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Abstract: Heading and flowering are two key phenological stages in the growth process of
winter wheat. It is of great significance for agricultural management and scientific research to
accurately monitor and forecast the heading and flowering dates of winter wheat. However,
the monitoring accuracy of existing methods based on remote sensing needs to be improved,
and these methods cannot realize forecasting in advance. This study proposed an accumulated
temperature method (ATM) for monitoring and forecasting the heading and flowering dates of winter
wheat from the perspective of thermal requirements for crop growth. The ATM method consists
of three key procedures: (1) extracting the green-up date of winter wheat as the starting point of
temperature accumulation with the dynamic threshold method from remotely sensed vegetation
index (VI) time-series data, (2) calculating the accumulated temperature and determining the thermal
requirements from the green-up date to the heading date or the flowering date based on phenology
observation samples, and (3) combining the satellite-derived green-up date, daily temperature data,
and thermal requirements to monitor and forecast the heading date and flowering date of winter
wheat. When applying the ATM method to winter wheat in the North China Plain during 2017–2019,
the root mean square error (RMSE) for the estimated heading date was between 4.76 and 6.13 d and
the RMSE for the estimated flowering date was between 5.30 and 6.41 d. By contrast, the RMSE for the
heading and flowering dates estimated by the widely used maximum vegetation index method was
approximately 10 d. Furthermore, the forecasting accuracy of the ATM method was also high, and the
RMSE was approximately 6 d. In summary, the proposed ATM method can be used to accurately
monitor and forecast the heading and flowering dates of winter wheat in large spatial scales and it
performs better than the existing maximum vegetation index method.
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1. Introduction

Heading and flowering are two important phenological stages in the growth process of winter
wheat. The heading date is the time node that marks the transition from vegetative growth to
reproductive growth [1], and the flowering date is a key period that is closely related to the final
yield of winter wheat. During the flowering phase, the growth and development of winter wheat
is very sensitive to factors such as water and heat conditions, soil fertility, and field management
levels [2–4], and is a critical stage where agricultural practices and crop yield estimation research are
concerned [5,6]. Therefore, accurately monitoring the heading and flowering dates of winter wheat is
of great significance to guide agricultural practices and conduct related scientific research.

Currently, crop phenological information is mainly derived through two methods: ground
observation and retrieval from satellite time-series data. Ground observations monitor the growth and
development status of field crops through direct human observations and records. The advantages of
ground observation are rooted in their simplicity, high precision, and long time span [7]. However,
this method is labor intensive and cannot provide spatially continuous phenological information at
large scales. To solve these problems, the method of retrieving phenology from satellite time-series data
is usually used. Satellite remote sensing technology has been investigated and practiced successfully
for retrieving crop phenology based on remotely sensed vegetation index (VI) time-series data [8–10].
At present, a variety of methods have been developed to extract crop phenology based on remote
sensing time-series data, mainly including the threshold method [11,12], derivative method [13],
moving average method [14], and function fitting method [15]. However, most of the existing methods
only focus on the start of the season (SOS) and the end of the season (EOS), lacking effective methods
to monitor other crucial crop phenology such as the heading date and flowering date.

Among the methods that can monitor the heading and flowering dates of winter wheat,
the maximum vegetation index method (denoted VImax) is widely used. Because the VImax method
is easy and fast, many studies have chosen this method to extract the heading date or the flowering
date of crops [1,16–20]. Moreover, in recent years, other ideas or methods have been proposed to
extract the heading date or the flowering date of winter wheat, such as the two-step filtering (TSF)
method [21,22], methods based on radar backscatter coefficient time-series data [10,23,24], and methods
through transforming temporal scales [25–27].

Although there are some methods to extract the heading date and the flowering date of winter
wheat, there is still room for improvements. Firstly, the extraction accuracy could be improved.
Taking the VImax method as an example, the root mean square error (RMSE) of the heading date or
the flowering date extracted by the method is 10–15 d [13,16,19,20]. The results may be acceptable in
large-scale ecological applications, but it is difficult to meet the high accuracy requirements of certain
projects, such as precision agriculture and crop yield estimation. Secondly, most studies do not strictly
distinguish these two dates due to the short span from heading to flowering (usually approximately
a week). In some studies [13,19,28], the VImax method is used to extract the heading date, while in
others [1,16,17], this method is used to extract the flowering date, which causes uncertainty in the
extraction results of the heading date and the flowering date. Thirdly, the climate conditions (especially
temperature) have a great impact on the growth and development of winter wheat. When the
temperature is higher than 0 ◦C for consecutive days, winter wheat will begin to turn green and
then develops to a specific growth stage when the accumulated temperature meets the requirements.
However, the methods mentioned above are almost only based on remote sensing vegetation index
data, so the advantages of meteorological data that is closely related to phenology have not been fully
explored. Moreover, those methods can only realize monitoring and not forecasting.

