Exploring the Optical Properties of Leaf Photosynthetic and Photo-Protective Pigments In Vivo Based on the Separation of Spectral Overlapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. ZJU Dataset
2.1.2. Spectral Characteristics of the Absorption Spectra of Pure Pigments in Leaves
2.2. Methods
2.2.1. Calibration of the Leaf Absorption Coefficient for PROSPECT-MP+
2.2.2. Determination of the Absorption Coefficients of Pigments in the Leaf In Vivo
3. Results and Discussion
3.1. Optical Properties of the Absorption Coefficients of Pigments Determined by the Leaf In Vivo
3.1.1. Accordance with Their Physical Principles of the Formation of Absorption Spectra
3.1.2. Account of the Peak Position Variations Compared with the Specific Organic Solution
3.1.3. Quantification of the Main Absorption Features with an RAF Parameter
3.1.4. Exploration of Their Spectral Overlapping Feature
3.2. Evaluation of the Pigment Absorption Coefficients Determined in the In Vivo Leaf
3.2.1. Analytical Evaluation of the Displacement of Peaks within the Absorption Coefficients
3.2.2. Application Evaluation of Spectral Modeling and Pigment Retrieval
Spectral Modeling
Pigment Content Retrieval
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote sensing of the environment: An earth resource perspective. Pearson Educ. 2006, 44, 16. [Google Scholar]
- Kattenborn, T.; Schiefer, F.; Zarco-Tejada, P.; Schmidtlein, S. Advantages of retrieving pigment content [μg/cm2] versus concentration [%] from canopy reflectance. Remote Sens. Environ. 2019, 230, 111195. [Google Scholar] [CrossRef]
- Michel, K.P.; Pistorius, E.K. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. Physiol. Plant. 2010, 120, 36–50. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Rosema, A. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol. 2009, 149, 96–105. [Google Scholar] [CrossRef]
- Verhoeven, A.S.; Demmig-Adams, B.; Adams, I.W. Enhanced Employment of the Xanthophyll Cycle and Thermal Energy Dissipation in Spinach Exposed to High Light and N Stress. Plant Physiol. 1997, 113, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Tattini, M.; Landi, M.; Brunetti, C.; Giordano, C.; Remorini, D.; Gould, K.S.; Guidi, L. Epidermal coumaroyl anthocyanins protect sweet basil against excess light stress: Multiple consequences of light attenuation. Physiol. Plant. 2014, 152, 585–598. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2006, 58, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.D.; Noble, S.D. Spectrographic measurement of plant pigments from 300 to 800 nm. Remote Sens. Environ. 2014, 148, 119–123. [Google Scholar] [CrossRef]
- Pflanz, M.; Zude, M. Spectrophotometric analyses of chlorophyll and single carotenoids during fruit development of tomato (Solanum lycopersicum L.) by means of iterative multiple linear regression analysis. Appl. Opt. 2008, 47, 5961–5970. [Google Scholar] [CrossRef]
- Whitfield, D.M.; Rowan, K.S. Changes in the chlorophylls and carotenoids of leaves of Nicotiana tabacum during senescence. Phytochemistry 1974, 13, 77–83. [Google Scholar] [CrossRef]
- Bartley, G.E.; Scolnik, P.A. Plant carotenoids: Pigments for photoprotection, visual attraction, and human health. Plant Cell 1995, 7, 1027–1038. [Google Scholar]
