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Abstract: The Gravity Recovery and Climate Experiment (GRACE) data have been extensively
used to evaluate the total terrestrial water storage anomalies (TWSA) from hydrological models.
However, which individual water storage components (i.e., soil moisture storage anomalies (SMSA) or
groundwater water storage anomalies (GWSA)) cause the discrepancies in TWSA between GRACE and
hydrological models have not been thoroughly investigated or quantified. In this study, we applied
GRACE mass concentration block (mascon) solutions to evaluate the spatio-temporal TWSA trends
(2003–2014) from seven prevailing hydrological models (i.e., Noah-3.6, Catchment Land Surface Model
(CLSM-F2.5), Variable Infiltration Capacity macroscale model (VIC-4.1.2), Water—Global Assessment
and Prognosis (WaterGAP-2.2d), PCRaster Global Water Balance (PCR-GLOBWB-2), Community
Land Model (CLM-4.5), and Australian Water Resources Assessment Landscape model (AWRA-L v6))
in Australia and, more importantly, identified which individual water storage components lead to
the differences in TWSA trends between GRACE and hydrological models. The results showed that
all of the hydrological models employed in this study, except for CLM-4.5 model, underestimated
the GRACE-derived TWSA trends. These underestimations can be divided into three categories:
(1) ignoring GWSA, e.g., Noah-3.6 and VIC-4.1.2 models; (2) underrating both SMSA and GWSA,
e.g., CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models; (3) deficiently modeling GWSA,
e.g., AWRA-L v6 model. In comparison, CLM-4.5 model yielded the best agreement with GRACE
but overstated the GRACE-derived TWSA trends due to the overestimation of GWSA. Our results
underscore that GRACE mascon solutions can be used as a valuable and efficient validation dataset
to evaluate the spatio-temporal performance of hydrological models. Confirming which individual
water storage components result in the discrepancies in TWSA between GRACE and hydrological
models can better assist in further hydrological model development.
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1. Introduction

Accurate quantification of total terrestrial water storage anomalies (TWSA) is indispensable for the
prediction of regional food supply, energy production, human and ecosystem health, and economic and
societal development [1], particularly in arid and semi-arid environments (e.g., Australia). Since the
first primitive land surface model introduced by Manabe in 1969 [2], many tens of hydrological models
have been employed to analyze TWSA. Due to different model structures and parameterizations utilized
in hydrological models, significant discrepancies can be observed among these model-simulated water
storage variations in Australia. For instance, although Water—Global Assessment and Prognosis
(WaterGAP-2.2) model [3] and Community Land Model version 4.0 (CLM-4.0) [4] include all water
storage components, they have different climate forcing and soil thicknesses (more details about these
models can be found in Section 2.2.1). Such differences cause a linear trend of TWSA (2002–2014)
simulated by these two models in the Murray–Darling river basin to show opposite variation,
i.e., 3.78 mm/year for WaterGAP model but −4.58 mm/year for CLM-4.0 model [5]. Hence, a question
emerges about the reliability of hydrological models in Australia.

Encouragingly, satellite measurements of the Earth’s time-variable gravity from the Gravity
Recovery and Climate Experiment (GRACE) mission provide new data for monitoring TWSA at the
regional and global scales with a surface spatial resolution of 300 km [6]. In Australia, GRACE data
have been used to monitor the Millennium Drought [7–11], groundwater variations [12,13], and the
impacts of extreme hydroclimatic events (e.g., El Niño-Southern Oscillation (ENSO), Indian Ocean
Dipole (IOD), and Southern Annular Mode (SAM)) on water change [9,14–17]. Additionally, due to the
uncertainty of monthly GRACE-derived TWSA being at an error level of 2 cm in terms of equivalent
water thickness (EWT) for a catchment of the size≈63,000 km2 [18], and considering that this uncertainty
could be decreased with the increase in catchment size (due to GRACE measurement and leakage
uncertainties decreasing with increasing basin size [5]), GRACE data can also be used to evaluate the
performance of hydrological models in Australia [19]. van Dijk et al. [20] used the TWSA derived
from GRACE spherical harmonic (SH) solutions to test the performance of the TWSA modeled by the
Australian Water Resources Assessment (AWRA) system in Australia and indicated that AWRA model
tended to have smaller seasonal amplitude and to show less negative trends in northwest Australia,
the southern Murray Basin, and southwest Western Australia than GRACE. Swenson et al. [21] used
the TWSA derived from GRACE SH solutions to examine the response of the Community Land
Model (CLM-4.5) aquifer model to transitions between low and high recharge inputs in a northeastern
Australia region and showed that CLM-4.5 model simulates unrealistic long-period behavior relative
to the TWSA derived from GRACE. Tangdamrongsub et al. [22] used the TWSA and groundwater
water storage anomalies (GWSA) derived from GRACE data assimilation (GRACE DA; assimilates
GRACE SH solutions into the PCRaster Global Water Balance (PCR-GLOBWB) model) to evaluate
the performance of four different hydrological models (i.e., WaterGAP, PCR-GLOBWB, Community
Atmosphere Biosphere Land Exchange (CABLE), and World-Wide Water (W3)) in Australia and the
North China Plain. The results indicated that GRACE DA shows a significant improvement in all
measures than those obtained from the model simulations alone. Scanlon et al. [5,23] used the TWSA
derived from GRACE mass concentration block (mascon) and SH solutions to evaluate the reliability
of two hydrological and water resource models (i.e., WaterGAP and PCR-GLOBWB) and five land
surface models (i.e., Noah-3.3, Catchment Land Surface Model (CLSM-F2.5), Variable Infiltration
Capacity macroscale model (VIC), Mosaic, and CLM-4.0) in 183 river basins globally (four river basins
for Australia). The results showed that compared to GRACE, all models underestimated the large
water storage trends and most models underestimated the seasonal water storage amplitudes in
tropical and (semi) arid basins, while land surface models generally overestimated the amplitudes in
northern basins. These studies focused on using GRACE data to evaluate the reliability of hydrological
model-simulated TWSA in Australia, but less attention has been paid to which individual water storage
components (i.e., soil moisture storage anomalies (SMSA) or GWSA) lead to the discrepancies in TWSA
between GRACE and hydrological models. However, identifying and quantifying the contribution of
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individual water storage components to the discrepancies in TWSA between GRACE and hydrological
models are critical for assessing continental water storage change and further hydrological model
development [24]. Therefore, the manner in which individual water storage components affect the
performance of hydrological models in Australia needs to be analyzed.

We assume that the total terrestrial water storage (TWS) in Australia is mainly composed of soil
moisture storage (SMS) and groundwater storage (GWS), while the contribution of snow water storage
(SnWS), canopy water storage (CWS), and surface water storage (SWS) are negligible (more details
can be found in Section 2.3.1). The reference value of TWSA is based on the mean of three different
GRACE mascon solutions (i.e., Center for Space Research release 6 (RL 06) mascon solutions v01
(CSR-M), Jet Propulsion Laboratory RL06 mascon solutions v01(JPL-M), and Goddard Space Flight
Center mascon solutions v02.4 (GSFC-M)), the reference value of SMSA is the mean of four different
hydrological models (i.e., Noah-3.6, VIC-4.1.2, CLM-4.5, and Australian Water Resources Assessment
Landscape model (AWRA-L v6) models), and the reference value of GWSA is the residual between the
reference value of TWSA and the reference value of SMSA. These three different reference values are
used to evaluate the performance of hydrological models. This study aimed to use GRACE mascon
solutions to evaluate the spatio-temporal performance of TWSA from hydrological models and identify
which individual water storage components (i.e., SMSA or GWSA) result in the discrepancies in
TWSA between GRACE and hydrological models. The results can provide guidance for choosing the
appropriate dataset when investigating different water storage variations and assist in the development
of hydrological models in Australia.