Given that the growth of winter wheat is mainly driven by temperature of irrigated fields [28,29],
and in a certain region, the accumulated temperature required for its development from green-up
date to specific growth stages, such as heading and flowering, is relatively fixed, this paper aims
to combine the satellite-derived green-up date and daily temperature data to develop a simple and
accurate method to monitor and forecast the heading and flowering dates of winter wheat.
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2. Study Area and Data

2.1. Study Area

The North China Plain (NCP) is located in northern and eastern China (110.4◦E–122.7◦E,
31.4◦N–42.6◦N) and lies in the lower reaches of the Yellow River. It is one of the three great
plains in China, covering approximately 310,000 square kilometers (Figure 1). The NCP is an important
grain production base in China. The main crops are winter wheat and summer maize. According to
the National Bureau of Statistics of China [30], in 2018, the sown area of winter wheat in the NCP
was 12.25 million ha, accounting for 53.9% of China, and the yield of winter wheat in the NCP was
75.76 million tons, accounting for 60.6% of China. The NCP is a typical area for planting winter wheat
in China.

Figure 1. Location of the study area and phenology observation stations for winter wheat.

2.2. Data

2.2.1. Remote Sensing Data

The moderate-resolution imaging spectroradiometer (MODIS) MOD09Q1 product data from
2017 to 2019 were used to extract the planting area and the green-up date of winter wheat. The time
resolution is 8 days, and the spatial resolution is 250 m. The widely used normalized difference
vegetation index (NDVI), which is sensitive to vegetation signals in initial growth stage of crops [31],
was calculated based on Equation (1):

NDVI =
ρNIR − ρR

ρNIR + ρR
(1)

where ρNIR and ρR represent the ground reflectance of the near-infrared band and red band, respectively.
Since noises existed in the NDVI time-series data because of the effects of clouds and atmospheric

conditions, the change-weight filtering method [32], which can better preserve crop phenology
characteristics, was used to denoise and smooth the NDVI time-series data. After that, the NDVI
time-series data with good quality were prepared to extract the planting area and the green-up date of
winter wheat.
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2.2.2. Phenology Observation Data

The phenology observation data were acquired from the China Meteorological Administration
(CMA). The dataset contains the field records of crop growth and development status since September
1991. The specific contents include crop variety, the name of the crop development stage and its date,
the anomaly of the development stage, etc. In this paper, winter wheat observation stations recording
both the green-up date and the heading date or the green-up date and the flowering date in NCP from
2017 to 2019 were selected. The stations with strong noise in the NDVI time-series were excluded to
avoid interfering with the analysis. Finally, a total of 49 stations were used (Figure 1), and the number
of available observation samples for each year is shown in Table 1.

Table 1. Number of available observation samples.

Year
Number of Observation Samples

Heading Date Flowering Date

2017 37 36
2018 43 43
2019 48 48
Total 128 127

2.2.3. Meteorological Data

The meteorological data were derived from the dataset of CFSV2 (NCEP Climate Forecast System
Version 2) on the Google Earth Engine (GEE) platform, which contains a variety of meteorological data
worldwide since 1979, such as temperature, precipitation, and radiation [33]. The CFSV2 dataset is a
common used dataset in related researches and its accuracy has been proven to be relatively high [34].
The time resolution of this dataset is 6 h, and the spatial resolution is 0.2◦. Because the winter wheat
in NCP is irrigated, the growth and development of winter wheat in NCP is mainly driven by air
temperature, especially the daily minimum air temperature (denoted Tmin) and the daily average air
temperature (denoted Tmean). Therefore, the minimum temperature and the mean temperature of the
CFSV2 dataset were used. Given the time resolution is 6 h, we took the minimum value of the four
minimum temperatures within each day as the daily minimum temperature and the average value of
the four mean temperatures within each day as the daily mean temperature.

2.2.4. Winter Wheat Map

The winter wheat map in NCP (Figure 1) was produced by a double threshold classification method
based on the NDVI time-series data in 2019 (see details in Appendix A). The overall classification
accuracy is 90.3%, producer accuracy is 86.8%, user accuracy is 96.6%, and Kappa coefficient is 0.80.
Since we focus on the estimation of heading and flowering dates of winter wheat, it is important to
ensure that the mapped pixels correspond to winter wheat though some winter wheat pixels may
be not mapped, that is, we pursue higher user accuracy for the winter wheat map. In addition,
the total planting area of winter wheat in the study area only changed less than 1% from 2017 to 2019
(http://www.stats.gov.cn), indicating that the distribution of winter wheat was quite stable during
this period. Therefore, we used the same winter wheat map in 2019 for the three years of 2017, 2018,
and 2019.

3. Methodology

3.1. The Proposed Accumulated Temperature Method

The accumulated temperature method (ATM) proposed in this study assumes that the growth
and development of winter wheat is mainly driven by temperature (note that there are irrigation
facilities in the study area, so the growth of winter wheat is not limited by water), and the accumulated

http://www.stats.gov.cn
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value of the effective temperature required for its development from green-up date to specific growth
stages (such as heading and flowering) is relatively fixed in a certain region. Therefore, the median
accumulated temperature of observation samples is taken as the thermal requirement of the area.
After that, the heading date and the flowering date of winter wheat can be estimated by combining the
green-up date retrieved by remote sensing and daily temperature data.

3.1.1. Calculation of the Thermal Indices

The effective temperature (ET) and accumulated effective temperature (AET) for the heading/

flowering date of winter wheat are calculated with Equations (2) and (3), respectively.

ETi =

{
Ti − Tbase, Ti ≥ Tbase

0, Ti < Tbase
(2)

AET =
k∑

i=g

ETi (3)

where Ti represents the minimum or mean air temperature of the ith day, Tbase represents the baseline
temperature, ETi represents the effective temperature of the ith day, g represents the green-up date,
and k represents the heading or flowering date.

