly.
Moreover, the randomness testing based on the improper measurement residuals may lead to the
misjudgment of the optimality of KF.

In this work, we focus on the measurement noise covariance estimation. Based on the RMAE
method, an enhanced redundant measurement-based adaptive Kalman filter is developed, which
extends RMAE to the case with correlated measurements. Furthermore, the abnormal observations
are also considered. The random weighting method is introduced into the measurement covariance
estimation to control outliers’ precision levels, which overcomes the limitation of the RMAE method;
that is, all samples from historical epochs make an equivalent contribution to the measurement
covariance estimation. The improved RMAE method can accurately achieve the varying measurement
noise covariance without relying on states estimation. Thus, the coupling problem of covariance
estimation can be solved by combining the enhanced RMAE method with other schemes for the
estimation of process noise covariance.

The remainder of this paper is organized as follows: Section 2 describes the INS/GNSS
tightly coupled scheme briefly; Section 3 introduces the implementation of the enhanced redundant
measurement-based adaptive Kalman filter; the field test results are discussed in Section 4, and Section 5
summarizes this paper with a conclusion.

2. INS/GNSS Tightly Coupled Integration

According how GNSS measurements are used in the integration algorithm, the way of corrections
applied to the inertial navigation solution, and whether the GNSS user equipment is aided,
the INS/GNSS integration architecture can be mainly divided into three groups: loosely coupled,
tightly coupled and ultra-tightly coupled integration systems [25].

The loosely coupled system has a simple structure, where the outputs of the GNSS navigation
filter are directly input as measurements to the integration filter. However, the errors of the filtering
outputs are time correlated, so the usage of a cascaded architecture may disrupt the state estimation of
KF. Different from the loosely coupled integration, the GNSS navigation filter and the integration filter
are combined into one in the tightly coupled integration to get rid of the statistical problem of cascading.
Furthermore, this architecture has a suppression effect on GNSS multipath and still works even when
the number of visible satellites drops to one [26]. The main feature of an ultra-tightly coupled system
is that the INS is used to aid GNSS receiver acquisition and tracking. In the ultra-tight coupling,
the corrected INS solution is used to generate the commands of the GNSS receiver’s numerically
controlled oscillator. Thus, compared with tight coupling, the ultra-tightly coupled integration can
operate with a lower tracking bandwidth. Nevertheless, this architecture is usually very complex and
computationally intensive, and a new interface between GNSS receiver and INS need to be designed.
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Hence, the tightly coupled INS/GNSS integration is widely preferred for its good robustness as well as
easy implementation.

2.1. Dynamic Model

In the tightly coupled integration, the system state model can be established by combining an INS
and a GNSS state error propagation. The states of INS consist of the attitude errorϕn, velocity error
δVn and position error (δL, δλ, δh), together with the gyroscope drift εb and accelerometer error ∇b,
while the states additionally considered in GNSS are the GNSS user equipment’s clock offset δtu and
its drift δtru.

The attitude error propagation in the local-level frame, which can also be stated as the navigation
(n-)frame, is formulated as

.
ϕ

n
= −

(
ωn

ie +ω
n
en

)
×ϕn +

(
δωn

ie + δωn
en

)
−Cn

bε
b (1)
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the earth-centered, earth-fixed (e-)frame, Cn

b is the direction cosine matrix from the body (b-)frame
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The transition function of the velocity error vector in the n-frame can be described as
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where fn and δgn represent the specific force and gravitational error, respectively.
The position error propagation is shown as follows
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where δL, δλ, δh are the position error components in the latitude, longitude and height. Vn
x , Vn

y , Vn
z

are the velocity components in the east, north, and up direction. RM and RN denote the meridian and
transverse radius of curvature, respectively.

The error model of gyroscope is assumed to be the combination between zero-offset bias and
first-order Gauss-Markov (GM) process, thus

ε = εb + εr

.
ε

b
= 0

.
ε

r
= − 1

Tg
εr +ωg

(4)

where εb and εr denote gyroscope bias and first-order GM process, respectively. Tg is the correlation
time, ωg is the driving noise.