- Kiang, N.Y.; Siefert, J.; Blankenship, R.E. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 2007, 7, 222–251. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Ganapol, B.D.; Johnson, L.F.; Hammer, P.D.; Hlavka, C.A.; Peterson, D.L. LEAFMOD: A New Within-Leaf Radiative Transfer Model. Remote Sens. Environ. 1998, 63, 182–193. [Google Scholar] [CrossRef]
- Berdnik, V.V.; Mukhamedyarov, R.D. Radiative transfer in plant leaves. Opt. Spectrosc. 2001, 90, 580–591. [Google Scholar] [CrossRef]
- Maier, S.W.; Lüdeker, W.; Günther, K.P. SLOP: A revised version of the stochastic model for Leaf optical properties. Remote Sens. Environ. 1999, 68, 273–280. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56, 104–117. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Feret, J.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Vilfan, N.; van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Namjou, K.; Cai, S.; Whittaker, E.A.; Faist, J.; Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser. Opt. Lett. 1998, 23, 219–221. [Google Scholar] [CrossRef] [Green Version]
- James, T.M.; Schlösser, M.; Lewis, R.J.; Fischer, S.; Bornschein, B.; Telle, H.H. Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting. Appl. Spectrosc. 2013, 67, 949–959. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Wang, F.; Blackburn, G.A.; Zhang, H.K.; Wang, X.; Wei, C.; Zhang, K.; Wei, C. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b. Sci. Rep. 2017, 7, 6429. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Huang, J.; Zhang, J. PROSPECT-PMP+: Simultaneous retrievals of chlorophyll a and b, carote-noids and anthocyanins in the leaf optical properties model. Biosyst. Eng. 2020, in press. [Google Scholar]
- De Las, R.J.; Abadía, A.; Abadía, J. A New Reversed Phase-HPLC Method Resolving All Major Higher Plant Photosynthetic Pigments. Plant Physiol. 1989, 91, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, R.; Herring, G.; Harwood, W. General Chemistry, Principles and Modern Applications; International ed.; Pearson: New York, NY, USA, 2003; pp. 105–133. [Google Scholar]
- Nasim, H.; Jamil, Y. Recent advancements in spectroscopy using tunable diode lasers. Laser Phys. Lett. 2013, 10, 43001. [Google Scholar] [CrossRef]
- Marchetti, F.; Di Nicola, C.; Pettinari, R.; Timokhin, I.; Pettinari, C. Synthesis of a Photoluminescent and Triboluminescent Copper(I) Compound: An Experiment for an Advanced Inorganic Chemistry Laboratory. J. Chem. Educ. 2012, 89, 652–655. [Google Scholar] [CrossRef]
- Huang, J.; Wei, C.; Zhang, Y.; Blackburn, G.; Wang, X.; Wei, C.; Wang, J. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data. PLoS ONE 2015, 10, e137029. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.A. Secondary fluorescence kinetics of spinach leaves in relation to the onset of photosynthetic carbon assimilation. Planta 1981, 153, 273–278. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties EXperiment 93 (LOPEX93); Report EUR 16095 EN; European Commission, Joint Research Centre, Institute for Remote Sensing Applications: Ispra, Italy, 1994; p. 11. [Google Scholar]