Before calculating the ET and the AET, we need to determine the Tbase. Considering the differences
in winter wheat varieties and climate conditions of subregions in NCP, the Tbase was calculated pixel
by pixel. In this study, Tbase is the average value of daily temperature during a given period before
the green-up date. Two temperature indices, Tmin and Tmean, and two periods, from October 1st last
year (the sowing time of winter wheat) to the green-up date this year (denoted P1) and one month
before the green-up date (denoted P2), were tested for examination. Based on the four combinations
of two temperature indices and two periods for each phenological event (heading or flowering),
we calculated the AET for each combination and named them as Tmin_P1, Tmin_P2, Tmean_P1 and
Tmean_P2, respectively. We assume that a lower variation in the AETs among different observation
samples indicates a stable Tbase for calculation of the corresponding AET. Therefore, the coefficient of
variation (CV) was used as a quantitative evaluation index to select the optimal Tbase. Specifically, the
Tbase with a smaller CV in its calculated AETs was selected as the optimal one.

After the Tbase is determined, the AET for the heading or flowering date can be calculated with
the phenology observation samples. According to the definition of abnormal values in the boxplot,
the abnormal samples whose AET was in excess of 1.5 times the interquartile range (IQR) were
eliminated. Then, the median AET of the remaining samples was taken as the thermal requirement
of the area. Moreover, to obtain a relatively stable thermal requirement, Tbase was the average value
of Tbase for three years and the thermal requirement was also determined by samples of three years
instead of year by year.

3.1.2. Determination of the Heading Date and Flowering Date

The heading date and flowering date can be determined by combining the daily air temperature
data, the thermal requirement of the area, and the green-up date. The green-up date was extracted
by the dynamic threshold method [12] based on NDVI time-series data, which was widely used in
relevant studies [35–37]. According to the previous studies [38–40], the 20% threshold was used to
extract the green-up date of winter wheat.

The heading/flowering date is the date whose accumulated value of ET from the retrieved green-up
date exceeds the AETmedian of heading/flowering for the first time. The calculation method is shown in
Equation (4).

Pheno = d + days(AETmedian) (4)
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where Pheno is the heading/flowering date, d represents the green-up date retrieved by remote
sensing, AETmedian represents the median AET of effective observation samples in the area for the
heading/flowering date, and days() represents the number of days required for the accumulated value
of ET to exceed AETmedian for the first time since the dth day.

3.2. Assessment of Monitoring Accuracy

Due to the large difference in the spatial scale between station observation and remote sensing,
a given phenology observation station may be not directly corresponding to the pixel in which it is
located. Therefore, we made a 3 km buffer for each phenology station. If there are winter wheat
pixels within the buffer, the estimated phenology dates (green-up date, heading date, and flowering
date) in those winter wheat pixels are averaged to represent the estimated phenology date for the
phenology station.

Four indicators were used for accuracy assessment, including the coefficient of determination (R2),
regression coefficient (a), BIAS, and root mean square error (RMSE). R2 and a reflect the consistency
between the estimated result and the observation data. The closer the R2 and a are to 1, the higher the
consistency between them. BIAS is defined as the number of days that the estimated result deviates
from the observation data. If the deviation is greater than 0, the estimated result is later than the ground
observation. If the deviation is less than 0, the estimated result is earlier than the ground observation.
A smaller absolute value of BIAS indicates a higher accuracy of the estimated results. RMSE is the
average error between the estimated result and the observation data. A smaller RMSE means a higher
estimating accuracy. The calculations of the four indicators are shown in Equations (5)–(8), respectively.

R2 =
cov

(
Ŷ, Y

)2

var
(
Ŷ
)
var(Y)

(5)

y = ax + b (6)

BIAS =

∑N
i=1

(
Ŷi −Yi

)
N

(7)

RMSE =

√∑N
i=1

(
Ŷi −Yi

)2

N
(8)

where Ŷi is the estimated result of the ith sample, Yi is the corresponding ground observation value,
N is the number of samples, cov

(
Ŷ, Y

)
represents the covariance between the estimated results and the

ground observation values, and var
(
Ŷ
)

and var(Y) represent the variance of the estimated results and
the ground observation values, respectively. y = ax + b is the linear regression model of the estimated
results and the ground observation values in which the estimated result is the dependent variable and
the ground observation value is the independent variable.

In addition, the VImax method [13], which is usually used to extract the heading–flowering date of
winter wheat in current researches, was selected as the comparison method in this study. The VImax

method considers that the heading–flowering of crops is the transformation phase from vegetative
growth to reproductive growth, and leaves begin to wither and die after the heading–flowering phase.
Therefore, the corresponding date of the maximum vegetation index in the growing season of crops
is assumed as the heading–flowering date [13]. It should be noted that the VImax method cannot
distinguish between the heading date and the flowering date. The extracted date is roughly in the
period from heading to flowering, so the estimated result is compared with both the observed heading
date and the observed flowering date (Section 4.2.2).
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3.3. Assessment of Forecasting Accuracy

To test whether the proposed method has good ability to forecast the heading and flowering
dates of winter wheat, we used the thermal requirement derived from previous years to forecast the
phenology in subsequent years and evaluated the accuracy of the forecasting results. The experiment
was divided into two parts. The first was to forecast the heading and flowering dates in 2018 and
2019 using the thermal requirement derived from the observation samples in 2017. The second was
to forecast the heading and flowering dates in 2019 based on observation samples in both 2017 and
2018. The spatial scale match method and accuracy indicators are the same as the assessment of
monitoring accuracy.