The stochastic model for accelerometer error is modeled as

.
∇

b
= −

1
Ta
∇

b + wa (5)

where Ta is the correlation time and wa is Gaussian white noise.
For the state errors of GNSS, the propagation functions are δ

.
tu = δtru + wu

δ
.
tru = − 1

Tru
δtru + wru

(6)
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where Tru is the correlation times, wu and wru are Gaussian white noises.
The error propagation model of the measurements can be represented as follows{

δρi = ρGi − ρIi
δ

.
ρi =

.
ρGi −

.
ρIi

(7)

where ρGi and
.
ρGi are the pseudo-range and pseudo-range rate, respectively. ρIi and

.
ρIi represent the

INS-driven pseudo-range and pseudo-range rate.
The pseudo-rangeρGi and pseudo-range rate

.
ρGi can be calculated using the broadcasted ephemeris

from the satellites, whose models are as follows
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where ri denotes the true geometric distance between the receiver and satellite, and
.
ri is the true

range rate. δTi and δ
.
Ti are the satellite clock offset and drift which can be directly obtained from the

broadcasted ephemeris. c is the speed of light. ∆ion and ∆trop are propagation delays of ionosphere and
troposphere, respectively. These propagation errors can be mitigated by the Klobuchar model and
troposphere delay models, such as Hopfield and Egnos models [27,28]. vρi and v .

ρi are the measurement
noise. (x,y,z) denotes the true position of the receiver in e-frame and (xi,yi,zi) is the position of the
satellite, which can also be obtained from the ephemeris.

The INS-driven pseudo-range ρIi and pseudo-range rate are represented as ρIi =

√
(xI − xi)

2 + (yI − yi)
2 + (zI − zi)

2

.
ρIi =

xI−xi
ρIi

∂xI
∂t +

yI−yi
ρIi

∂yI
∂t + zI−zi

ρIi

∂zI
∂t

(9)

where (xI,yI,zI) denotes the inertial measurement unit’s position in the e-frame, which can be converted
from the INS position solution.

2.2. Navigation Fusion with EKF

The non-linearity of the measurement model limits the application of KF. Thus, an EKF method is
used to fuse the outputs of the INS and GNSS system. In the EKF method, the non-linear models are
linearized applying Taylor series expansion, which makes the measurement models suitable for the
linear filtering conditions. The implementation of EKF can be described as follows

Time Updating  X̂k/k−1 = Fk,k−1X̂k−1
Pk/k−1 = Fk,k−1Pk−1FT

k,k−1 + Γk−1Qk−1ΓT
k−1

(10)

where X̂k−1 is the state estimate at time k − 1 and X = [ϕn, δVn, δL, δλ, δh, εb, εr, ∇b, δtu, δtru], Pk−1 is the
estimation covariance. X̂k/k−1 and Pk/k−1 denote the state prediction and prediction covariance. Fk,k−1

is the state transition matrix. Γk−1 and Qk−1 are the noise-driven matrix and process noise covariance
matrix, respectively.

Measurement Updating 
X̂k = X̂k/k−1 + Kk

(
Zk −HkX̂k/k−1

)
Kk = Pk/k−1HT

k

(
HkPk/k−1HT

k + Rk
)−1

Pk = (I−KkHk)Pk/k−1

(11)
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where Zk denotes the difference between the GNSS pseudo-range (rate) and the INS-driven
pseudo-range (rate). Hk is the measurement matrix and Hk = ∂h/∂X̂k/k−1, in which h represents
the nonlinear measurement function. Kk denotes the Kalman gain and Rk is the measurement noise
covariance matrix.

For the INS/GNSS tightly coupled system, the EKF method is the problem. Although it can solve
the nonlinear filtering problem and obtain better navigation results, the time-varying measurement
noise covariance and abnormal observations caused by the disturbances of challenging environments
may result in inaccurate solutions or even divergence problems. Therefore, the measurement noise
covariance used in the filter should be adapted to that of the real-time environments.

3. Enhanced Redundant Measurement-Based AKF

The RMAE method is immune to the inaccurate estimates and performs well in the case where
the measurement stochastic noises are Gaussian. Nonetheless, the assumption of the white noise
for GNSS measurement is not reasonable, especially in the harsh environment where the multipath
errors are correlated over time. In addition, the outliers involved in the measurements will also limit
the accuracy of the covariance estimation. Thus, an enhanced redundant measurement-based AKF
scheme is developed in this section. The enhancement consists of three parts: a measurement-based
robust adaptive noise covariance estimation for Gaussian noise, a switching strategy between the
RMAE method and the Burg’s algorithm according to the statistics analysis of the second-order mutual
difference sequences, and the measurement noise covariance estimation for non-Gaussian noise.

