



Supporting Information for

## Spatio-temporal evaluation of water storage trends from hydrological models over Australia using GRACE mascon solutions

Xinchun Yang <sup>1,2</sup>, Siyuan Tian <sup>3</sup>, Wei Feng <sup>4</sup>, Jiangjun Ran <sup>5</sup>, Wei You <sup>1,\*</sup>, Zhongshan Jiang <sup>1</sup> and Xiaoying Gong <sup>1</sup>

- <sup>1</sup> Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756; China; xcyang@my.swjtu.edu.cn (X.C.Y.); youwei@swjtu.edu.cn (Y.W.); jzshhh@my.swjtu.edu.cn (Z.S.J.); xygong@swjtu.edu.cn (X.Y.G.)
- <sup>2</sup> School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- <sup>3</sup> Fenner School of Environment & Society, Australian National University, Canberra 2601, Australia; siyuan.tian@anu.edu.au (S.Y.T)
- <sup>4</sup> State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; fengwei@whigg.ac.cn (W.F.)
- <sup>5</sup> Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, 518055, China; ranjj@sustech.edu.cn (J.J.R)
- \* Correspondence: youwei@swjtu.edu.cn (W.Y.)

| western i lateau (IVWI )), and the whole continient of Aust |           |                 |                  |                 |  |  |  |  |
|-------------------------------------------------------------|-----------|-----------------|------------------|-----------------|--|--|--|--|
|                                                             | Region    | CSR-M           | JPL-M            | GSFC-M          |  |  |  |  |
|                                                             | CC        | $7.71\pm0.84$   | $8.32\pm0.95$    | $6.96 \pm 0.66$ |  |  |  |  |
|                                                             | NEC       | $10.98\pm0.75$  | $13.15\pm0.73$   | $11.09\pm0.62$  |  |  |  |  |
|                                                             | MDB       | $7.41 \pm 0.85$ | $8.73 \pm 0.96$  | $6.86\pm0.69$   |  |  |  |  |
|                                                             | NWP       | $-6.84\pm0.69$  | $-6.79 \pm 0.79$ | $-6.47\pm0.62$  |  |  |  |  |
|                                                             | Australia | $3.69 \pm 0.57$ | $3.38 \pm 0.62$  | $2.38\pm0.50$   |  |  |  |  |

**Table S1**. Statistical summary of TWSA trends (mm/year) derived from three different GRACE mascon solutions in regions (Carpentaria Coast (CC), North East Coast (NEC), Murray-Darling Basin (MDB), and North Western Plateau (NWP)), and the whole continent of Australia.

**Table S2**. Statistical summary of different water storage trends (mm/year) derived from hydrological models and reference values in CC from 2003 to 2014. The statistically non-significant values (M–K test) at the 95% confidence limit are demonstrated in bold

| Models        | TWSA<br>Trends                    | SMSA<br>Trends                    | GWSA<br>Trends |
|---------------|-----------------------------------|-----------------------------------|----------------|
| Noah-3.6      | $-0.16\pm0.49$                    | $-0.16\pm0.49$                    | -              |
| CLSM-F2.5     | $-1.03\pm0.94$                    | $-0.25\pm0.18$                    | $-0.78\pm0.76$ |
| VIC-4.1.2     | $\textbf{0.43} \pm \textbf{0.25}$ | $\textbf{0.43} \pm \textbf{0.25}$ | -              |
| WaterGAP-2.2d | $\textbf{0.14} \pm \textbf{0.34}$ | $\textbf{0.16} \pm \textbf{0.13}$ | $-0.02\pm0.22$ |
| PCR-GLOBWB-2  | $\textbf{1.36} \pm \textbf{0.85}$ | $-0.75\pm0.46$                    | $2.11\pm0.51$  |
| CLM-4.5       | $4.99 \pm 1.20$                   | $\textbf{0.44} \pm \textbf{0.59}$ | $4.55\pm0.67$  |
| AWRA-L v6     | $2.18\pm0.82$                     | $1.60\pm0.65$                     | $0.58\pm0.18$  |
| Reference     | $7.66\pm0.81$                     | $\textbf{0.57} \pm \textbf{0.48}$ | $7.09\pm0.51$  |