The rest of the paper is organized as the follows. Section 2 presents the overview of the study
area, hydrological models, and GRACE mason solutions, as well as describes the determination of
the reference values (i.e., of the TWSA, SMSA, and GWSA) and the evaluation strategy. Section 3
presents a comparison of different GRACE mascon solutions, an evaluation of hydrological models,
and a quality assessment of the contribution of SMSA trends and GWSA trends to the differences in
TWSA trends between GRACE mascon solutions and hydrological models, as well as discusses the
influence of the driving force from the model structure, climate forcing, human water use, and model
calibration on the results. Section 4 concludes the key findings of this study.

2. Data and Methods

2.1. Study Area

Australia is the only country in the world that covers an entire continent. This continent can be
divided into 13 regions based on topographic drainage divisions [25] (Figure 1). Australia was selected
as a study area due to the following reasons: first, only a reduction in leakage errors was required
(the signal in a target region may leak into the surrounding areas and reduce signal amplitude in
this region (leakage-out), and the signal from the surrounding areas may also leak into this region
(leakage-in) and improve the signal amplitude in this region) across coastlines when GRACE data
were used to analyze the TWSA over Australia [26], without considering contamination from other
continents [27]. GRACE mascon solutions can easily satisfy this requirement [28] and are better for
estimating small hydrological signals over Australia. Second, Australia has experienced significant
spatio-temporal TWS variabilities under extreme hydroclimatic impacts [16], so measuring the water
storage variations over Australia has long been proven to be a challenge for hydrological models [26].
Lastly, SMSA and GWSA are the major components of the TWSA in Australia, while snow water
storage anomalies (SnWSA), canopy water storage anomalies (CWSA), and surface water storage
anomalies (SWSA) are assumed to be negligible [22] (more details about these components are given
in Section 2.3.1). Therefore, this feature can help us to better understand the primary water storage
component that leads to the discrepancies in TWSA between GRACE data and a hydrological model.
In this study, we focused on analyzing the water storage variations across the whole continent of
Australia. Additionally, to help interpretation, we also quantized the water storage variations in four
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different regions (i.e., the Carpentaria Coast (CC), the North East Coast (NEC), the Murray–Darling
Basin (MDB), and the North Western Plateau (NWP)) (Figure 1), which are typical regions of water
storage changes in Australia (more details can be found in Section 3.1).
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2.2. Data

2.2.1. Hydrological Models

A hydrological model, defined as a simplification of a real-world system, helps us to
understand, predict, and manage water resources [29]. Hence, understanding the performance of
hydrological models is important. In this study, we assessed the performance of seven state-of-the-art
hydrological models that are commonly used in Australia [12,13,20,22]. These hydrological models
include three different land surface models (i.e., Noah-3.6, CLSM-F2.5, and VIC-4.1.2) in Global
Land Data Assimilation System (GLDAS-2.1) [30], as well as Water—Global Assessment and
Prognosis (WaterGAP-2.2d) [3], PCRaster Global Water Balance (PCR-GLOBWB-2) [31], CLM-4.5 [32],
and Australian Water Resources Assessment Landscape model (AWRA-L v6) models [33]. Their primary
attributes are listed in Table 1. The key differences between hydrological models are model structure,
climate forcing input, consideration of human water use or not, and model calibration. For instance,
most of the hydrological models used in this study include all individual water storage components,
whereas Noah-3.6 and VIC-4.1.2 models do not contain SWS, or GWS. Additionally, the soil thicknesses
among hydrological models are different, e.g., the soil depth of VIC-4.1.2 in Australia is from 1.5 to
3.5 m [34], and from 0.5 to 1.5 m for WaterGAP-2.2d model in most parts of Australia [3]. For climate
forcing, only Noah-3.6, CLSM-F2.5, and VIC-4.1.2 models use the same parameters, whereas the
other hydrological models utilize completely different parameters. Furthermore, only WaterGAP-2.2d
model considers human water use and model calibration. In summary, these differences can affect the
performance of these models, and are the focus of this study.
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Table 1. Summary of primary attributes of different hydrological models used in this study.

Description Noah-3.6 CLSM-F2.5 VIC-4.1.2 WaterGAP-2.2d PCR-GLOBWB-2 CLM-4.5 AWRA-L v6

Resolution
(lat × lon) 1◦ × 1◦ 1◦ × 1◦ 1◦ × 1◦ 0.5◦ × 0.5◦ 0.08◦ × 0.08◦ 0.94◦ × 1.25◦ 0.05◦ × 0.05◦

Time span 2000–
present

2000–
present

2000–
present 1950–2016 1958–2015 1979–2014 1911–present

SnWS Yes Yes Yes Yes Yes Yes Yes
CWS Yes Yes Yes Yes Yes Yes Yes
SWS No No No Yes Yes Yes Yes
SMS Yes Yes Yes Yes Yes Yes Yes
GWS No Yes No Yes Yes Yes Yes

Soil layers 4 1 3 1 2 10 3
Soil thickness

(m) 2.0 1.0 Variable Variable 1.5 3.8 6.0
Climate
forcing 1 (1) (1) (1) (2) (3) (4) (5)

Human water
use No No No Yes Yes No No

Calibration No No No Yes No No Yes
1 Climate forcing: (1) NOAA/GDAS-GPCP-AGRMET: National Oceanic and Atmospheric Administration/Global
Data Assimilation System atmospheric analysis fields, Global Precipitation Climatology Project V1.3, and the Air
Force Weather Agency’s AGRicultural METeorological modeling system; (2) WFDEI-GPCC: WATCH Forcing Data
methodology applied to ERA-Interim data, Global Precipitation Climatology Centre; (3) CRU-ERA40-ERA-Interim:
Climate Research Unit (CRU), European Centre for Medium-Range Weather Forecasts reanalysis production (ERA40,
ERA-Interim); (4) GSWP3: The Global Soil Wetness Project phase 3; (5) AWAP: The Australian Water Availability
Project. CLSM-F2.5, Catchment Land Surface Model; VIC-4.1.2, Variable Infiltration Capacity macroscale model;
WaterGAP-2.2d, Water—Global Assessment and Prognosis; PCR-GLOBWB-2, PCRaster Global Water Balance;
CLM-4.5, Community Land Model; AWRA-L v6, Australian Water Resources Assessment Landscape model; SnWS,
snow water storage; CWS, canopy water storage; SWS, surface water storage; SMS, soil moisture storage; GWS,
groundwater storage.

2.2.2. GRACE Mascon Solutions

The GRACE twin satellites [6], their science mission launched on 17 March 2002 and ended on
12 October 2017, were a joint space mission of National Aeronautics and Space Administration (NASA)
and German Aerospace Center (DLR). Its primary objective was to monitor the temporal changes of
the Earth’s gravity field at the global scale [19]. The temporal variations of the Earth’s gravity field
are mainly caused by earthquakes [35], crustal deformations [36], glacial isostatic adjustment [37],
and oceanic [38] and hydrologic processes [19]. Across Australia, GRACE-derived gravity changes
were generally attributed to large-scale hydrological variations [39,40].

Three newly available GRACE mascon solutions were employed in this study to analyze the
TWS changes in Australia, i.e., Center for Space Research release 06 (RL 06) mascon solutions v01
(CSR-M) [41,42], Jet Propulsion Laboratory RL06 mascon solutions v01 (JPL-M) [43,44], and Goddard
Space Flight Center mascon solutions v02.4 (GSFC-M) [45]. Their primary processing details are listed
in Table 2. Compared to GRACE SH solutions, there are two main advantages of mascon solutions
when using them to study the water storage changes in Australia. First, mascon solutions can be
applied from the regional to global scales, whereas SH solutions are just for the global scale [28].
Hence, mascon solutions can better resolve ocean leakage error in terrestrial water signals across
Australia [26,46]. Second, mascon solutions apply geophysical data constraints during processing
with little empirical post-processing requirements, i.e., they do not require de-striping and signal
restoration, which were necessary for the SH solutions [28]. Therefore, mascon solutions provide
a higher signal-to-noise ratio [1], which is more suitable for the arid Australian environment with
relatively small seasonal hydrological variations [26]. Although the spatial resolution of GRACE is
only ~100,000 km2 (~3◦ × 3◦ at the equator) [28], it is suitable for measuring the TWS in a large-scale
region [5] (e.g., for the whole continent of Australia).