Leaf Pigment | Maximum | Minimum | Average | Unit |
---|---|---|---|---|
Chla | 94.53 | 0.04 | 24.63 | μg/cm2 |
Chlb | 47.49 | 0.05 | 12.75 | μg/cm2 |
Ants | 47.22 | 0.01 | 4.12 | μg/cm2 |
Cars A | 44.55 | 0.24 | 16.09 | μg/cm2 |
Lu | 17.71 | 0.02 | 4.76 | μg/cm2 |
An | 1.83 | 0.00 | 0.37 | μg/cm2 |
Ze | 6.99 | 0.02 | 1.06 | μg/cm2 |
Vi | 4.10 | 0.00 | 0.95 | μg/cm2 |
Ne | 7.43 | 0.00 | 1.85 | μg/cm2 |
β-car | 15.33 | 0.02 | 4.10 | μg/cm2 |
Water concentration | 73.83 | 11.61 | 52.34 | % |
Absorption Peak No. | AChla,j,p (nm) | AChlb,j,p (nm) | ACars,j,p (nm) | AAnts,j,p (nm) |
---|---|---|---|---|
j = 1 | 432 | 458 | 418 | 530 |
j = 2 | 580 | 602 | 443 | - |
j = 3 | 618 | 650 | 470 | - |
j = 4 | 664 | - | - | - |
Specific Absorption Coefficient | Absorption Peak | Ki,j,v | Ki,j,h (cm2/μg) | Ki,j,w (nm) | Ki,j,p (nm) | Δλi,j (nm) | RAF (nm) |
---|---|---|---|---|---|---|---|
KChla | j = 1 | 0.80 | 0.153 | 51 | 419 | −13 | 400–434 |
j = 2 | 1.00 | 0.016 | 73 | 591 | 11 | - | |
j = 3 | 0.78 | 0.008 | 82 | 627 | 9 | - | |
j = 4 | 0.37 | 0.049 | 25 | 679 | 15 | 659–699 | |
KChlb | j = 1 | 0.45 | 0.254 | 60 | 468 | 4 | 442–495 |
j = 2 | 0.75 | 0.017 | 42 | 612 | 9 | - | |
j = 3 | 0.44 | 0.106 | 57 | 661 | 11 | 639–683 | |
KCars | j = 1 | 0.5 | 0.067 | 56 | 482 | 39 | 447–517 |
KAnts | j = 1 | 0.45 | 0.099 | 100 | 544 | 14 | 494–594 |
Spectrum Type | Model Implementation | RMSE | BIAS | SEC |
---|---|---|---|---|
DHR | PMP+ | 0.027 | 0.004 | 0.026 |
PMP | 0.046 | 0.027 | 0.036 | |
DHT | PMP+ | 0.021 | −0.007 | 0.019 |
PMP | 0.026 | 0.007 | 0.025 |
Performance Types | PMP+ | PMP | |||||
---|---|---|---|---|---|---|---|
Pigment Types | Chla | Chlb | Cars | Ants | Chla | Chlb | Cars |
RMSE (μg/cm2) | 11.69 | 6.54 | 8.18 | 3.17 | 18.31 | 10.26 | 28.75 |
BIAS (μg/cm2) | −0.16 | −3.22 | 0.76 | 0.07 | −8.09 | 6.69 | 7.50 |
SEC (μg/cm2) | 11.69 | 5.67 | 8.15 | 3.17 | 16.39 | 7.73 | 27.74 |
CV (%) | 31.84 | 39.37 | 39.24 | 45.42 | 65.66 | 67.26 | 269.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, C.; Huang, J.; Wang, F.; Huang, R.; Lin, H.; Chen, F.; Wu, K. Exploring the Optical Properties of Leaf Photosynthetic and Photo-Protective Pigments In Vivo Based on the Separation of Spectral Overlapping. Remote Sens. 2020, 12, 3615. https://doi.org/10.3390/rs12213615
Zhang Y, Wang C, Huang J, Wang F, Huang R, Lin H, Chen F, Wu K. Exploring the Optical Properties of Leaf Photosynthetic and Photo-Protective Pigments In Vivo Based on the Separation of Spectral Overlapping. Remote Sensing. 2020; 12(21):3615. https://doi.org/10.3390/rs12213615
Chicago/Turabian StyleZhang, Yao, Chengjie Wang, Jingfeng Huang, Fumin Wang, Ran Huang, Hongze Lin, Fengnong Chen, and Kaihua Wu. 2020. "Exploring the Optical Properties of Leaf Photosynthetic and Photo-Protective Pigments In Vivo Based on the Separation of Spectral Overlapping" Remote Sensing 12, no. 21: 3615. https://doi.org/10.3390/rs12213615
APA StyleZhang, Y., Wang, C., Huang, J., Wang, F., Huang, R., Lin, H., Chen, F., & Wu, K. (2020). Exploring the Optical Properties of Leaf Photosynthetic and Photo-Protective Pigments In Vivo Based on the Separation of Spectral Overlapping. Remote Sensing, 12(21), 3615. https://doi.org/10.3390/rs12213615