3.1. Redundant Measurement-Based Robust Adaptive Measurement Noise Covariance EstimationSubsection

The observation equations expressed in (8) and (9) show that there are two separate observations
available for the same measurement values. GNSS provides the pseudo-range and pseudo-range rate
directly, while INS provides them in an implicit manner. Based on the RMAE method, the measurements
ZGNSS and ZINS from GNSS and INS can respectively be modeled as [29]{

ZGNSS(k) = Z(k) + fGNSS(k) + VGNSS(k)
ZINS(k) = Z(k) + fINS(k) + VINS(k)

(12)

where Z(k) denotes the true measurement at time epoch k, fGNSS(k) and fINS(k) are the steady-state
errors of the measurements, VGNSS(k) and VINS(k) are mutually independent Gaussian noises.

Subtracting every two adjacent measurements, the difference sequences of the GNSS and INS
measurement yield as

∆ZGNSS(k) = ZGNSS(k) −ZGNSS(k− 1)
= Z(k) −Z(k− 1) + fGNSS(k) − fGNSS(k− 1) + VGNSS(k) −VGNSS(k− 1)

∆ZINS(k) = ZINS(k) −ZINS(k− 1)
= Z(k) −Z(k− 1) + fINS(k) − fINS(k− 1) + VINS(k) −VINS(k− 1)

(13)

Then, the second-order mutual difference sequence of the measurements can be calculated as

∇Z(k) = ∆ZGNSS(k) − ∆ZINS(k) ≈ VGNSS(k) −VGNSS(k− 1) − [VINS(k) −VINS(k− 1)] (14)

where the steady item f of the measurement errors is much smaller than the noise, so it can be neglected
after subtraction in (14).
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The two separate measurement noises are uncorrelated and zero-mean,
E
[
VGNSS(k)VT

INS(k)
]
= 0

E
[
VGNSS(k)VT

GNSS(k− 1)
]
= 0

E
[
VINS(k)VT

INS(k− 1)
]
= 0

E[∇Z(k)] = 0

(15)

where E[ ] is the expectation operator.
Thus, the autocorrelation of the second-order mutual difference sequences can be written as

E
[
∇Z(k)∇ZT(k)

]
= E

[
VGNSS(k)VT

GNSS(k)
]
+ E

[
VGNSS(k− 1)VT

GNSS(k− 1)
]
+

E
[
VINS(k)VT

INS(k)
]
+ E

[
VINS(k− 1)VT

INS(k− 1)
] (16)

On the other side, the INS error accumulation is much smaller than the GNSS error in a short
term. Therefore, the measurement noise covariance of GNSS can be approximated as

RGNSS = E
[
VGNSSVT

GNSS

]
≈ E

[
∇Z(k)∇ZT(k)

]
/2 (17)

The calculation of the autocorrelation E[∇Z(k)∇ZT(k)] can utilize a limited number of samples of
the second-order mutual difference sequence,

E
[
∇Z(k)∇ZT(k)

]
=

1
M

M−1∑
m=0

∇Z(k−m)∇ZT(k−m) (18)

where M denotes the size of the window, which is chosen by experience as it implies a trade-off between
the smoothness and sharpness of the covariance estimation.

The RMAE method is decoupled from state estimation errors and suitable for the case without
any random outliers involved in the GNSS measurement. However, if the abnormal observations
occur, the samples from different sequences are likely to be contaminated and cannot accurately
describe the statistical properties of the measurement noise, thus leading to the bias for measurement
noise covariance estimation. To improve the robustness of the RMAE method, the random weights
concept [30] is applied to (18), the autocorrelation can be then obtained using random weighting
estimation as

E
[
∇Z(k)∇ZT(k)

]
=

1
M

M−1∑
m=0

wm∇Z(k−m)∇ZT(k−m) (19)

where wm denotes the random weighting factor from the Dirichlet distribution, which meets the

condition
M−1∑
m=0

wm = 1. The details on their determination can be found in [31].