**Table S3**. Statistical summary of different water storage trends (mm/year) derived from hydrological models and reference values in NEC from 2003 to 2014. The statistically non-significant values (M–K test) at the 95% confidence limit are demonstrated in bold

| Models        | TWSA<br>Trends   | SMSA<br>Trends  | GWSA<br>Trends |
|---------------|------------------|-----------------|----------------|
| Noah-3.6      | $2.77 \pm 0.67$  | $2.77 \pm 0.67$ | -              |
| CLSM-F2.5     | $3.33 \pm 0.95$  | $0.69\pm0.20$   | $2.64\pm0.75$  |
| VIC-4.1.2     | $2.10\pm0.52$    | $2.10\pm0.52$   | -              |
| WaterGAP-2.2d | $1.90\pm0.40$    | $1.12 \pm 0.21$ | $0.78\pm0.20$  |
| PCR-GLOBWB-2  | $10.41\pm0.94$   | $1.45\pm0.52$   | $8.96\pm0.57$  |
| CLM-4.5       | $28.62 \pm 1.28$ | $9.34\pm0.68$   | $19.28\pm0.83$ |
| AWRA-L v6     | $9.16\pm0.92$    | $6.96\pm0.80$   | $2.20\pm0.14$  |
| Reference     | $11.74\pm0.69$   | $5.29\pm0.65$   | $6.45\pm0.31$  |

| Madala        | TWSA                              | SMSA                              | GWSA            |
|---------------|-----------------------------------|-----------------------------------|-----------------|
| wiodels       | Trends                            | Trends                            | Trends          |
| Noah-3.6      | $5.37\pm0.79$                     | $5.37\pm0.79$                     | -               |
| CLSM-F2.5     | $4.30\pm0.70$                     | $0.85\pm0.15$                     | $3.45\pm0.54$   |
| VIC-4.1.2     | $4.04\pm0.68$                     | $4.04\pm0.68$                     | -               |
| WaterGAP-2.2d | $1.50\pm0.19$                     | $0.58\pm0.11$                     | $0.92\pm0.10$   |
| PCR-GLOBWB-2  | $\textbf{0.30} \pm \textbf{0.38}$ | $\textbf{0.33} \pm \textbf{0.34}$ | $-0.03\pm0.06$  |
| CLM-4.5       | $3.94 \pm 1.00$                   | $4.61\pm0.69$                     | $-0.67\pm0.46$  |
| AWRA-L v6     | $3.57 \pm 0.55$                   | $2.42\pm0.50$                     | $1.15 \pm 0.09$ |
| Reference     | $7.67 \pm 0.83$                   | $4.11\pm0.64$                     | $3.56 \pm 0.41$ |

**Table S4**. Statistical summary of different water storage trends (mm/year) derived from hydrological models and reference values in MDB from 2003 to 2014. The statistically non-significant values (M–K test) at the 95% confidence limit are demonstrated in bold

**Table S5**. Statistical summary of different water storage trends (mm/year) derived from hydrological models and reference values in NWP from 2003 to 2014. The statistically non-significant values (M–K test) at the 95% confidence limit are demonstrated in bold

| Madala        | TWSA                              | SMSA             | GWSA                              |
|---------------|-----------------------------------|------------------|-----------------------------------|
| widdeis       | Trends                            | Trends           | Trends                            |
| Noah-3.6      | $-0.13\pm0.51$                    | $-0.13\pm0.51$   | -                                 |
| CLSM-F2.5     | $-0.18\pm0.58$                    | $-0.04\pm0.13$   | $-0.14 \pm 0.45$                  |
| VIC-4.1.2     | $1.22\pm0.50$                     | $1.22\pm0.50$    | -                                 |
| WaterGAP-2.2d | $\textbf{0.06} \pm \textbf{0.07}$ | $0.05\pm0.02$    | $\textbf{0.01} \pm \textbf{0.06}$ |
| PCR-GLOBWB-2  | $-0.82 \pm 0.13$                  | $-0.47\pm0.12$   | $-0.35 \pm 0.02$                  |
| CLM-4.5       | $-2.99\pm0.46$                    | $-5.12 \pm 0.43$ | $2.13\pm0.25$                     |
| AWRA-L v6     | $-1.06\pm0.47$                    | $-0.59\pm0.35$   | $-0.47\pm0.12$                    |
| Reference     | $-6.70 \pm 0.70$                  | $-1.15 \pm 0.44$ | $-5.55 \pm 0.31$                  |

**Table S6**. Statistical summary of temporal agreement metrics between GRACE mason solutions in CC. The bold and underlined numbers are the best and the worst values for the metrics, respectively.