4. Results

4.1. Performance of Different Tbase

For the heading date, the CV based on different Tbase ranges from 0.14 to 0.41 (Figure 2a), and for
the flowering date, the CV based on different Tbase ranges from 0.13 to 0.35 (Figure 2b). For both the
heading date and the flowering date, the temperature indices based on P2 outperform the temperature
indices based on P1 since the AETs based on P2 are much more concentrated in the frequency distribution
and their CVs are much smaller. Similarly, comparing Tmean with Tmin, the AETs based on Tmean are
more concentrated and their CVs are much smaller. Therefore, Tmean_P2 (the average value of daily
mean temperature during the month before the green-up date) is selected as the optimal Tbase, and
the corresponding AET is set as 527.4 ◦C for the heading date and 628.7 ◦C for the flowering date
(Figure 2). The optimal Tbase in NCP is from about 0 to 6 ◦C (Figure 3a). It gradually increases from the
south to the north, which is similar to the spatial distribution pattern of green-up date of winter wheat
in NCP (Figure 3b).

Figure 2. Boxplot of accumulated effective temperature (AET) from observed green-up date to heading
date (a) and flowering date (b) based on different Tbase. Tmin_P1: the average of daily minimum air
temperature during October 1st last year (the sowing time of winter wheat) to the green-up date this
year; Tmin_P2: the average of daily minimum air temperature during the month before the green-up
date; Tmean_P1: the average of daily mean air temperature during October 1st last year (the sowing
time of winter wheat) to the green-up date this year; and Tmean_P2: the average of daily mean air
temperature during the month before the green-up date. In the boxplot, the top of the box represents
the 75th percentile of samples, the bottom of the box represents the 25th percentile of samples, the upper
whisker represents the maximum value of the samples, the bottom whisker represents the minimum
value of the samples, the line through the box represents the median of the samples, and the black dots
represent the values of each sample.



Remote Sens. 2020, 12, 3536 8 of 16

Figure 3. The spatial distribution of the optimal Tbase in NCP (a) and the scatter plot between the
optimal Tbase and the average of green-up dates observed at the phenology observation stations during
2017–2019 (b). The optimal Tbase is defined as the average value of daily mean temperature during the
month before the green-up date. DOY: Julian day of year.

4.2. Evaluation of Monitoring Accuracy

4.2.1. The Spatial Distribution of Estimated Heading and Flowering Dates

The spatial distribution patterns of both the heading and flowering dates estimated by the ATM
method among different years are similar (Figure 4a–f), while the spatial distribution patterns of the
estimated heading–flowering date by the VImax method vary largely over time (Figure 4g–i). In addition,
the heading and flowering dates estimated by the ATM method show a higher spatial continuity
(Figure 4(b1,e1)) and a smoother transition from the south to the north (Figure 4a–f) compared with the
VImax method. The estimated heading–flowering date with the VImax method show a large variation
even in a small region (Figure 4(h1)) and their spatial transitions from the south to the north are abrupt
(Figure 4g–i).

4.2.2. Monitoring Accuracy of Estimated Phenology

For each year, the monitoring accuracy for the heading/flowering date based on the ATM method
is much higher than that based on the VImax method (Figures 5 and 6). Compared with the VImax

method, the R2 for the estimated heading (flowering) date by the ATM method increases by 0.25 to
0.34 (0.21 to 0.23) among different years, the RMSE decreases by 2.09 to 6.97 d (1.61 to 8.08 d), the a is
closer to 1, and the BIAS is closer to 0.

4.3. Evaluation of Forecasting Accuracy

When only using samples in 2017, the R2 for forecasted phenology ranges from 0.54 to 0.69,
a ranges from 0.79 to 1.18, BIAS ranges from −2.02 to −2.94 d, and RMSE ranges from 6.13 to 6.38 d
(Table 2). The forecasting accuracy based on samples of the previous year is lower than that based on
samples of the current year (i.e., monitoring accuracy), but it is still at a relatively high level. Compared
with the thermal requirement derived from samples of the previous single year, the forecasting accuracy
based on the thermal requirement derived from samples of the previous two years is generally higher.
When using samples in 2017 and 2018 together, the R2 and a have no obvious change, but the RMSE
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decreases by 0.60 d and 0.35 d for the heading date and flowering date, respectively, and the BIAS is
much closer to 0.

Figure 4. Spatial distributions of estimated phenology from 2017 to 2019 in NCP. (a–c) the estimated
heading date with the proposed ATM method for 2017, 2018, and 2019, respectively; (d–f) the estimated
flowering date with the proposed ATM method for 2017, 2018 and 2019, respectively; (g–i) the estimated
heading–flowering date with the VImax method for 2017, 2018 and 2019, respectively; and (b1,e1,h1) are
the zoom-in figures of (b,e,h), respectively. DOY: Julian day of year.
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Figure 5. Scatter plot between observed heading dates and estimated ones. (a–c) the proposed
ATM method for 2017, 2018 and 2019, respectively; (d–f) the VImax method for 2017, 2018 and 2019,
respectively. DOY: Julian day of year.