3.2. Detection of GNSS Measurement Noise Statistics

Since the GNSS measurements are likely to be disturbed by the surroundings around the GNSS
receiver, the statistical properties of the measurement noise may be far from the assumption and
change to be non-Gaussian as well [32]. Before the stage of covariance estimation for the correlated
noise, a detection to determine whether the measurement noise is Gaussian or not is introduced first in
this subsection.
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Considering the disturbance of the challenging environment would contaminate the observation’s
statistical properties significantly, it is not easy to find out which family of the distribution the
observation is from when the disturbance occurs. Unlike the parametric estimation assuming that the
observed data belong to a given parametric family of distributions, the kernel density estimation (KDE)
as a nonparametric estimation just assumes that the probability density of distribution exists [33,34].
So, the KDE method can be used to estimate the probability density under a less rigid assumption
about the measurement noise statistics.

For the sake of testing accuracy, instead of innovation or residual which is also influenced by the
inaccurate estimates, the second-order mutual difference sequence that relies only on the measurement
is used to test the statistical properties of the measurement noise. Suppose that the independent
samples ∇Z1, ∇Z2, . . . , ∇ZN are extracted from the second-order mutual difference sequence, the PDF
of the data sequence can be estimated by KDE method as

f̂n(z) =
1

Nh

N∑
i=1

K
(z−∇Zi

h

)
(20)

where N is the size of sampling window, h is called bandwidth, K(·) denotes the kernel function.
Generally, the global estimation accuracy of f̂n(z) is measured with the mean integrated square

error (MISE), which is defined by

MISE
[

f̂n(z)
]
= E

∫ {
f̂n(z) − fn(z)

}2
dz (21)

Theories and experiments have verified that there is very little influence on the biases of MISE
when the different kernel functions are selected in the context of sufficient sample size [35]. Therefore,
the kernel function is commonly chosen as the Gaussian kernel function in practice, which is defined as

K(u) =
1
√

2π
e−

u2
2 (22)

Along with the Gaussian kernel function, the optimal bandwidth that minimizes the MISE can be
obtained by the rule of thumb [33]

hopt = 1.06σN−1/5 (23)

where σ is the variance of the observed sequence, which can be obtained by the adaptive estimation
described in Section 3.1.

According to the definition of PDF, the probability of the data falls around z can be written as

f (z) =
dF(z)

dz
= lim

h→0

F(z + h/2) − F(z− h/2)
h

(24)

where F(z) denotes the cumulative distribution function.
Equation (24) indicates that f (z) can represent the probability of each data point that falls around z

in the second-order mutual difference sequence. Furthermore, the data’s credibility can be measured
through the probability as well. As illustrated in Figure 1, the dashed lines represent the individual
bumps placed at the samples from the difference sequence interval {z}t−n

t−1 and the solid line is the
density estimate which is constructed though adding each bump up. When the current datum sample
zt shown by the red circle appears at the edge of the kernel density estimate, the probability of this
point is very small. So, the red datum point is not likely to be from the same PDF of the previous
data {z}t−n

t−1 and it implies that the GNSS measurement may be contaminated by the surroundings. If zt

represented by the blue circle falls in the interior of the kernel density estimate, it is determined that
this point belongs to the same PDF as the previous data {z}t−n

t−1 . The credibility of the current datum
can directly be calculated by (20) in real time. If the measurement noise is normal, the credibility of
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each datum will satisfy the condition that f̂n(zt) > K(3σ); Otherwise the measurement disturbance
is inferred to occur and the Gaussian properties of the measurement noise may change when the
condition does not hold continuously.
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3.3. Measurement Noise Covariance Estimation for Non-Gaussian Noise

The RMAE method is sensitive to the correlated errors induced by the environmental noises
that affect the GNSS receiver. Ignoring this autocorrelation of the measurement, especially in the
multipath environment, can lead to underestimation of the measurement noise covariances. Affected
by these underestimates, the filter will trust the measurement’s correctness more and cause serious
implications on the filtering performance. Therefore, when the changes of the Gaussian properties of
the measurement noise are detected, the second-order mutual difference sequence should be considered
as a corrected sequence rather than a Gaussian noise process. Ghaleb et al. [24] used an AR(1) process
to describe the corrected noise. However, the autoregressive model order also has to be estimated
according to the practical noise process. Furthermore, the Yule-Walker method is unstable and may
lead to poor parameter estimation in some special cases [36].

The Burg’s method is a widely employed algorithm for autoregressive modelling as it can provide
reliable parameter estimates and a stable model on the contrary to the Yule-Walker and covariance
method. Unlike the Yule-Walker method which can be expressed in a single set of equations, the Burg’s
method operates on the difference sequence in iterations. Once the autoregressive model order p of the
difference sequence is estimated using Akaike’s criterion [37], the Burg’s recursion can be implemented
as follows [38,39].