| Mascon<br>solutions | r           | RMSE<br>(cm) | NSE  |
|---------------------|-------------|--------------|------|
| CSR-JPL             | 0.96        | 3.11         | 0.91 |
| CSR-GSFC            | 0.95        | 3.69         | 0.87 |
| JPL-GSFC            | <u>0.95</u> | 2.94         | 0.89 |

**Table S7**. Statistical summary of temporal agreement metrics between GRACE mason solutions in NEC. The bold and underlined numbers are the best and the worst values for the metrics, respectively.

| Mascon<br>solutions | r           | RMSE<br>(cm) | NSE         |  |  |
|---------------------|-------------|--------------|-------------|--|--|
| CSR-JPL             | <u>0.93</u> | <u>2.28</u>  | <u>0.86</u> |  |  |
| CSR-GSFC            | 0.94        | 2.15         | 0.87        |  |  |
| JPL-GSFC            | 0.93        | 2.21         | 0.86        |  |  |

**Table S8**. Statistical summary of temporal agreement metrics between GRACE mason solutions in MDB. The bold and underlined numbers are the best and the worst values for the metrics, respectively.

| Mascon<br>solutions | r           | RMSE<br>(cm) | NSE         |
|---------------------|-------------|--------------|-------------|
| CSR-JPL             | 0.99        | 1.94         | 0.94        |
| CSR-GSFC            | <u>0.96</u> | 1.60         | 0.89        |
| JPL-GSFC            | 0.96        | <u>2.19</u>  | <u>0.85</u> |

**Table S9**. Statistical summary of temporal agreement metrics between GRACE mason solutions in NWP. The bold and underlined numbers are the best and the worst values for the metrics, respectively.

| Mascon<br>solutions | r           | RMSE<br>(cm) | NSE         |
|---------------------|-------------|--------------|-------------|
| CSR–JPL             | <u>0.96</u> | <u>1.53</u>  | <u>0.90</u> |
| CSR-GSFC            | <u>0.96</u> | 1.31         | 0.93        |
| JPL-GSFC            | 0.97        | 1.48         | 0.92        |

**Table S10.** Statistical summary of agreement metrics between reference values and hydrological models in CC. The bold and underlined numbers are the best and the worst values for the metrics respectively.

|               | TWSA        |              |             |             | SMSA         |             |      | GWSA         |       |  |
|---------------|-------------|--------------|-------------|-------------|--------------|-------------|------|--------------|-------|--|
| Models        | r           | RMSE<br>(cm) | NSE         | r           | RMSE<br>(cm) | NSE         | r    | RMSE<br>(cm) | NSE   |  |
| Noah-3.6      | 0.88        | 4.79         | 0.71        | 0.99        | 0.94         | 0.98        | -    | -            | -     |  |
| CLSM-F2.5     | 0.87        | 5.29         | 0.64        | 0.97        | <u>4.32</u>  | <u>0.55</u> | 0.48 | <u>6.47</u>  | -1.43 |  |
| VIC-4.1.2     | <u>0.83</u> | 5.68         | <u>0.58</u> | 0.96        | 2.08         | 0.89        | -    | -            | -     |  |
| WaterGAP-2.2d | 0.88        | 5.67         | 0.59        | <u>0.90</u> | 4.06         | 0.60        | 0.47 | 4.15         | 0.00  |  |
| PCR-GLOBWB-2  | 0.91        | 3.93         | 0.80        | 0.96        | 1.92         | 0.91        | 0.66 | 3.27         | 0.38  |  |
| CLM-4.5       | 0.91        | 3.98         | 0.80        | 0.98        | 1.35         | 0.95        | 0.65 | 3.39         | 0.33  |  |
| AWRA-L v6     | 0.92        | 3.86         | 0.81        | 0.98        | 1.40         | 0.95        | 0.49 | 4.08         | 0.03  |  |

**Table S11.** Statistical summary of agreement metrics between reference values and hydrological models in NEC. The bold and underlined number are the best and the worst values for the metrics respectively.