Figure 6. Scatter plot between observed flowering dates and estimated ones. (a–c) the proposed
ATM method for 2017, 2018 and 2019, respectively; (d–f) the VImax method for 2017, 2018 and 2019,
respectively. DOY: Julian day of year.
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Table 2. Accuracy of the forecasted phenology by the ATM method.

Phenology Year R2 a BIAS/d RMSE/d

Based on samples in 2017

Heading date 2018 0.69 1.18 −2.79 6.38
2019 0.62 0.79 −2.94 6.22

Flowering date 2018 0.54 1.06 −2.42 6.36
2019 0.57 0.92 −2.02 6.13

Based on samples in 2017 and 2018

Heading date 2019 0.60 0.77 −0.65 5.62
Flowering date 2019 0.58 0.93 −0.21 5.78

5. Discussion

5.1. Advantages of the Proposed Method

Compared with the widely used VImax method, the estimated phenology with the ATM method
is more accurate. The visual qualitative analysis shows that the spatial distribution patterns of the
estimated heading and flowering dates with the ATM method are similar among different years and have
a higher spatial continuity. By contrast, the spatial inconsistency in the estimated heading–flowering
date with the VImax method indicates that it is more susceptible to the noise in the VI time-series data.
Normally, the phenology will not change greatly during the adjacent years [41,42]. It is also relatively
stable in a small region and is consistent with the climate gradient [43,44]. Therefore, the estimated
phenology with the ATM method is more consistent with the reality. Furthermore, the quantitative
analysis shows that the RMSE of the estimated heading and flowering dates with the ATM method
are approximately 5–6 d, and the BIAS values are within ±1 d. By contrast, there is a relatively large
difference between the heading–flowering dates estimated with the VImax method and the ground
observations. The RMSE varies from 8 to 13 d, and the BIAS is between −7 and 8 d. It should be
mentioned that the VImax method in its original reference [13] was based on the enhanced vegetation
index (EVI) time-series data. Due to the anti-saturation ability of EVI, for the VImax method, it may be
better to use EVI to extract the heading–flowering date. However, it will not make a big difference
between the results based on NDVI and those based on EVI. The RMSE was approximately 10 d even
if the EVI was used [13], which was close to our experiment (Figures 5 and 6).

Considering the differences between remote sensing and in situ meteorological data, we compared
the RMSE based on AET (in situ), AET (remote sensing), and VImax (see details in Appendix B).
The results show that the RMSE based on AET (in situ) was very close to that based on AET
(remote sensing) but a little lower. This may be because the resolution of the remote sensing
meteorological dataset is relatively coarse (0.2◦), and the accuracy is lower than that of the ground
observation stations. It also indicated both the remote sensing and in situ meteorological data can be
effectively used in the ATM method and generate results with a high accuracy.

The ATM method can well distinguish between the physiological heading date and flowering
date and has an obvious advantage in distinguishing phenological events which are close in time.
By contrast, the VImax method can only extract the date corresponding to the maximum vegetation
index in the growing season, which is essentially not a clear crop phenological event and does not
have physiological significance. It can hardly distinguish the phenological events (such as the heading
and the flowering), which are close in time.

Additionally, the ATM method can realize not only monitoring but also forecasting. Compared
with the monitoring accuracy, the forecasting accuracy decreases slightly but is still at a high level
(RMSE is approximately 6 d). When the green-up date is known, meteorological observations or
forecast data can be used to estimate the phenology. Therefore, combination with the short-term
meteorological forecast data can realize forecasting of the heading and flowering dates of winter wheat,
while the existing methods based on remote sensing data can only realize monitoring.
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5.2. Limits and Future Improvements of the Proposed Method

Although the ATM method can produce more accurate results than the VImax method, it relies on
extra meteorological data in addition to remote sensing vegetation index data. Moreover, the spatial
resolution of meteorological data is relatively coarse compared with remote sensing data. However,
with the launch of meteorological satellites in recent years, daily land surface temperature (LST)
products with finer spatial resolutions have become increasingly abundant (e.g., MOD11A1, FY3B,
etc.). Considering there are still differences between the surface temperature and air temperature
as well as the surface temperature products and ground observed temperatures [45], whether these
products could be used to monitor and forecast the heading date and the flowering date of winter
wheat is needed to be further studied.

In addition, when using the ATM method to monitor and forecast crop phenology, daily air
temperature data and the thermal requirements for crop growth and development are needed in
advance according to the historical phenology observation data or phenology calendar in the region.
Compared with the VImax method, the ATM method requires some prior knowledge. In this study,
the winter wheat in NCP is irrigated, while the accuracy of this method when it is applied to the
rain-fed croplands has not been investigated. Moreover, whether this method can still be effective
in years when the hydrothermal conditions are greatly different from the average level (e.g., sudden
natural disasters such as drought, cold damage, and floods) needs to be further verified.