Step1: Initialize the AR coefficients a(0)0 = 1 as well as the forward prediction error vector f(0)0 and

the backward prediction error vector b(0)
0 using the difference sequence, namely,

f(0)0 = b(0)
0 = [∇Z1,∇Z2, · · · ,∇ZN] (25)

where N denotes the number of difference sequence samples.
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Step2: Calculate the reflection coefficient

kl = −2

N∑
n=l

f(l−1)
n b(l−1)

n−1

N∑
n=l

[(
f(l−1)

n

)2
+

(
b(l−1)

n−1

)2
] (26)

where l is the stage.
Step3: Update the prediction errors and the AR coefficients am via the Levinson-Durbin recursion.

f(l)n = f(l−1)
n + klb

(l−1)
n−1

b(l)
n = b(l−1)

n−1 + klf
(l−1)
n−1 n = l, l + 1, · · · , N

a(l)m = a(l−1)
m + kla

(l−1)
l−m m = 1, 2, · · · , l

a(l)l = kl

(27)

where m and n are the symbols for counting.
Step4: Repeat steps from 2 to 3 until l = p.
After the iterations, the AR model that describes the correlation of the measurement noise can be

constructed as

∇ZN =

p∑
i=1

ai∇ZN−i + v (28)

where v is a zero-mean white noise process.
According to Ghaleb in [24], the actual variance of the difference sequence can be then obtained

as follows

σ2
∇Z =

M−1∑
m=0
∇Z(k−m)∇ZT(k−m)

M
(
1−

p∑
i=1

aiβi

) (29)

where βi is the autocorrelation coefficient of the difference sequence.

3.4. Implementation of the Enhanced AKF

To illustrate the above descriptions, the flowchart of the proposed enhanced redundant
measurement-based AKF method is shown in Figure 2. The main steps are as follows: After the
states and covariance initialization, the time-propagation is operated to predict the states using the
knowledge of the a priori processing noise covariance of the INS/GNSS integrated system. Once the
measurements from INS and GNSS are available, the second-order mutual difference observations will
be formed. Then, the KDE-based detection approach will be applied to identify the GNSS measurement
noise statistics. If the statistical properties of the measurement noise are stable and belong to the family
of Gaussian distribution, the robust RMAE method will be selected. Otherwise, the measurement
noise covariance will be expanded and estimated by the Burg’s method using the stream of the mutual
difference observations. Finally, the updated measurement noise covariance is adopted to optimally
update the state estimates during the measurement-update phase of EKF.
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filter (AKF).

4. Test Results

4.1. Implementation of the Enhanced AKF

In order to validate the proposed algorithm, a field experiment was carried out in Tianjin City,
China. The NovAtel IMU-ISA-100C device, whose bias offsets of the gyroscope and the accelerometer
are 0.5 ◦/h and 1250 µg and the angle random walk of the gyroscope and the velocity random walk
of the accelerometer are respectively 0.012◦/

√
h and 100 µg/

√
Hz, was used to collect the raw inertial

data at the rate of 100 Hz. The NovAtel GNSS receiver applied in the experiment can output the
pseudo-range and pseudo-range rate data at the rate of 1 Hz. In our test, about 30 min data was
collected and its post-processing positioning results processing by the NovAtel Inertial Explorer using
the differential GNSS measurements in the Tightly Coupled mode were used as the ground truth.
Figure 3 shows the trajectory for the test. It is clear that the GNSS outputs show a fluctuation and even
deviates from the road due to the environmental disturbances when the vehicle went through the
foliage or buildings.