|               | TWSA        |              | _     | SMSA |              |             | GWSA  |              |       |
|---------------|-------------|--------------|-------|------|--------------|-------------|-------|--------------|-------|
| Models        | r           | RMSE<br>(cm) | NSE   | r    | RMSE<br>(cm) | NSE         | r     | RMSE<br>(cm) | NSE   |
| Noah-3.6      | 0.71        | 5.11         | 0.21  | 0.97 | 1.61         | 0.91        | -     | -            | -     |
| CLSM-F2.5     | 0.71        | 5.33         | 0.14  | 0.93 | <u>4.25</u>  | <u>0.36</u> | -0.17 | 6.39         | -2.98 |
| VIC-4.1.2     | 0.69        | 5.09         | 0.22  | 0.96 | 1.89         | 0.87        | -     | -            | -     |
| WaterGAP-2.2d | <u>0.67</u> | 5.19         | 0.18  | 0.88 | 3.47         | 0.58        | -0.21 | 4.24         | -0.76 |
| PCR-GLOBWB-2  | 0.93        | 2.61         | 0.79  | 0.93 | 2.38         | 0.80        | 0.66  | 3.26         | -0.04 |
| CLM-4.5       | 0.94        | <u>9.16</u>  | -1.54 | 0.96 | 2.37         | 0.80        | 0.75  | <u>6.98</u>  | -3.76 |
| AWRA-L v6     | 0.93        | 2.49         | 0.81  | 0.98 | 1.28         | 0.94        | 0.65  | 2.93         | 0.16  |

|               | TWSA        |              |              |             | SMSA         |             |      | GWSA         |       |  |
|---------------|-------------|--------------|--------------|-------------|--------------|-------------|------|--------------|-------|--|
| Models        | r           | RMSE<br>(cm) | NSE          | r           | RMSE<br>(cm) | NSE         | r    | RMSE<br>(cm) | NSE   |  |
| Noah-3.6      | 0.86        | 2.80         | 0.67         | 0.98        | 1.16         | 0.91        | -    | -            | -     |  |
| CLSM-F2.5     | 0.84        | 3.05         | 0.60         | 0.92        | 3.21         | 0.23        | 0.26 | <u>3.34</u>  | -1.00 |  |
| VIC-4.1.2     | 0.78        | 3.50         | 0.48         | 0.97        | 0.99         | 0.93        | -    | -            | -     |  |
| WaterGAP-2.2d | 0.75        | 4.70         | 0.06         | <u>0.63</u> | <u>3.45</u>  | <u>0.12</u> | 0.62 | 2.33         | 0.03  |  |
| PCR-GLOBWB-2  | <u>0.60</u> | 4.87         | <u>-0.01</u> | 0.79        | 2.78         | 0.43        | 0.24 | 2.69         | -0.30 |  |
| CLM-4.5       | 0.88        | 2.38         | 0.76         | 0.94        | 1.52         | 0.83        | 0.62 | 2.09         | 0.21  |  |
| AWRA-L v6     | 0.90        | 2.90         | 0.64         | 0.97        | 1.28         | 0.88        | 0.84 | 2.20         | 0.13  |  |

**Table S12.** Statistical summary of agreement metrics between reference values and hydrological models in MDB. The bold and underlined number are the best and the worst values for the metrics respectively.

**Table S13.** Statistical summary of agreement metrics between reference values and hydrological models in NWP. The bold and underlined number are the best and the worst values for the metrics respectively.

| Models        | TWSA |              |             | SMSA        |              |             | _     | GWSA         |       |  |
|---------------|------|--------------|-------------|-------------|--------------|-------------|-------|--------------|-------|--|
|               | r    | RMSE<br>(cm) | NSE         | r           | RMSE<br>(cm) | NSE         | r     | RMSE<br>(cm) | NSE   |  |
| Noah-3.6      | 0.80 | 3.10         | 0.60        | 0.98        | 0.77         | 0.95        | -     | -            | -     |  |
| CLSM-F2.5     | 0.82 | 2.96         | 0.64        | 0.91        | 2.64         | 0.44        | 0.33  | 3.46         | -0.56 |  |
| VIC-4.1.2     | 0.69 | 4.01         | 0.34        | 0.96        | 1.74         | 0.76        | -     | -            | -     |  |
| WaterGAP-2.2d | 0.66 | <u>4.56</u>  | <u>0.15</u> | <u>0.45</u> | <u>3.41</u>  | <u>0.07</u> | 0.21  | 2.80         | -0.02 |  |
| PCR-GLOBWB-2  | 0.64 | 4.25         | 0.26        | 0.79        | 2.69         | 0.42        | 0.80  | 2.73         | 0.03  |  |
| CLM-4.5       | 0.86 | 2.69         | 0.70        | 0.86        | 2.03         | 0.67        | -0.29 | <u>3.50</u>  | -0.60 |  |
| AWRA-L v6     | 0.85 | 2.80         | 0.68        | 0.98        | 0.88         | 0.94        | 0.63  | 2.41         | 0.24  |  |



© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).