It should be noted that the timelines of all datasets were chosen during the intersection of GRACE
and hydrological models, that is, from January 2003 to December 2014 (Tables 1 and 2). The missing
months of data in GRACE mascon solutions were filled by linear interpolation. Since the monthly
water anomalies from GRACE mascon solutions were typically computed relative to a time–mean
baseline (Table 2), all water storages anomalies were computed relative to the same time–mean baseline
(i.e., 2004.0–2009.999). Additionally, to ensure the consistency of the spatial resolution between GRACE
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and hydrological models, the spatial resolution of all data was interpolated to 0.5◦. We found that
the standard deviations between the interpolated data-derived TWSA and that of the corresponding
original resolution data in Australia were lower than those between the different original resolution
data. Therefore, although interpolation may affect the value of an individual grid cell, it can be ignored
for the study of TWSA at the regional scale.

Table 2. Summary of primary processing details of different Gravity Recovery and Climate Experiment
(GRACE) mass concentration block (mascon) solutions used in this study.

Description CSR-M RL06 v01 JPL-M RL06 v01 GSFC-M v02.4

Released/native
resolution (lat × lon) 1 0.25◦ × 0.25◦/1◦ × 1◦ 0.5◦ × 0.5◦/3◦ × 3◦ 1◦ × 1◦/1◦ × 1◦

Solution span April 2002–June 2017 April 2002–June 2017 Jan 2003–July 2016
Mean removed 2004.0–2009.999 2004.0–2009.999 2004.0–2016.0
Regularization [42] [43,44] [45]

Background static field GGM-05C 2 GGM-05C GOCO-05S 3

Tide model GOT4.8 (d/o 180) 4 FES2014b (d/o 180) 5 GOT4.7 (d/o 90)
AOD 6 ECMWF 7 + MPIOM 8 ECMWF + MPIOM ECMWF + MOG2D 9

Degree 1 Corrections TN-13a 10 [47] [47]
C20 11 replacement SLR 12 (TN-11) SLR (TN-11) SLR (TN-07)
GIA 13 Correction ICE6G-D 14 ICE6G-D ICE6G-D

1 The native resolution of different GRACE mascon solutions is the resolution of different processing centers
parameterizing the gravity field and does not represent the native resolution of GRACE (approximately 3◦) [1];
2 GGM, GRACE Gravity Model; 3 GOCO, Gravity Observation Combination; 4 GOT, Goddard/Grenoble Ocean
Tide; 5 FES, finite element solution; 6 AOD, Atmosphere and Ocean Dealiasing; 7 ECMWF, European Centre for
Medium-Range Weather Forecasts; 8 MPIOM, Max-Planck-Institute for Meteorology Ocean Model; 9 MOG2D,
2DGravity Waves model; 10 TN, technical note; 11 C20, degree 2 order 0 coefficients; 12 SLR, satellite laser ranging;
13 GIA, glacial isostatic adjustment; 14 ICE6G, global ice history model. CSR-M RL06 v01, Center for Space Research
release 06 (RL 06) mascon solutions v01; JPL-M RL06 v01, Jet Propulsion Laboratory RL06 mascon solutions v01;
GSFC-M v02.4, Goddard Space Flight Center mascon solutions v02.4.

2.3. Methodology

2.3.1. Composition of Total Terrestrial Water Storage

Snow water storage (SnWS), canopy water storage (CWS), surface water storage (SWS),
soil moisture storage (SMS), and groundwater storage (GWS) are the five individual components of
total terrestrial water storage (TWS) [1,5], i.e.,

TWS = SnWS + CWS + SWS + SMS + GWS (1)

Total terrestrial water storage anomaly (TWSA) is relative to a long-term mean TWS
(e.g., the average of 2004.0–2009.999 in this study), generally expressed as an equivalent water thickness
(EWT; unit: mm) [48]. The same interpretations are for SnWSA, CWSA, SWSA, SMSA, and GWSA.
Under the Australian environment, SWS changes are expected to be minor and negligible [12].
Rodell et al. [49] indicated that the seasonal amplitude of the gravity changes caused by biomass
variations is as large as 5 mm, but it was still at an order of magnitude smaller than the current GRACE
uncertainties (2 cm); hence CWS changes are negligible. Additionally, SWS variations have little
impact over most of Australia [50], and such variations are not considered as a major contributor to
TWSA [40,50,51]. In summary, based on these assumptions, the water storage equation over Australia
can be simplified as follows:

TWSA = SMSA + GWSA (2)

2.3.2. Time Series Decomposition and Trend Estimation

The Seasonal Trend Decomposition using Loess procedure (STL), introduced by
Cleveland et al. [52], is a versatile and robust decomposition method [53]. This method consists
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of inner and outer loops. In the inner loop, the seasonal and long-term components are estimated from
a given time series under several passes of smoothing filters. In the outer loop, robustness weights,
which are utilized in the next iteration of the inner loop, are adjusted to reduce the impact of outliers in
the time series (more details can be found in the work of [53]). Compared to the outputs from harmonic
analysis, which is a common approach used to remove seasonal variations from given time series
data, the STL method shows similar results but isolates long-term components without additional
smoothing [5]. Therefore, in the current study, the STL method was utilized to decompose the monthly
time series of water storage anomalies into seasonal (Xseasonal), long-term (Xlong−term), and residual
(Xresidual) components as follows:

Xtotal = Xseasonal + Xlong−term + Xresidual (3)

The long-term component was further decomposed into the Xlinear and Xinter−annual components
by fitting a trend applying least squares linear regression and assigning the remaining long-term signal
to inter-annual variability. The residual component included the unmodeled seasonal and long-term
components and can reflect the sub-seasonal signal and noise [5].

The seasonal variability and linear trend (hereinafter called trend) in TWSA are important for
understanding the related hydrological processes over specified regions [54]. They are usually selected
as evaluation metrics to assess the performance of hydrological models [5,23]. However, for the TWSA
over Australia, only some parts of the northern continent are dominated by seasonal variability [53].
Therefore, in this study, we focused on evaluating the performance of hydrological models based
on the trends in water storage changes. Additionally, in order to assess the significance of the
trends, the Mann–Kendall test (M–K test) [55,56] with a significance level of 0.05 was performed on
long-term components data based on STL decomposition (Equation (3)). The M–K test, which is a
non-parametric test for identifying whether or not there is a linear monotonic trend in a time series [57],
has been widely utilized to detect trends in hydrologic data [58]. Additionally, the uncertainties in
trends are mathematically derived from least squares linear regression when decomposing long-term
components [28].

2.3.3. Determination of Reference Values

In this study, we not only assessed the TWSA trends derived from hydrological models, but also
evaluated the trends of the individual water storage components of said hydrological models.
To understand how different water storage components (i.e., soil moisture and groundwater) contribute
to the differences in TWSA trends between GRACE and hydrological models, it is essential to determine
the corresponding reference values of the different components.

Since GRACE-derived TWSA is an integrated change and cannot be decomposed into individual
components without ancillary data, it has been widely used to evaluate modeled TWSA simulations.
Additionally, we used the mean of three GRACE mascon solutions-based TWSA as a reference value for
TWSA, which is more effective in reducing the noise in the gravity field solutions than an independent
mascon solution [59]. The TWSA uncertainty was calculated based on the standard deviation among
these GRACE mascon solutions [59].

Soil moisture storage changes are generally from one of the following three broad sources, namely,
in situ observations, satellite remotely sensed estimates, and models simulations [60]. However, in situ
measurements are at point-scale and are sparsely distributed across the continent of Australia [61].
Although remotely sensed soil moisture estimates can satisfy the spatial requirements, they usually
represent the soil moisture in the top ~5 cm [62], which is much lower than the soil depth of hydrological
models (Table 1). Therefore, in this study, we utilized the modeled SMSA as a reference value, which has
been widely implemented in Australia [7,12,40,63]. Additionally, there is no definite way to identify
which model demonstrates the highest accuracy; therefore, in order to reduce the influence of model
uncertainty on the reliability of the reference valued, we adopted a multi-model (i.e., Noah-3.6,
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VIC-4.1.2, CLM-4.5, and AWRA-L v6 models; more details can be found in Section 3.2.2) ensemble
average as a reference value of SMSA. The SMSA uncertainty was equal to the standard deviation
among the applied models [51].