4.2. Performance Evaluation in Foliage Environment

The navigation performance of the enhanced redundant measurement-based AKF (ERMAKF)
was evaluated in comparison with the standard EKF method, an enhanced innovation-based adaptive
Kalman filter (EIAKF) [24], and the simple redundant measurement-based AKF (SRMAKF) which
ignored the autocorrelation of the measurement disturbance. The vehicle went through the foliage
during 40–120 s periods and the navigation errors with respect to the ground truth are shown in
Figures 4–6. Figure 7 shows the noise standard deviations of the pseudo-range

(√
r1 ∼

√
r4

)
and

pseudo-range rate
(√

r5 ∼
√

r8
)

for each filter.
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As shown in Figure 4, the navigation errors of the INS/GNSS tightly integrated system using the
standard EKF algorithm increased significantly in the period of 50–120 s, when the vehicle was driving
under the dense vegetation. The maximum error in longitude even reaches about 18 m. This can
be explained by the multipath effect, which will contaminate the GNSS measurements and lead to
large navigation errors. Figure 7 shows the fixed measurement noise standard deviations applied in
the standard EKF. The priori values of noise covariance will lower the filtering accuracy due to the
overweighed abnormal measurements. Although the EIAKF method can turn the measurement noise
covariance adaptively, its noise covariance estimates may not match that of the actual measurement.
This is because the estimated measurement noise covariance in the EIAKF method is based on
the innovation sequence, which is also influenced by the inaccurate state estimates. In addition,
the measurement residual sequence used in the EIAKF method is directly obtained by differencing the
GNSS measurements and the “dead reckoning” results, which ignores the steady-state errors. It can be
seen from the estimated measurement noise standard deviations of the EIAKF method in Figure 7 that
the standard deviations do not update in a timely manner due to the improper difference sequence
applied to the randomness testing which may lead to the misjudgment for the filtering optimality. Thus,
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the filtering errors of the EIAKF algorithm, as shown in Figures 4–6, fluctuate quite a lot. Different from
the EIAKF algorithm, the SRMAKF method estimates the measurement noise covariance relying on the
redundant mutual difference sequence, which is not only immune to the state estimation error, but also
considers the steady-state error of the measurement systems. Therefore, the navigation errors of the
SRMAKF method are decreased compared with the EIAKF algorithm, although it causes an increase in
the height error. The reason for the decrease in the height accuracy is that the altitude solutions from
the GNSS are usually unsteady and even correlated in time due to the imperfect tropospheric delay
model and obstructed environments. As can be seen from Figure 7, such correlation will result in the
underestimation of the noise standard deviations. Compared with the EIAKF algorithm, ERMAKF
takes the measurement autocorrelation into full consideration. When the measurement autocorrelation
is detected using the KDE method, the Burg’s method is used to estimate the parameter of the AR
model and the variance of the difference sequence is then obtained according to the AR coefficients.
Figures 8–10 give insight about the navigation accuracy of each algorithm in terms of the root mean
square error (RMSE), which is defined as

RMSE =

√√√
1
N

N∑
k=1

(
X̂k −Xk

)2
(30)

where X̂k and Xk are the filtering and reference states at time k, respectively.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 
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As shown in Figure 8, the longitude solution accuracy is improved by 26.3% and 46.9% when the
SRMAKF scheme is used, in comparison with the Standard EKF and EIAKF solution, respectively. It is
clear that the ERMAKF scheme achieves the best performance in the longitude component, whose
accuracy is further improved by 36.0% compared to the SRMAKF scheme due to the reduction in the
negative influence of the measurement correlation on the noise covariance estimation. As explained
before, the positioning RMSE of the EIAKF method has an increase because of the unreliable difference
sequence applied in the measurement noise covariance estimation. Although the SRMAKF method can
improve the longitude accuracy, the height solution deteriorates when the GNSS altitude is strongly
correlated. In comparison, the height solution applying the ERMAKF scheme outperforms that of the
Standard EKF and EIAKF method by 56.0% and 50.0%, respectively. The improvement in the latitude
accuracy is not that significant, but it still maintains an acceptable accuracy.
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The RMSE of the velocity accuracy is presented in Figure 9. It can be seen that compared with the
Standard EKF solutions, the SRMAKF method improves the velocity solutions by 62.8%, 26.7% and
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43.5% in the east, north and up direction, respectively. Similarly, SRMAKF obtains improvements of
68.0%, 52.2% and 18.7% compared to the EIAKF method. Moreover, the velocity accuracy can be further
improved when the ERMAKF scheme is used. It should be noted that although the altitude solved by
SRMAKF includes more errors, the velocity accuracy it obtains in the up direction is not the same and
shows better accuracy. This is because the noise covariance of the pseudo-range and pseudo-range rate
are estimated separately and these estimates will determine the measurement’s weights in filtering.
Even though the accuracy of the pseudo-range and pseudo-range rates is interlinked with each other
at the output from the receiver’s ranging processor, the following navigation processing will break this
direct correspondence of accuracy between the two observations due to the changes in the estimated
covariance while filtering. It is not surprising that the ERMAKF scheme performs better than the
SRMAKF method. This is due to the fact that the SRMAKF method is not able to deal with the
measurement correlations and it may underestimate the noise covariance.

