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Abstract: Conventional bridge maintenance requires significant time and effort because it involves
manual inspection and two-dimensional drawings are used to record any damage. For this reason,
a process that identifies the location of the damage in three-dimensional space and classifies the bridge
components involved is required. In this study, three deep-learning models—PointNet, PointCNN,
and Dynamic Graph Convolutional Neural Network (DGCNN)—were compared to classify the
components of bridges. Point cloud data were acquired from three types of bridge (Rahmen, girder,
and gravity bridges) to determine the optimal model for use across all three types. Three-fold
cross-validation was employed, with overall accuracy and intersection over unions used as the
performance measures. The mean interval over unit value of DGCNN is 86.85%, which is higher than
84.29% of Pointnet, 74.68% of PointCNN. The accurate classification of a bridge component based on
its relationship with the surrounding components may assist in identifying whether the damage to a
bridge affects a structurally important main component.

Keywords: bridge inspection; bridge component classification; deep learning; DGCNN; PointCNN;
PointNet; point cloud data

1. Introduction

Organization for Economic Cooperation and Development (OECD) countries spend a significant
amount of money on infrastructure maintenance to prevent damage and resulting accidents [1].
For example, in 2014, the United States spent 235 million dollars, representing 57% of its infrastructure
budget, on maintenance [2] while Japan spent a total of 1.99 billion yen (18.79 billion US dollars) on
maintenance in 2017, which was 33% of its public works budget [3]. In South Korea, the deterioration of
national infrastructure, much of which was constructed in the 1960s and 1970s, and the subsequent need
to repair it is expected to increase [4]. Of the 28,945 infrastructure facilities in Korea, 10,070 are bridges,
and 31% of all road bridges were more than 20 years old as of February 2020. Because the proportion
of bridges 20 years old or higher will rapidly increase to 70% over the next decade, the number of
bridges that require immediate repair due to damage to their main components (i.e., safety class C or
lower) is expected to rise [5]. Accordingly, the Korea Ministry of Land, Infrastructure, and Transport
is taking proactive measures by carrying out maintenance when damage is in its early stages rather
than pursuing conventional reactive maintenance in which damage such as steel corrosion or cracks
is repaired after deterioration [6]. Proactive maintenance is estimated to save 828.7 billion won in
maintenance costs by 2030 [4]. Because more frequent inspections are required in order to repair
early-stage damage, an automated detection method that does not require significant time or effort
is required.

Conventional manual maintenance of bridges usually involves four stages. First, skilled workers
detect cracks, steel corrosion, and other forms of damage using visual inspection, and the damage is
inspected using simple tools such as a crack ruler. Second, the severity and location of the damage
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are directly recorded using two-dimensional (2D) inspection drawings. Third, the safety class of
the damage is evaluated depending both on its severity and on which of the main and/or auxiliary
components are damaged. Finally, repairs are carried out to prevent the loss of functionality and
durability when the main components are damaged or when there is wide-ranging damage to
the auxiliary components. This process, however, requires considerable time and effort because it
involves manual inspection, while the damage is recorded in 2D drawings [7]. To overcome this
problem, South Korea has established its first basic plan for infrastructure management and aims to
introduce a smart maintenance system using unmanned aerial vehicles (UAVs) that acquire images of
infrastructure facilities. It also plans to implement a process for recording and storing three-dimensional
(3D) information from these facilities within the next five years [6]. Despite the benefits of automation,
inspecting damage using images acquired by UAVs, recording the location and severity of the damage
as 3D information, and subsequently evaluating the safety classes must still be conducted manually.

Several studies using computer vision to automate procedures currently performed manually
have been conducted recently (e.g., [8–22]), including those that utilize 3D point cloud data and 2D
image information to inspect damage to bridges. Studies utilizing 2D image information include those
investigating bridge load estimation [8,9], strain measurement [10,11], displacement measurement [12–14],
and concrete crack detection [7,15], while 3D point cloud data research has included bridge displacement
measurement [16,17], deformation monitoring [18,19], and damage detection [20–22]. These studies have
successfully identified and inspected damage to local areas but generally fail to identify whether this
damage affects the main components, which can reduce the overall durability and functionality of the
bridge. Therefore, an approach that can identify the location of damage in 3D space and classify the
components involved is required. Some researchers (e.g., [23–25]) have attempted to classify 3D point
cloud data into their respective components, but their results can only be applied to specific, simple bridge
types (e.g., girder bridges with only horizontal and vertical components).

In the present study, we compare models that are capable of classifying components
(e.g., abutments, piers, and girders) using point cloud data from various bridge types to allow automated
maintenance that is not limited to specific types of bridge. This is achieved by segmenting the point
cloud data for each classified bridge component using an optimal algorithm. The structure of the
remainder of the paper is as follows. Section 2 presents a review of the research that has classified bridge
components within the construction industry, while Section 3 describes the deep-learning models that
are compared in this study. Section 4 presents the process used to compare the models, while Section 5
analyzes the comparison results and presents a summary, the limitations, and future research.