The variations in groundwater storage can be measured by in situ borehole observations;
however, the spatial coverage of monitoring boreholes in Australia is inadequate and uneven [12,22].
These boreholes are mainly biased toward locations in the southern and southwestern parts and the
eastern coast [64], which cannot satisfy the spatial requirement of this study on a continental scale.
Moreover, the groundwater level from the monitoring of boreholes needs to be multiplied by a specific
yield to convert it into groundwater storage, but the uncertainty in the special yield is very difficult
to quantify [40]. Although most of the hydrological models used in this study include groundwater
storage, large differences in GWSA trends between them were found (more details can be found
in Section 3.2.3). Thus, selecting one model or a multi-model ensemble mean as a reference value
was not reasonable. In comparison, GRACE-inferred groundwater storage, which was separated
as the residual between the GRACE-based TWSA and the modeled SMSA [51,65,66], can provide a
reasonable agreement with borehole-derived water storage for the regions with sufficient boreholes
over Australia [7,12,22,40,67]. This suggests that GRACE-inferred GWSA can reliably be used as a
reference value of GWSA, and the GWSA uncertainty was calculated by the root-sum-of-squares of
two uncertainties from the TWSA and SMSA reference values [40].

2.3.4. Evaluation Strategy

In this study, we concentrated on using the differences (Equation (4)) in different water storage
trends between hydrological models and the reference values as evaluation metrics to assess the
performance of said hydrological models.

∆trend = trendM − trendO (4)

where ∆trend is the trend difference, trendM is the water storage trend simulated by a hydrological
model, and trendO is the water storage trend derived from the reference value. If the value of ∆trend is
negative, it implies that the hydrological model underestimates the reference value of trend. It should
be noted that the released spatial resolution of GRACE mascon solutions has the same or a higher
resolution than that of hydrological models (Tables 1 and 2) (e.g., the released spatial resolution of
GSFC-M is 1◦ × 1◦, the same as that of GLDAS-2.1 model). However, these grid cells in GRACE mascon
solutions are highly correlated with their neighbors due to the native spatial resolution of GRACE
being approximately 3◦ × 3◦ [1]. Therefore, any analysis of the result of an individual grid cell should
be avoided [20,22]. In other words, the spatial pattern of different water storage trends was only used
for visualization purposes, and the quantified metrics for evaluating the performance of hydrological
models were based on the differences between the temporal trends.

Additionally, to aid interpretation, we estimated the temporal agreements in different water
storage anomalies between hydrological models and the reference values using the following statistics:
Pearson’s linear correlation coefficient (r: at the significance level p < 0.05), root-mean-square error
(RMSE), and the Nash–Sutcliffe efficiency (NSE) coefficient, respectively, as follows:

r =

n∑
i=1

(Mi −M)(Oi −O)√
n∑

i=1
(Mi −M)

2
√

n∑
i=1

(Oi −O)
2

(5)

RMSE =

√√
1
n

n∑
i=1

(Mi −Oi)
2 (6)
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NSE = 1−

n∑
i=1

(Mi −Oi)
2

n∑
i=1

(Oi −O)
2

(7)

where Mi and Oi are the modeled and reference values of the same variable, respectively; M and O are
the mean of the modeled and reference values, respectively, i is the number of months, and n is the
total number of months (i.e., 144 months).

3. Results and Discussion

3.1. Comparison of Total Terrestrial Water Storage Trends Derived from GRACE Mascon Solutions

The spatial distributions of the TWSA trends derived from three different GRACE mascon
solutions are shown in Figure 2, while the temporal variations in the TWSA derived from three
different GRACE mascon solutions based at the regional and continental scales are shown in Figure 3.
As displayed in Figure 2a, the TWSA trends of CSR-M exhibited a bipolar pattern, with pronounced
positive trends seen in CC (7.71 ± 0.84 mm/year; Figure 3a), NEC (10.98 ± 0.75 mm/year; Figure 3b),
and MDB (7.41 ± 0.85 mm/year; Figure 3c), whereas significant negative trends can be observed in
NWP (−6.84 ± 0.69 mm/year; Figure 3d). This pattern was also reported by Humphrey et al. [53]
and Rodell et al. [1]. Meanwhile, the TWSA trends from JPL-M and GSFC-M experienced a similar
distribution to that of CSR-M (Figure 2b,c and Figure 3a–d, and Table S1), but CSR-M displayed higher
apparent resolution and gradual changes. This can be attributed to the fact that the regularization
of the CSR mascon solutions is dependent on a 200-km Gaussian filter and its grid files are released
as 0.25◦ apparent resolution [42]. Furthermore, the TWSA trends simulated by JPL-M indicated
larger increasing and decreasing trends than those of CSR-M and GSFC-M (Table S1). A similar
result was also found by Rodell et al. [1], who indicated that the 3◦ mascons (native resolution) of
JPL-M “focus” more signals than the 1◦ mascons (native resolution) of CSR-M and GSFC-M over India.
Additionally, the TWSA trends derived from CSR-M and JPL-M showed more spatial consistency
than those from GSFC-M, especially in CC, Lake Eyre Basin (LKE), and South West Coast (SWC)
(Figure 2a–c). These differences could be due to the new RL06 mascon solutions, which were applied
in CSR-M and JPL-M, with a higher signal-to-noise ratio than the v02.4 mason solutions used in
GSFC-M [68].
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Figure 2. Comparison of total terrestrial water storage anomaly (TWSA) trends over Australia
(January 2003–December 2014) from Center for Space Research release 06 (RL 06) mascon solutions
v01 (CSR-M) (a), Jet Propulsion Laboratory RL06 mascon solutions v01 (JPL-M) (b), and Goddard
Space Flight Center mascon solutions v02.4 (GSFC-M) (c). The gray stippling indicates regions without
significant trends (p ≥ 0.05).
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Figure 3. Time series of TWSA from three different GRACE mascon solutions in Carpentaria Coast
(CC) (a), North East Coast (NEC) (b), Murray–Darling Basin (MDB) (c), North Western Plateau
(NWP) (d), and the whole continent of Australia (e).

Across the entire continent of Australia, the TWSA time series derived from three different
GRACE mascon solutions were highly consistent (Figure 3e); all correlation and NSE coefficients were
larger than 0.90 and 0.85, respectively, and all RMSEs were lower than 1.4 cm (Table 3). Additionally,
the agreement between CSR-M and JPL-M (i.e., r = 0.98, RMSE = 0.66 (cm), and NSE = 0.97) was higher
than between the others (Table 3). Under extreme hydroclimatic impact, the TWSA over the continent
indicated three different distinct temporal segments [16], i.e., two dry periods (i.e., 2003–2009 and
2011–2014) and one wet period (i.e., 2010–2011). Overall, the TWSA trends derived from three different
GRACE mascon solutions depicted a long-period significant increasing trend in Australia throughout
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the full investigated period, but the TWSA trend from GSFC-M (2.38 ± 0.50 mm/year) was lower than
that from CSR-M (3.69 ± 0.57 mm/year) and JPL-M (3.38 ± 0.62 mm/year).

Table 3. Statistical summary of temporal agreement metrics between GRACE mason solutions
in Australia. The bold and underlined numbers are the best and the worst values for the
metrics, respectively.

Mascon Solutions r RMSE (cm) NSE

CSR–JPL 0.98 0.66 0.97
CSR–GSFC 0.95 1.27 0.88
JPL–GSFC 0.94 1.35 0.86

The spatial and temporal differences in the TWSA trends among GRACE mascon solutions over
Australia could be related to the different background models and data processing strategies used in
said GRACE mascon solutions (Table 2). In order to reduce the influence of noise in the gravity field
solutions on the evaluation of hydrological models, we used the ensemble mean of all GRACE mascon
solutions-based TWSA as a reference value of TWSA [59].