6. Conclusions

In this study, an accumulated temperature method (ATM) for monitoring and forecasting the
heading and flowering dates of winter wheat was proposed from the perspective of the thermal
requirements for the growth of crops. The method combined the green-up date derived from remote
sensing data and daily temperature data to estimate and forecast the phenology. First, the green-up
date extracted by the dynamic threshold method was taken as the starting point of temperature
accumulation. Then, the accumulated effective temperature from the green-up date to the heading or
flowering date for each phenology observation sample was calculated. After that, the median value
was selected as the thermal requirement in the study area. Finally, the daily temperature data was used
to estimate the heading and flowering dates of winter wheat. The phenology estimated by the ATM
method is relatively stable among adjacent years, and the spatial distribution shows good continuity
and smooth transition among different local areas. The monitoring accuracy of the ATM method is
high, and it can effectively distinguish between the heading date and the flowering date which are
close in time. In addition, the method also performs well when used to forecast the heading and
flowering dates of winter wheat with the short-term meteorological forecast data.
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Appendix A

Mapping Winter Wheat in NCP

A double threshold classification method was used to map winter wheat in NCP based on the NDVI
time-series data in 2019. The first threshold is selected in late March. During this period, the winter
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wheat in NCP has turned green, and its NDVI value is much higher than that of non-vegetation (e.g., city,
water, bare soil) and some natural vegetation (e.g., deciduous forest, grassland) (Figure A1a). Based on
the first threshold, winter wheat can be initially distinguished from them. The second threshold is
selected in late June. Winter wheat in NCP has been harvested at this time and its NDVI value will
decrease abruptly, while the NDVI value of natural vegetation reaches nearly the peak (Figure A1a).
Based on the second threshold, winter wheat can be further distinguished from natural vegetation.

Specifically, winter wheat in NCP was mapped with the following steps: (1) visually selecting
the regions of interest (ROIs) of winter wheat (2898 pixels), natural vegetation (12899 pixels),
and non-vegetation (8023 pixels) based on the high-resolution images on Google Earth, and further
randomly selecting 70% of the ROIs as training samples and the rest of the samples as testing samples;
(2) determining the first threshold based on the 12th NDVI image of 8-day composited NDVI time-series
data (about late March) to distinguish winter wheat from non-vegetation and some natural vegetation;
and (3) determining the second threshold based on the 22nd NDVI image of 8-day composited NDVI
time-series data (about late June) to distinguish winter wheat from natural vegetation. The NDVI
histograms for different ROI types are shown in Figure A1b,c.

Figure A1. Statistical characteristics of NDVI for winter wheat and other land cover types in NCP:
(a) the average NDVI time-series curves for different land cover types; (b) the NDVI histogram
for non-vegetation and winter wheat based on the 12th NDVI image (about late March); (c) the
NDVI histogram for winter wheat and natural vegetation based on the 22nd NDVI image (about late
June). Note that the two peaks in the NDVI time-series curve is because of winter wheat–summer
maize rotation.

Because this study focuses on the estimation of the heading and flowering dates of winter wheat,
it is important to ensure that the extracted pixels are winter wheat ones, and the setting of thresholds
aims to improve the user accuracy for winter wheat first. Therefore, according to Figure A1b,c, the first
and the second thresholds were set to 0.45 and 0.50, respectively, to map winter wheat in NCP, and the
classification accuracy is shown in Table A1.
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Table A1. The classification accuracy for winter wheat in NCP in 2019.

Type Producer Accuracy User Accuracy Overall Accuracy Kappa

Winter wheat 86.8% 96.6% 90.3% 0.80

Appendix B

Comparison among the AET (In Situ), AET (Remote Sensing), and VImax

Considering the differences between remote sensing and in situ meteorological data, we collected
the dataset of daily climate data of CMA, which consists of 699 basic meteorological stations in China
since 1951, and selected the closest meteorological station for each phenology observation station.
Then, we compared the RMSE based on AET (in situ), AET (remote sensing) and VImax (Table A2).

Table A2. The 3-year averaged RMSE for estimated phenology based on AET (in situ), AET
(remote sensing), and VImax.

Phenology AET
(In Situ)

AET
(Remote Sensing) VImax

Heading date 5.28 d 5.54 d 9.93 d
Flowering date 5.45 d 5.94 d 10.32 d

References

1. Chu, L.; Huang, C.; Liu, Q.S.; Liu, G.H. Estimation of winter wheat phenology under the influence of
cumulative temperature and soil salinity in the Yellow River Delta, China, using MODIS time-series data.
Int. J. Remote Sens. 2016, 37, 2211–2232. [CrossRef]

2. Ferris, R.; Ellis, R.H.; Wheeler, T.R.; Hadley, P. Effect of high temperature stress at anthesis on grain yield and
biomass of field-grown crops of wheat. Ann. Bot. 1998, 82, 631–639. [CrossRef]

3. Garcia del Moral, L.F.; Rharrabti, Y.; Villegas, D.; Royo, C. Evaluation of grain yield and its components
in durum wheat under Mediterranean conditions: An ontogenic approach. Agron. J. 2003, 95, 266–274.
[CrossRef]

4. Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive
period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [CrossRef]

5. Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering
period for wheat in south-eastern Australia. Field Crop. Res. 2017, 209, 108–119. [CrossRef]

6. Kamir, E.; Waldner, F.; Hochman, Z. Estimating wheat yields in Australia using climate records, satellite
image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135.
[CrossRef]

7. Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems.
Nature 2003, 421, 37–42. [CrossRef] [PubMed]

8. Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing
satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417.
[CrossRef]

9. Huang, X.; Liu, J.H.; Zhu, W.Q.; Atzberger, C.; Liu, Q.F. The Optimal Threshold and Vegetation Index Time
Series for Retrieving Crop Phenology Based on a Modified Dynamic Threshold Method. Remote Sens. 2019,
11, 2725. [CrossRef]

10. Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation
of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm.
Remote Sens. 2020, 163, 231–256.

11. Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index
imagery. Int. J. Remote Sens. 1990, 11, 2269–2279. [CrossRef]

http://dx.doi.org/10.1080/01431161.2015.1131871
http://dx.doi.org/10.1006/anbo.1998.0740
http://dx.doi.org/10.2134/agronj2003.2660
http://dx.doi.org/10.1088/1748-9326/8/2/024041
http://dx.doi.org/10.1016/j.fcr.2017.04.012
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.008
http://dx.doi.org/10.1038/nature01286
http://www.ncbi.nlm.nih.gov/pubmed/12511946
http://dx.doi.org/10.1016/j.rse.2012.04.001
http://dx.doi.org/10.3390/rs11232725
http://dx.doi.org/10.1080/01431169008955174


Remote Sens. 2020, 12, 3536 15 of 16

12. White, M.A.; Thornton, P.E.; Running, S.W. A Continental Phenology Model for Monitoring Vegetation
Responses to Interannual Climatic Variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [CrossRef]

13. Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection
method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [CrossRef]

14. Reed, B.C.; Brown, J.F.; Vanderzee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological
variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]

15. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring
vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [CrossRef]

16. Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding
trials using an unmanned aerial vehicle. Field Crop. Res. 2017, 210, 71–80. [CrossRef]

17. Duncan, J.M.; Dai, J.H.; Atkinson, P.M. Elucidating the impact of temperature variability and extremes on
cereal croplands through remote sensing. Glob. Chang. Biol. 2015, 21, 1541–1551. [CrossRef]

18. Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.-J.; Bégué, A.; Lo Seen, D. Maize yield estimation in West
Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019,
108, 11–26. [CrossRef]

19. Xu, X.M.; Conrad, C.; Doktor, D. Optimising Phenological Metrics Extraction for Different Crop Types
in Germany Using the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. 2017, 9, 2543.
[CrossRef]

20. Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of rice phenology through time
series analysis of ground-based spectral index data. Field Crop. Res. 2016, 198, 131–139. [CrossRef]

21. Sakamoto, T. Refined shape model fitting methods for detecting various types of phenological information
on major U.S. crops. ISPRS J. Photogramm. Remote Sens. 2018, 138, 176–192. [CrossRef]

22. Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A.; Verma, S.B.; Suyker, A.E.; Arkebauer, T.J. A Two-Step Filtering
approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sens. Environ.
2010, 114, 2146–2159. [CrossRef]

23. Song, Y.; Wang, J. Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1
Backscatter Time Series. Remote Sens. 2019, 11, 449. [CrossRef]

24. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the
temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens.
Environ. 2017, 199, 415–426. [CrossRef]

25. González-Gómez, L.; Campos, I.; Calera, A. Use of different temporal scales to monitor phenology and its
relationship with temporal evolution of normalized difference vegetation index in wheat. J. Appl. Remote
Sens. 2018, 12, 0260102. [CrossRef]

26. Mcmaster, G.S.; Smika, D.E. Estimation and Evaluation of Winter-Wheat Phenology in the Central Great
Plains. Agric. For. Meteorol. 1988, 43, 1–18. [CrossRef]

27. Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting
corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250.
[CrossRef]

28. Song, Y.; Wang, J.; Yu, Q.; Huang, J.X. Using MODIS LAI Data to Monitor Spatio-Temporal Changes of Winter
Wheat Phenology in Response to Climate Warming. Remote Sens. 2020, 12, 7865. [CrossRef]

29. Wang, H.L.; Gan, Y.T.; Wang, R.Y.; Niu, J.Y.; Zhao, H.; Yang, Q.G.; Li, G.C. Phenological trends in winter
wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 2008, 148,
1242–1251. [CrossRef]

30. National Bureau of Statistics of China. China Rural Statistical Yearbook 2019; China Statistics Press: Beijing,
China, 2019.

31. Peng, D.L.; Wu, C.Y.; Li, C.J.; Zhang, X.Y.; Liu, Z.J.; Ye, H.C.; Luo, S.Z.; Liu, X.J.; Hug, Y.; Fang, B. Spring
green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and
validation using National Phenology Network and AmeriFlux observations. Ecol. Indic. 2017, 77, 323–336.
[CrossRef]

32. Zhu, W.; Pan, Y.; He, H.; Wang, L.; Mou, M.; Liu, J. A Changing-Weight Filter Method for Reconstructing
a High-Quality NDVI Time Series to Preserve the Integrity of Vegetation Phenology. IEEE Trans. Geosci.
Remote Sens. 2012, 50, 1085–1094. [CrossRef]

http://dx.doi.org/10.1029/97GB00330
http://dx.doi.org/10.1016/j.rse.2005.03.008
http://dx.doi.org/10.2307/3235884
http://dx.doi.org/10.1016/S0034-4257(02)00135-9
http://dx.doi.org/10.1016/j.fcr.2017.05.025
http://dx.doi.org/10.1111/gcb.12660
http://dx.doi.org/10.1016/j.eja.2019.04.007
http://dx.doi.org/10.3390/rs9030254
http://dx.doi.org/10.1016/j.fcr.2016.08.027
http://dx.doi.org/10.1016/j.isprsjprs.2018.02.011
http://dx.doi.org/10.1016/j.rse.2010.04.019
http://dx.doi.org/10.3390/rs11040449
http://dx.doi.org/10.1016/j.rse.2017.07.015
http://dx.doi.org/10.1117/1.JRS.12.026010
http://dx.doi.org/10.1016/0168-1923(88)90002-0
http://dx.doi.org/10.1016/j.rse.2016.03.039
http://dx.doi.org/10.3390/rs12050786
http://dx.doi.org/10.1016/j.agrformet.2008.03.003
http://dx.doi.org/10.1016/j.ecolind.2017.02.024
http://dx.doi.org/10.1109/TGRS.2011.2166965