2. Related Work

Various studies have proposed methods for automatically inspecting damage in bridge
maintenance procedures using 2D image information (e.g., [8–15]) or 3D point cloud data (e.g., [16–22]).
However, identifying whether damage needs to be repaired using automatic inspection has not yet been
possible, and the damaged area must be identified in 3D space to determine whether a main component
is involved. The use of hard coding for bridge component classification has been suggested [23,24,26],
but the segmentation of point cloud data has not been automated in these approaches, and they could
only be applied to simple bridge types with perpendicular vertical and horizontal components and no
complex shapes.

Segmenting components to automatically classify point cloud data from bridges using the region
growing method [27,28] has been proposed. This approach extracts a curved surface and plane by
extending seed points into a region until an edge is reached where the change in the vector reaches a
certain threshold in the point cloud data, where the seeds are manually or automatically input. A region
growing method [29] that transforms the point cloud data into an octree to increase the processing
speed has also been proposed. However, when using this method, an object can be over-segmented
into multiple regions instead of one due to occlusion.
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Some studies have proposed model-based segmentation methods that prevent over-segmentation
due to occlusion. Schnabel, et al. [30] proposed a random sample consensus (RANSAC)-based method that
compares samples randomly extracted from the point cloud data with a 3D geometry model (e.g., a sphere
or cylinder) to form a model at the position where the sum of the distance is minimized. Xu, et al. [31]
modified this method into an octree with high processing speed for point cloud data acquired from a
construction site. Laefer and Truong-Hong [32] proposed a method for filling occluded regions using a
repeated pattern for a grid-like steel structure. However, these model-based methods cannot be applied
to bridges that do not have a grid-like structure or a simple geometry (e.g., spherical or cylindrical).

Previous studies on automatically classifying bridge components have not been able to
automatically process the segmentation of input data. They can process specific shapes but cannot
segment component units or classify component types, thus they cannot be used for the purpose
of automating maintenance because the component class that a segmented object belongs to cannot
be identified. Kim, Yoon and Sim [25] proposed a framework for segmenting and classifying
bridge components by applying the semantic segmentation of point cloud data using PointNet [33],
a deep-learning-based algorithm in which data segmentation and classification are carried out
simultaneously. PointNet can learn unstructured cloud data, but information on the local relationship
between points is not learned and the data are independently learned [34]. The component types in a
bridge can vary according to their relationship with surrounding components and the shape information
of each component. Therefore, an algorithm capable of accurately classifying and segmenting each
component and separating main from auxiliary components is needed to evaluate the safety class of
a bridge.

3. Deep-Learning Algorithms

In this study, three deep-learning algorithms were selected to classify the components of bridges.
The selection of the three deep-learning algorithms—PointNet, Point Convolutional Neural Network
(PointCNN), and Dynamic Graph Convolutional Neural Network (DGCNN)—is based on the following
common features:

- They can handle semantic segmentation problems for point cloud data.
- They can use irregular point cloud data without converting it into a regular format.
- They use the same block sampling method introduced by Qi, Su, Mo and Guibas [33].

A brief introduction to each algorithm is given here, while a more detailed explanation can be
found in the references [33,35–37].

3.1. PointNet

PointNet [33] was the first neural network architecture to directly receive point cloud data as input
for learning. It directly uses point cloud data without converting the data into 3D voxels or 2D images
at a specific time; this prevents the loss of original information and reduces unnecessary processing
time. PointNet uses symmetric functions that output the same results regardless of the input order
(i.e., addition and multiplication). As shown in Figure 1, the information for each point is output
independently as the values of multiple channels using a multilayer perceptron (MLP), while the
max-pooling layer, which is a symmetric function, extracts the largest value for each channel of all
output point features independent of the order of the points to accumulate the global features from
all input points. Therefore, PointNet can directly label input points by taking into consideration the
features of each point and the features of the global shape of the input points.
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(Figure 2b) but instead uses x-conv, which inputs neighboring points using K-nearest neighbor 
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Figure 1. Max-pooling in the semantic segmentation network of PointNet.

3.2. PointCNN

PointCNN [35] is designed to learn the local correlation between points in space by generalizing
the structure of a convolution neural network (CNN). PointCNN uses untransformed point cloud data
in the same way that PointNet does, and it can learn regardless of the input order by generalizing
the principle of grid CNNs applied to images and learn the correlation between adjacent points in
space. For an image, a CNN generally reduces the input range for each convolution (conv) layer and
increases the channels to recursively learn the correlation between evenly arranged data points and
their surroundings (Figure 2a). PointCNN also reduces the number of input neighboring points for
each layer and increases the channels to recursively learn the correlation with the surrounding points
(Figure 2b) but instead uses x-conv, which inputs neighboring points using K-nearest neighbor (KNN),
rather than general conv layers to input point cloud data with an irregular format.
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3.3. DGCNN