3.2. Evaluation of Different Water Storage Trends from Hydrological Models

3.2.1. Total Terrestrial Water Storage Trend

Figure 4 maps the spatial distribution of seven different hydrological models-simulated TWSA
trends (Figure 4a–g) and the reference values of TWSA trends (Figure 4h). Figure 5 shows the time series
of the regional and the continental average TWSA simulations from seven different hydrological models
and the corresponding reference values (i.e., the ensemble means of CSR-M, JPL-M, and GSFC-M).
As shown in Figures 4 and 5, all models underestimated the increasing or decreasing trends in
Australia compared to GRACE, except for CLM-4.5 model. For instance, Noah-3.6 and VIC-4.1.2
models indicated significant wetting TWSA trends in MDB (Figure 4a,c and Figure 5c) with a value of
5.37 ± 0.79 mm/year and 4.04 ± 0.68 mm/year, respectively. However, these values are lower than the
reference value of 7.67 ± 0.83 mm/year. Additionally, these models showed no obvious wetting TWSA
trends in CC and NEC (Figure 5a,b and Tables S2 and S3) and drying trends in the NWP (Figure 5d
and Table S5). Furthermore, despite CLSM-F2.5, WaterGAP-2.2d, PCR-GLOBWB-2, and AWRA-L v6
models containing all water storage compartments, these models also showed an underestimation
of the TWSA trends compared to GRACE, in particular, the increasing trends in CC (Figure 5a and
Table S2) and the decreasing trends in NWP (Figure 5d and Table S5). On the contrary, CLM-4.5 model
overestimated the increasing trends in NEC (28.62 ± 1.28 mm/year) compared to the reference value of
7.66 ± 0.81 mm/year (Figure 5b). Additionally, we found that although WaterGAP-2.2d was the only
model used in this study that considers human water use and calibration (Table 1), it showed lower
TWSA trends and more non-significant trends than the other models (Figure 4d and Tables S2–S5).

Across the entire continent of Australia, all of the hydrological models indicated similar TWSA
temporal changes to those of reference value (Table 4). CLM-4.5 model presented the highest
agreement (r = 0.95, RMSE = 1.05 cm, and NSE = 0.91) in terms of TWSA to the reference
value, whereas WaterGAP-2.2d model expressed the lowest agreement (r = 0.77, RMSE = 3.02 cm,
and NSE = 0.20). Additionally, except for CLM-4.5 model, the TWSA trends from all models
(ranging from 0.56 ± 0.13 to 2.02 ± 0.45 mm/year) (Table 5) were lower than that of the reference
value, with a rate of 3.15 ± 0.56 mm/year. Furthermore, although CLM-4.5 model demonstrated the
closest agreement with GRACE, this model overestimates the GRACE-derived rising TWSA trend,
with a rate of 3.79 ± 0.52 mm/year. In addition, we observed that there were large discrepancies in
TWSA between GRACE and hydrological models over the period of 2011–2013; these discrepancies
may be due to the hydrological models underestimating the process of severe flooding caused by the
strongest La Niña event on record in Australia [15].
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Figure 4. Spatial patterns of TWSA trends over Australia from seven different hydrological models
(i.e., Noah-3.6 (a); Catchment Land Surface Model (CLSM-F2.5) (b); Variable Infiltration Capacity
macroscale model (VIC-4.1.2) (c); Water-Global Assessment and Prognosis (WaterGAP-2.2d) (d);
PCRaster Global Water Balance (PCR-GLOBWB-2) (e); Community Land Model (CLM-4.5) (f); and
Australian Water Resources Assessment Landscape model (AWRA-L v6) (g)) and the corresponding
reference values (h) for the period of January 2003–December 2014. The reference values of TWSA
trends are shown as the ensemble means of three different GRACE mascon solutions (i.e., CSR-M,
JPL-M, and GSFC-M). The gray stippling indicates regions with non-significant trends (p ≥ 0.05).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 27 
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Figure 5. Time series of TWSA from seven different hydrological models and the corresponding
reference values (i.e., the ensemble means of CSR-M, JPL-M, and GSFC-M) in the different regions
(CC (a); NEC (b); MDB (c); and NWP (d)) and the whole continent of Australia (e). The gray-shaded
area indicates the standard deviation of three different GRACE mascon solutions.

Table 4. Statistical summary of agreement metrics between hydrological models and the different
reference values. The bold and underlined numbers are the best and the worst values for the
metrics, respectively.

Models
TWSA SMSA GWSA

r RMSE
(cm) NSE r RMSE

(cm) NSE r RMSE
(cm) NSE

Noah-3.6 0.90 1.65 0.77 0.99 0.48 0.97 - - -
CLSM-F2.5 0.87 1.99 0.67 0.95 2.15 0.40 0.31 2.57 −2.01
VIC-4.1.2 0.87 1.88 0.70 0.98 0.67 0.94 - - -

WaterGAP-2.2d 0.77 3.09 0.20 0.66 2.54 0.17 0.20 1.65 −0.24
PCR-GLOBWB-2 0.81 2.48 0.48 0.87 1.76 0.60 0.62 1.25 0.28

CLM-4.5 0.95 1.05 0.91 0.96 0.79 0.92 0.80 0.90 0.63
AWRA-L v6 0.93 1.44 0.82 0.99 0.47 0.97 0.65 1.30 0.23

TWSA, total terrestrial water storage anomalies; SMSA, soil moisture storage anomalies; GWSA, groundwater water
storage anomalies.

The differences in TWSA trends may be due to the uncertainties of GRACE and hydrological
models [5]. However, we found that the standard deviations in TWSA among GRACE mascon
solutions are much lower than those from hydrological models (Figure 5, Tables 3 and 4, and Tables
S6–S13). Therefore, this suggests that the uncertainties in hydrological models are the main reason for
the differences in TWSA trends between GRACE and hydrological models over Australia. The main
factors associated with hydrological model uncertainties include model structure, climate forcing
input, consideration of human water use or not, and model calibration [3]. By comparison, the water
storage components and the capacity related to model structure have the most substantial impact on a
hydrological model’s uncertainties [3,5], so we focused on studying this factor.
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Table 5. Statistical summary of the different water storage trends (mm/year) derived from hydrological
models and the reference values over Australia from 2003 to 2014. The statistically non-significant
values with Mann–Kendall test (M–K test) at the 95% confidence limit are demonstrated in bold.

Models
TWSA SMSA GWSA

Trends Trends Trends

Noah-3.6 1.74 ± 0.46 1.74 ± 0.46 -
CLSM-F2.5 1.29 ± 0.56 0.25 ± 0.12 1.04 ± 0.44
VIC-4.1.2 1.92 ± 0.39 1.92 ± 0.39 -

WaterGAP-2.2d 0.56 ± 0.13 0.28 ± 0.06 0.28 ± 0.08
PCR-GLOBWB-2 0.73 ± 0.31 −0.05 ± 0.20 0.78 ± 0.14

CLM-4.5 3.79 ± 0.52 1.26 ± 0.36 2.53 ± 0.20
AWRA-L v6 2.02 ± 0.45 1.42 ± 0.36 0.58 ± 0.10
Reference 1 3.15 ± 0.56 1.58 ± 0.48 1.57 ± 0.32

1 The reference value of TWSA trend is based on the ensemble average of CSR-M, JPL-M, and GSFC-M-born
TWSA trends; the reference value of SMSA trend is based on the average of all hydrological models-derived SWSA
trends, except for CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models; the reference value of GWSA trend
is separated as the residual between the reference value of TWSA trend and the reference value of SMSA trend.
The uncertainties in trends were mathematically derived from least squares linear regression when decomposing
the long-term component [28].

It can be clearly seen that one of the main reasons for Noah-3.6 and VIC-4.1.2 models
underestimating the GRACE-based trend is because these models do not include groundwater
in their simulations (Table 1). For other models, however, we could not directly demonstrate the
differences in TWSA trends between GRACE and hydrological models being caused by the uncertainties
in soil moisture and/or groundwater. Therefore, it was necessary to assess the individual water storage
trends derived from hydrological models.