Remote Sens. 2020, 12, 3536 16 of 16

33. Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.;
Iredell, M.; et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-Hourly Products; Research Data Archive
at the National Center for Atmospheric Research, Computational and Information Systems Laboratory:
Boulder, CO, USA, 2011. [CrossRef]

34. Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.;
Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [CrossRef]

35. Cong, N.; Piao, S.; Chen, A.; Wang, X.; Lin, X.; Chen, S.; Han, S.; Zhou, G.; Zhang, X. Spring vegetation
green-up date in China inferred from SPOT NDVI data: A multiple model analysis. Agric. For. Meteorol.
2012, 165, 104–113. [CrossRef]

36. Delbart, N.; Beaubien, E.; Kergoat, L.; Le Toan, T. Comparing land surface phenology with leafing and
flowering observations from the PlantWatch citizen network. Remote Sens. Environ. 2015, 160, 273–280.
[CrossRef]

37. Yu, H.Y.; Luedeling, E.; Xu, J.C. Winter and spring warming result in delayed spring phenology on the
Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [CrossRef] [PubMed]

38. Gan, L.Q.; Cao, X.; Chen, X.H.; Dong, Q.; Cui, X.H.; Chen, J. Comparison of MODIS-based vegetation indices
and methods for winter wheat green-up date detection in Huanghuai region of China. Agric. For. Meteorol.
2020, 288, 108019. [CrossRef]

39. Guo, L.; An, N.; Wang, K. Reconciling the discrepancy in ground- and satellite-observed trends in the
spring phenology of winter wheat in China from 1993 to 2008. J. Geophys. Res.-Atmos. 2016, 121, 1027–1042.
[CrossRef]

40. Ren, S.; Qin, Q.; Ren, H. Contrasting wheat phenological responses to climate change in global scale. Sci. Total
Environ. 2019, 665, 620–631. [CrossRef]

41. Cui, T.; Martz, L.; Lamb, E.G.; Zhao, L.; Guo, X. Comparison of Grassland Phenology Derived from MODIS
Satellite and PhenoCam Near-Surface Remote Sensing in North America. Can. J. Remote Sens. 2019, 45,
707–722. [CrossRef]

42. Zhang, S.; Tao, F. Modeling the response of rice phenology to climate change and variability in different
climatic zones: Comparisons of five models. Eur. J. Agron. 2013, 45, 165–176. [CrossRef]

43. Guo, J.; Yang, X.; Niu, J.; Jin, Y.; Xu, B.; Shen, G.; Zhang, W.; Zhao, F.; Zhang, Y. Remote sensing monitoring
of green-up dates in the Xilingol grasslands of northern China and their correlations with meteorological
factors. Int. J. Remote Sens. 2018, 40, 2190–2211. [CrossRef]

44. Shen, M.G.; Zhang, G.X.; Cong, N.; Wang, S.P.; Kong, W.D.; Piao, S.L. Increasing altitudinal gradient of
spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol.
2014, 189, 71–80. [CrossRef]

45. Yang, J.J.; Duan, S.B.; Zhang, X.Y.; Wu, P.H.; Huang, C.; Leng, P.; Gao, M.F. Evaluation of Seven Atmospheric
Profiles from Reanalysis and Satellite-Derived Products: Implication for Single-Channel Land Surface
Temperature Retrieval. Remote Sens. 2020, 12, 791. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5065/D61C1TXF
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1016/j.agrformet.2012.06.009
http://dx.doi.org/10.1016/j.rse.2015.01.012
http://dx.doi.org/10.1073/pnas.1012490107
http://www.ncbi.nlm.nih.gov/pubmed/21115833
http://dx.doi.org/10.1016/j.agrformet.2020.108019
http://dx.doi.org/10.1002/2015JD023969
http://dx.doi.org/10.1016/j.scitotenv.2019.01.394
http://dx.doi.org/10.1080/07038992.2019.1674643
http://dx.doi.org/10.1016/j.eja.2012.10.005
http://dx.doi.org/10.1080/01431161.2018.1506185
http://dx.doi.org/10.1016/j.agrformet.2014.01.003
http://dx.doi.org/10.3390/rs12050791
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Data 
	Remote Sensing Data 
	Phenology Observation Data 
	Meteorological Data 
	Winter Wheat Map 


	Methodology 
	The Proposed Accumulated Temperature Method 
	Calculation of the Thermal Indices 
	Determination of the Heading Date and Flowering Date 

	Assessment of Monitoring Accuracy 
	Assessment of Forecasting Accuracy 

	Results 
	Performance of Different Tbase 
	Evaluation of Monitoring Accuracy 
	The Spatial Distribution of Estimated Heading and Flowering Dates 
	Monitoring Accuracy of Estimated Phenology 

	Evaluation of Forecasting Accuracy 

	Discussion 
	Advantages of the Proposed Method 
	Limits and Future Improvements of the Proposed Method 

	Conclusions 
	
	
	References