As can be seen from Figure 10, although the high-precision attitude is achievable through the
standard EKF method, the ERMAKF method can reduce the RMSE further, especially for the pitch
and roll component. The disturbances of the abnormal GNSS measurements are rejected through
de-weighting the observations, and thus the ERMAKF solutions are improved by 47.4% for the pitch
component and 21.4% for the roll component compared to the standard EKF method. The discussions of
the EIAKF and SRMAKF algorithms are similar as aforementioned. In general, the attitude performance
using the ERMAKF scheme is satisfactory.

4.3. Performance Evaluation in Obstructed Areas

Dense buildings constitute a harsh environment, where the GNSS signals are susceptible to the
disturbances. As shown in Figure 3, the positioning quality of GNSS was degraded when the vehicle
passed that buildings during 260–320 s periods. In this dense building environment, the ERMAKF
method can also be applied to mitigate the GNSS measurement errors. To quantify the filtering errors
concisely, the RMSE in 3-D space is listed in Table 1.

Table 1. 3-Dimensional Navigation Errors for Different Methods.

Algorithm Position Error (m) Velocity Error
(m/s) Attitude Error (◦)

Standard EKF 5.52 0.38 0.22
EIAKF 6.24 0.29 0.25

SRMAKF 6.12 0.38 0.24
ERMAKF 4.60 0.17 0.18

Table 1 illustrates the filtering performance for different methods. It shows that although
the adaptive strategies are used in the INS/GNSS integrated system, the navigation accuracy may
not be improved in some special scenarios without considering the model’s influence and noise’s
correlation. The EIAKF method can estimate the time-varying measurement noise covariance applying
the innovation, but the mismatched error models also have a negative influence on the estimation,
hence leading to the decrease in filtering accuracy. The SRMAKF method is immune to the state
errors. However, the correlation between the measurements will cause the underestimation of the
measurement covariance. Thus, the filtering accuracy of the SRMAKF method can still be improved.
The ERMAKF method is an enhanced version of SRMAKF, in which the measurement’s autocorrelation
is considered and the Burg’s method is employed to model this autocorrelation. Through classifying
the measurement noise and updating their statistics, the positioning error decreases from 6.12 m to
4.60 m while applying the ERMAKF method. The velocity errors are respectively reduced by 41.4% and
55.3% compared to EIAKF and SRMAKF when the ERMAKF method is used. Meanwhile, the attitude
errors obtained by EIAKF also appeared to decline, falling by 25.0% compared to the SRMAKF method.
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The results demonstrate that the proposed enhanced method can provide more consistent navigation
solutions than the other state-of-the-art algorithms.

5. Conclusions

This paper presents a scheme of the mitigation of GNSS measurement disturbances, and the
methods of RMAE and Burg’s are used to estimate the time-varying measurement noise covariance
based on the statistic property of the mutual difference sequence. The scheme mainly includes the
following steps: first, to obtain the mutual difference observations by using two separate measurements
from INS and GNSS; second, to detect via the KDE method, whether the measurement noise statistics
belong to a Gaussian distribution, and then determine the autoregressive model applying the Burg’s
recursion when the Gaussian properties of the difference sequence noise are not maintained; finally,
to obtain the navigation results through fusing the sensors data with the timely updating measurement
noise covariance.

In the field experiment, the fusing results demonstrate that the proposed enhanced redundant
measurement-based AKF method outperforms the compared methods in general. The positioning
accuracy is improved by 66.0%, 20.7% and 50.0%, respectively, for longitude, latitude, and height
components compared to the conventional innovation-based adaptive Kalman filter in foliage
environment. However, there is a slight decrease in the yaw accuracy due to the windowing estimation
errors. In addition, the ERMAKF method also obtains an improvement for the 3-dimensional navigation
accuracy in the harsh environment such as dense buildings.

The current research mainly focuses on the feasibility of the proposed enhanced method and
only the time-varying measurement noise covariance is inspected. In the future, the processing noise
covariance estimation will be considered for improving the navigation precision, especially for the
low-cost integrated system.
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