3.2.2. Soil Moisture Storage Trend

Figure 6 shows the spatial distributions of SMSA trends simulated by seven different hydrological
models (Figure 6a–g) and the reference values (Figure 6h), while Figure 7 shows the regional and
continental average temporal changes in SMSA derived from these seven different hydrological models
and the corresponding reference values. As shown in Figure 6a, Noah-3.6 model indicated pronounced
wetting SMSA trends in NEC (2.77 ± 0.67 mm/year; Figure 7b) and MDB (5.37 ± 0.79 mm/year;
Figure 7c), while non-significant drying trends in CC (−0.16 ± 0.49 mm/year; Figure 7a) and NWP
(−0.13± 0.51 mm/year; Figure 7d). Similar patterns in these trends were observed in VIC-4.1.2, CLM-4.5,
and AWRA-L v6 models (Figure 6c,f,g and Figure 7a–d, and Tables S2–S5). However, CLM-4.5 model
showed higher increasing SMSA trends in NEC (9.34 ± 0.68 mm/year; Figure 7b and Table S3) and
larger decreasing SMSA trends in NWP (−5.12 ± 0.43 mm/year; Figure 7d and Table S5). This could be
related to the fact that the CLM-4.5 model includes a dry surface layer, which can significantly reduce
the evaporation in NEC [69]; however, this dry surface layer may overestimate evaporation in NWP. In
comparison, CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models underestimated the SMSA
trends in Australia, especially the wetting SMSA trends in NEC and MDB (Figure 6b–e and Figure 7b,c
and Tables S3 and S4).

For the whole continent of Australia, the SMS variations estimated by Noah-3.6, VIC-4.1.2,
CLM-4.5, and AWRA-L v6 models were highly consistent with all of the correlation coefficients,
and NSE coefficients were larger than 0.90, whereas all of the RMSEs were lower than 1.0 cm (Table 4).
On the contrary, CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models showed similar SMS
changes to the correlation coefficients, ranging from 0.66 to 0.95 (Table 4), whereas their changing
magnitudes were lower than those from the other models with the NSE coefficients ranged from 0.17
to 0.60 and the RMSEs ranging from 1.76 to 2.54 cm (Table 4), especially in 2011 (Figure 7e).
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Figure 6. Spatial distributions of soil moisture storage anomalies (SMSA) trends over Australia from
seven different hydrological models (i.e., Noah-3.6 (a); CLSM-F2.5 (b); VIC-4.1.2 (c); WaterGAP-2.2d
(d); PCR-GLOBWB-2 (e); CLM-4.5 (f); and AWRA-L v6 (g)) and the corresponding reference values
(h) for the period of January 2003–December 2014. The reference values of SMSA trends are shown as
the ensemble means of all hydrological models, with the exception of CLSM-F2.5, WaterGAP-2.2d and
PCR-GLOBWB-2 models. The gray stippling indicates regions with non-significant trends (p ≥ 0.05).
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Figure 7. Time series of SMSA from seven different hydrological models and the corresponding
reference values (the ensemble means of all hydrological models, with the exception of CLSM-F2.5,
WaterGAP-2.2d and PCR-GLOBWB-2 models) in the different regions (CC (a); NEC (b); MDB (c);
and NWP (d)) and the whole continent of Australia (e). The gray-shaded area indicates the standard
deviation among hydrological models used to calculate the reference values.

The above results reveal that CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models
underestimated the spatio-temporal pattern of SMSA trends. This underestimation can be explained
by the fact that the soil profiles of these three models are too thin to sufficiently accommodate the
soil moisture storage, e.g., most of the soil thicknesses of WaterGAP-2.2d model in Australia are
approximately 0.5–1.5 m [3]. Additionally, these three models had worse performance in simulating
extreme hydrological changes. To avoid possible biases in trend calculations, we applied the ensemble
average of all of the hydrological models-derived SMSA as the SMSA reference values in Australia,
with the exception of CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models.

3.2.3. Groundwater Storage Trend

The spatial patterns of GWSA trends derived from five different models and the corresponding
reference values are displayed in Figure 8, while the temporal variations of the regional and the
continental average GWSA simulations from five different hydrological models and the corresponding
references value are shown in Figure 9. Distinct spatial differences in the GWSA trends among five
different models can be observed (Figure 8a–e). These differences imply that it may be unreasonable to
selected one model or a multi-model ensemble mean as a reference value. Therefore, the residuals
between the reference values of TWSA trends (the ensemble means of CSR-M, JPL-M, and GSFC-M) and
the reference values of SMSA trends (the ensemble mean of Noah-3.6, VIC-4.1.2, CLM-4.5, and AWRA-L
v6 models) were applied as the reference values of GWSA trends. This hypothesis is consistent with
the previous studies [40,51]. As shown in Figure 8f, the reference values of GWSA indicated
significant increasing trends in CC (7.09 ± 0.51 mm/year; Figure 9a), NEC (6.45 ± 0.31 mm/year;
Figure 9b) and MDB (3.56 ± 0.41 mm/year; Figure 9c), whereas pronounced decreasing trends in NWP
(−5.55 ± 0.31 mm/year; Figure 9b). All of the hydrological models, with the exception of CLM-4.5 model,
underestimated the reference values of GWSA trends (Figure 8a–c,e and Tables S2–S5). This means
that these four models lack sufficient capacity to catch the groundwater storage variations in Australia.
By comparison, CLM-4.5 model indicated larger pronounced positive or negative GWSA trends than
those of the reference values (Figure 8d), especially in NEC (19.28 ± 0.83 mm/year compared to the
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reference value of 6.45 ± 0.31 mm/year, Figure 9b) and MDB (−0.67 ± 0.46 mm/year compared with
the reference value of 3.56 ± 0.41 mm/year, Figure 9d). Swenson and Lawrence [21] attributed this
overestimation to CLM-4.5 model lacking a finite lower boundary in the bulk aquifer model.
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Figure 8. Spatial patterns of groundwater water storage anomalies (GWSA) trends over Australia
from five different hydrological models (CLSM-F2.5 (a); WaterGAP-2.2d (b); PCR-GLOBWB-2 (c);
CLM-4.5 (d); and AWRA-L v6 (e)) and the corresponding reference values (f) for the period of January
2003–December 2014. The reference values of GWSA trends are separated as the residuals between the
reference values of TWSA trends and the reference values of SMSA trends. The gray stippling indicates
regions with non-significant trends (p ≥ 0.05).

It should be pointed out that poor modeling of the influence of ocean tides and non-tide ocean
mass movement can affect the GRACE water storage estimates in the nearby Gulf of Carpentaria [20,70].
However, these errors introduce a cyclical error without affecting long-term trends [40]. Additionally,
a lower aquifer indicates an obvious rising groundwater level trend during 2004–2014 in the northern
part of Australia from the Australian Groundwater Insight [71]. Hence, the increasing GWSA trends
from the reference values in the northern part of Australia are reliable (Figure 8f). However, all of the
hydrological models underestimated these increasing trends (Figure 8a–e), which could be attributed
to the fact that these increasing trends are mostly expressed as GWSA trends of the lower aquifer,
and all of the hydrological models may lack sufficient storage capacity to accommodate variations in
deep groundwater [21].

In general, under the impact of “big wet” driven by one of the strongest La Niña events
in 2011 [16], all of the hydrological models indicated a significantly increasing GWSA trend for
the whole continent of Australia during the study period (Table 5). However, the GWSA trends
derived from CLSM-F2.5, WaterGAP-2.2d, PCR-GLOBWB-2, and AWRA-L v6 models (ranging from
0.28 ± 0.08 to 1.04 ± 0.44 mm/year) were lower than that of the reference value (with a trend of
1.57 ± 0.32 mm/year). On the contrary, CLM-4.5 model demonstrated good agreement (r = 0.80,
RMSE = 0.90 cm, and NSE = 0.63) in GWS variations with the reference values, but it is likely to
overestimate GWSA trend (with a trend of 2.53 ± 0.20 mm/year). In addition, CLSM-F2.5 model
indicated the highest GWSA bias out of all the other models (Figure 9a–e and Table 4). This could be
related to the soil thickness of CLSM-F2.5 model being only 1 m, thus resulting in larger changes in
GWSA [24]. Therefore, the depth of the soil layer has a significant influence on groundwater storage
variations [21]; however, the manner in which soil thickness affects groundwater storage was beyond
the scope of this paper.
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Figure 9. Time series of GWSA from five different hydrological models and the corresponding reference
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Australia (e). The gray-shaded area indicates the root-sum-of-squares of two uncertainties from the
reference values of TWSA and the reference values of SMSA.

3.3. Influence of Model Structure on Model Uncertainty

Based on the aforementioned results presented in Sections 3.1 and 3.2, different water storage
changes in Australia can be calculated through a comprehensive synergy of GRACE mascon solutions
and hydrological model simulations. The pronounced decreasing TWSA trends were located in NWP
and mainly expressed as a decline in GWSA trends (Figures 4h and 8f), which may be associated with
the influence of Pilbara’s mining industry [1]. On the contrary, significant increasing TWSA trends
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were found in CC, NEC, and MDB (Figure 4h), which are attributed to the impact of a heavy rain
event in 2011 [16]. The trends in NEC and MDB were expressed as wetting SMSA and GWSA trends
(Figure 4h, Figure 6h, and Figure 8f), whereas the trends in CC were mostly indicated as increasing
GWSA trends (Figure 4h, Figure 6h, and Figure 8f). In summary, SMSA trends demonstrated similar
contributions (50.16 ± 15.24%) to TWSA trends than those from GWSA trends (49.84% ± 10.16%) in
Australia over the period of 2003–2014 (Table 5).

As shown in Figure 10 and Table 5, all of the hydrological models underestimated the
GRACE-derived increasing TWSA trends in Australia, with the exception of CLM-4.5 model. The causes
for the underestimation can be divided into three categories: (1) the model ignores the groundwater
water component, i.e., Noah-3.6 and VIC-4.12 models [5]; (2) the model’s soil depth is too small to
accommodate the range in soil moisture change and lacks sufficient groundwater storage capacity,
i.e., CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models [5]; (3) the model does not have enough
ability to catch groundwater storage changes, i.e., AWRA-L v6 model [20]. On the contrary, CLM-4.5
model overestimated the GRACE-based TWSA trends because of the overestimation of GWSA trends,
which was induced by the lack of a finite lower boundary in the bulk aquifer, with poor responses to
large wetting events [21]. Besides the trend in TWSA, the seasonal and inter-annual variability in TWSA
can also be selected as evaluation metrics to assess the performance of hydrological models [23,54].
These two metrics will be studied in the future.

Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 27 

 

On the contrary, CLM-4.5 model demonstrated good agreement (r = 0.80, RMSE = 0.90 cm, and NSE 

= 0.63) in GWS variations with the reference values, but it is likely to overestimate GWSA trend (with 

a trend of 2.53 ± 0.20 mm/year). In addition, CLSM-F2.5 model indicated the highest GWSA bias out 

of all the other models (Figure 9a–e and Table 4). This could be related to the soil thickness of CLSM-

F2.5 model being only 1 m, thus resulting in larger changes in GWSA [24]. Therefore, the depth of the 

soil layer has a significant influence on groundwater storage variations [21]; however, the manner in 

which soil thickness affects groundwater storage was beyond the scope of this paper. 

3.3. Influence of Model Structure on Model Uncertainty 

Based on the aforementioned results presented in Sections 3.1 and 3.2, different water storage 

changes in Australia can be calculated through a comprehensive synergy of GRACE mascon 

solutions and hydrological model simulations. The pronounced decreasing TWSA trends were 

located in NWP and mainly expressed as a decline in GWSA trends (Figures 4h and 8f), which may 

be associated with the influence of Pilbara’s mining industry [1]. On the contrary, significant 

increasing TWSA trends were found in CC, NEC, and MDB (Figure 4h), which are attributed to the 

impact of a heavy rain event in 2011 [16]. The trends in NEC and MDB were expressed as wetting 

SMSA and GWSA trends (Figures 4h, 6h, and 8f), whereas the trends in CC were mostly indicated as 

increasing GWSA trends (Figures 4h, 6h, and 8f). In summary, SMSA trends demonstrated similar 

contributions (50.16 ± 15.24%) to TWSA trends than those from GWSA trends (49.84% ± 10.16%) in 

Australia over the period of 2003–2014 (Table 5). 

As shown in Figure 10 and Table 5, all of the hydrological models underestimated the GRACE-

derived increasing TWSA trends in Australia, with the exception of CLM-4.5 model. The causes for 

the underestimation can be divided into three categories: (1) the model ignores the groundwater 

water component, i.e., Noah-3.6 and VIC-4.12 models [5]; (2) the model’s soil depth is too small to 

accommodate the range in soil moisture change and lacks sufficient groundwater storage capacity, 

i.e., CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2 models [5]; (3) the model does not have 

enough ability to catch groundwater storage changes, i.e., AWRA-L v6 model [20]. On the contrary, 

CLM-4.5 model overestimated the GRACE-based TWSA trends because of the overestimation of 

GWSA trends, which was induced by the lack of a finite lower boundary in the bulk aquifer, with 

poor responses to large wetting events [21]. Besides the trend in TWSA, the seasonal and inter-annual 

variability in TWSA can also be selected as evaluation metrics to assess the performance of 

hydrological models [23,54]. These two metrics will be studied in the future. 

 

Figure 10. Trend differences in different water storage anomalies between hydrological models and 

reference values. 
Figure 10. Trend differences in different water storage anomalies between hydrological models and
reference values.

3.4. Impact of Other Factors on Model Uncertainty

In addition to the model structure, the differences in TWSA trends between GRACE and
hydrological models were also affected by climate forcing, consideration of human water use or not,
and model calibration [3,5].

3.4.1. Climate Forcing

Using different climate forcing in seven different models may be a disadvantage in this study.
However, it is very difficult to apply the same climate forcing for all hydrological models in
order to isolate the influence of climate forcing since some models are not in operational mode
(e.g., WaterGAP-2.2d) [3]. To easily evaluate the impact of different forcing data on the conclusion
of this study, we made a comparison among three common GLDAS models, i.e., Noah model in
GLDAS-2.0 and GLDAS-2.1 and CLSM model in GLDAS-2.1. GLDAS-2.0 is forced with the updated
Princeton meteorological forcing data (V2.2), while GLDAS-2.1 is forced with the National Oceanic
and Atmospheric Administration (NOAA)/Global Data Assimilation System (GDAS) atmospheric
analysis fields, the disaggregated Global Precipitation Climatology Project (GPCP) V1.3 Daily Analysis
precipitation fields, and the Air Force Weather Agency’s AGRicultural METeorological modeling
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system (AGRMET) radiation fields (more detail can be found in README for NASA GLDAS Version 2
Data). Moreover, the soil thickness of Noah model is 2.0 m, while it is only 1.0 m for CLSM model.
In other words, Noah model in GLDAS-2.0 has the same model structure but different climate forcing
to Noah model in GLDAS-2.1, whereas CLSM model in GLDAS-2.1 indicates uniform forcing input
data but a different model structure to Noah model in GLDAS-2.1. Therefore, these three models
provide us a good opportunity to compare the influence of different climate forcing and different model
structures on model uncertainty.

As can be seen in Figure 11a,b, two different Noah models showed similar spatial distribution,
i.e., decreasing SMSA trends in NWP and increasing SMSA trends in MDB. However, Noah model in
GLDAS-2.0 states larger drying SMSA trends in NWP (−2.36 ± 0.44 mm/year) and lower wetting SMSA
trends in MDB (3.27 ± 0.73 mm/year) than those of Noah model in GLDAS-2.1 (−0.13 ± 0.51 mm/year
and 5.37 ± 0.79 mm/year in NWP and MDB, respectively), which could be related to the different climate
forcing used in these two models. In comparison, CLSM model indicated no obvious decreasing SMSA
trends in NWP (−0.04 ± 0.13 mm/year) and lower increasing SMSA trends in MDB (0.85±0.15 mm/year,
Figure 11c). Across the whole continent of Australia, two different Noah models presented generally
good agreement (r = 0.98, RMSE = 0.73 cm, and NSE = 0.94) in SMS variations during the entire
period (Figure 12), except that large discrepancies in SMSA were found from 2011 to 2012, which were
caused by a strong precipitation event in 2011. On the contrary, the magnitude of the SMS changes
from CLSM model were always lower than those of the two Noah models, and the agreement metrics
between CLSM model and Noah-3.6 model (r = 0.94, RMSE = 2.44 cm, and NSE = 0.37) were lower
than those of between two different Noah models. Furthermore, these three GLDAS models indicate
increasing SMSA trends over the whole study period, but the increasing magnitude revealed by CLSM
model (with a slope of 0.25 ± 0.12 mm/year) was much lower than that of the two different Noah
models (with rates of 1.35 ± 0.36 and 1.74 ± 0.46 mm/year in GLDAS-2.0 and GLDAS-2.1, respectively).
In summary, model structure and climate forcing can result in differences in TWSA trends between
GRACE and hydrological models, but the impact of the model structure on these differences is much
greater than that of climate forcing. These results are supported by the findings of Scanlon et al. [5],
who also identified that the influence of model structure on TWSA trends is stronger than climate
forcing by using different climate forcing into WaterGAP model and applying the same climate forcing
to WaterGAP and PCR-GLOBWB models. Therefore, although different climate forcing in models
leads to the differences in TWSA trends between GRACE and hydrological models, the conclusion in
this study based on model structure is reasonable.
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Figure 11. Comparison of SMSA trends over Australia (January 2003–December 2014) from three
different Global Land Data Assimilation System (GLDAS) models (Noah in GLDAS-2.0 (a); Noah in
GLDAS-2.1 (b); CLSM in GLDAS-2.1 (c)). The gray stippling indicates regions without significant
trends (p ≥ 0.05).
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Figure 12. Continental-scale mean time series of SMSA over Australia from three different
GLDAS models.

3.4.2. Human Water Use and Model Calibration

It is interesting to note that although WaterGAP-2.2d model was the only model applied in the
current study that considers human water use and model calibration (Table 1), it showed the worst
agreement in terms of TWSA with GRACE relative to the other hydrological models (Table 4). On the
contrary, CLM-4.5 model does not consider human water use and model calibration, yet showed the
best agreement in terms of TWSA with GRACE (Table 4). Therefore, this implies that the factors of
human water use and model calibration may have uncertainties or are unlikely to be the main cause of
the differences in TWSA trends between GRACE and hydrological models in Australia for the period of
2003–2014 [5]. It should be pointed out that human water use can be a primary reason for groundwater
depletion in some Australian regions (e.g., in Victoria [12] and south-west western Australia [72]);
however, in the current study, we focused on evaluating the performance of hydrological models over
the whole continent of Australia; hence, human water use and model calibration did not influence
our conclusions.

Overall, we emphasize that model structure is the most important cause for discrepancies in
TWSA between GRACE and hydrological models, and do not deny that other factors also have an
impact; however, these influences on the conclusions of this study can be ignored.

4. Conclusions

Assessment of a hydrological model’s performance is important for managing water resources
and for guiding its future improvement. In this study, we applied three newly available GRACE
mascon solutions (i.e., CSR-M, JPL-M, and GSFC-M) to evaluate the spatio-temporal performance
of seven widely used hydrological models (i.e., Noah-3.6, CLSM-F2.5, VIC-4.1.2, WaterGAP-2.2d,
PCR-GLOBWB-2, CLM-4.5, and AWRA-L v6 models) over Australia from 2003 to 2014. The spatio-
temporal differences in TWSA trends between GRACE and hydrological models were investigated and,
more importantly, the corresponding individual water storage components (i.e., SMSA and GWSA)
that lead to the differences in TWSA trends were explored.

Although different background models and data processing strategies were used in CSR-M, JPL-M
and GSFC-M, high spatio-temporal agreement in TWSA was found between them. Additionally,
the standard deviations among three GRACE mascon solutions-derived TWSA were lower than that
among hydrological models. Therefore, GRACE mascon solutions can be used as valuable data to
assist in the improvement of hydrological models.

The Australian TWSA was mainly composed of SMSA and GWSA. The TWSA trends showed
a bipolar pattern, i.e., increasing trends in CC, NEC, and MDB, and decreasing TWSA trends in
NWP. However, the increasing TWSA trends in CC and the decreasing TWSA trends in NWP
were mostly due to groundwater storage variations, while the increasing TWSA trends in NEC
and MDB were attributed to changes in both soil moisture and groundwater storage. Across the
whole continent of Australia, the TWSA trend indicated a pronounced increasing trend with a
value of 3.15 ± 0.56 mm/year throughout the full investigated period. The contributions of SMSA
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trend (1.58 ± 0.48 mm/year) and GWSA trend (1.57 ± 0.32 mm/year) to TWSA trend were similar,
50.16 ± 15.24% and 49.84% ± 10.16%, respectively.

The differences in TWSA trends between GRACE and hydrological models were mainly caused by
uncertainties in these hydrological models. The influences of four different driving forces (i.e., model
structure, climate forcing input, consideration of human water use or not, and model calibration) on
hydrological models’ uncertainties were analyzed. Model structure was the most important reason;
climate forcing can result in differences in TWSA trends between GRACE and hydrological models,
but the impact of climate forcing on these differences was much lower than that of model structure.
Additionally, the factors of human water use and model calibration may have uncertainties or were
unlikely to be the main cause of the differences in TWSA trends between GRACE and hydrological
models in Australia for the period of 2003–2014.

All of the hydrological models applied in this study, except for CLM-4.5 model, underestimated
the GRACE-derived TWSA trends over the whole continent of Australia. Different hydrological
models showed different causes for the differences in TWSA trends between them and GRACE. We can
divide the causes of underestimation into three categories: missing groundwater storage component
(for Noah-3.6 and VIC-4.1.2 models), lack of sufficient capacity to accommodate the range in soil
moisture and groundwater storage trends (for CLSM-F2.5, WaterGAP-2.2d, and PCR-GLOBWB-2
models), and inadequate ability to catch groundwater storage changes (for AWRA-L v6 model).
In contrast, CLM-4.5 model indicated the best agreement with GRACE TWSA, but overestimated the
GRACE-derived TWSA trends, mostly due to the overestimation of GWSA trends.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/21/3578/s1,
Table S1: Statistical summary of TWSA trends (mm/year) derived from three different GRACE mascon solutions
in regions (Carpentaria Coast (CC), North East Coast (NEC), Murray-Darling Basin (MDB), and North Western
Plateau (NWP)), and the whole continent of Australia; Table S2: Statistical summary of different water storage
trends (mm/year) derived from hydrological models and reference values in CC from 2003 to 2014; Table S3:
Statistical summary of different water storage trends (mm/year) derived from hydrological models and reference
values in NEC from 2003 to 2014; Table S4: Statistical summary of different water storage trends (mm/year) derived
from hydrological models and reference values in MDB from 2003 to 2014; Table S5: Statistical summary of different
water storage trends (mm/year) derived from hydrological models and reference values in NWP from 2003 to 2014;
Table S6: Statistical summary of temporal agreement metrics between GRACE mason solutions in CC; Table S7:
Statistical summary of temporal agreement metrics between GRACE mason solutions in NEC; Table S8: Statistical
summary of temporal agreement metrics between GRACE mason solutions in MDB; Table S9: Statistical summary
of temporal agreement metrics between GRACE mason solutions in NWP; Table S10: Statistical summary of
agreement metrics between reference values and hydrological models in CC; Table S11: Statistical summary of
agreement metrics between reference values and hydrological models in NEC; Table S12: Statistical summary of
agreement metrics between reference values and hydrological models in MDB; Table S13: Statistical summary of
agreement metrics between reference values and hydrological models in NWP.
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