DGCNN [36] is an architecture that can learn local correlations in the same way as a CNN. It also
learns the correlations with adjacent points or points with similar features using a dynamic graph for
each layer of the network. DGCNN also receives untransformed point cloud data as input similar to
PointNet but replaces the MLP with a structure that learns information from adjacent points (Figure 3c).
Unlike general CNN architecture, the architecture of DGCNN updates the graph to obtain adjacent
points in feature-based Euclidean space for each layer (Figure 3a) and can thus learn edge vectors
from different points. Unlike the case where general convolution layers learn the information for the
surrounding points along with the center point, edge convolution learns the information for edge
vectors directed from the features of the center point toward the features of the surrounding points
(Figure 3b). Therefore, DGCNN can learn the features of a greater variety of data than other forms of
conventional architecture designed for point clouds.
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Figure 3. The (a) dynamic graph, (b) edge features, and (c) semantic segmentation network of Dynamic
Graph Convolutional Neural Network (DGCNN).

4. Methodology

4.1. Block Partitioning for Model Input

Unlike general 2D image data, point cloud data have an irregular arrangement in 3D space.
Therefore, these data are generally converted into regular arrangements, such as 3D voxels or 2D
images. Deep-learning algorithms such as PointNet, PointCNN, and DGCNN do not convert the data
into regular arrangements, but perform the same process of partitioning the data into blocks of specific
sizes. The point cloud data held in each block are free from data loss, and overlapping sections are
present between the blocks. Therefore, the classification accuracy of the model can be improved via
extensive learning. Point cloud data partitioned in block units retain their irregular arrangement for
some sections of a bridge (Figure 4). The size and overlap of the blocks used in partitioning the point
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cloud data directly affect the number and density of the point cloud data input into the model; this is
discussed in the experiments and results in Section 5.
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4.2. Performance Measures

In this study, the performance of the semantic segmentation models was evaluated using overall
accuracy (OA) and intersection over union (IoU). OA represents the labeling accuracy for all points,
while IoU is obtained by measuring the ratio of the intersection and union between real labels and
model labels. The two performance measures are calculated as follows:

OA =
N∑

i=1

(TPi/(TPi + FNi))/N (1)

IoU =
N∑

i=1

(TPi/(TPi + FPi + FNi)) (2)

where N indicates the number of component classes, and TP represents the number of points for which
the real and labeled classification of a component are the same (i.e., true positives). FP represents
the number of falsely labeled points that do not belong to a specific component (i.e., false positives),
and FN represents the number of points that belong to a specific component but are not labeled as such
(i.e., false negatives).

4.3. Cross-Validation

Simple substitution [38], holdout [39], bootstrap [40], and bolstered methods [41] can be used to
validate classification models. Of these methods, k-fold cross-validation [42] is the most widely used.
K-fold cross-validation uses k − 1 folds for learning and the remaining fold for validation. The average
of the results obtained from repeating the aforementioned task k times with different folds each time
was used to assess model performance.

In this study, three-fold cross-validation was employed with point cloud datasets of similar
sizes. Because point cloud data have unique features and sizes, folds with similar sizes are required.
An explanation of the data making up each fold is presented in Section 5.
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4.4. Hyperparameter Tuning

The block size and overlap were obtained using three-fold cross-validation and a grid search.
The evaluation criterion for the grid search was OA, which indicates the ratio of properly labeled data
to total data. The range of the block sizes included multiples of 3 m (3 m, 6 m, 9 m, 12 m, and 15 m) so
that the thickest pier (2.5 m) of the bridges from which the data were obtained was included within one
block. The overlap ratio is based on the number of times the same point cloud is included in different
blocks. For example, the same point cloud can be included in a different block four times (2 × 2) when
the overlap ratio is 50%, and 25 times (5 × 5) when it is 80%, which can be entered as learning data in
the deep learning model.

5. Experiment and Results

We used a Trimble TX8 laser scanner to acquire data from 27 scans on the average of the three
bridges (Figure 5) to compare the performance of the models in classifying the components of the
bridges. The errors in the point cloud data acquired at the level 1 stage of the Trimble TX8 equipment
were within 2 mm [43]. The automatic plane-based registration method was used for the registration
method, using Realworks of Trimble™ [44]. The three bridges from which the scan data were acquired
were of different types: a Rahmen, girder, and gravity bridge (Figure 5). The dimension information of
the bridges is given in Table 1. Because the bridges have different substructures, the component types
making up the bridges are different; therefore, data similar to validation data must be included in the
training data. The data from the three bridges were divided into six regions (Table 2), and three-fold
cross-validation was employed.

Table 1. Dimensions of the bridges.

Bridge Lengths of the Piers along the Longitudinal Direction (m) Width (m) Length (m)

Bridge1 40.00 35.73 282.23
Bridge2 10.00 41.42 67.28
Bridge3 7.00 29.65 87.45
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Table 2. Folds for the data.

Fold Train Validation

1 Bridge 1–2, Bridge 2–1, Bridge 2–2, Bridge 3–1 Bridge 1–1, Bridge 3–2
2 Bridge 1–1, Bridge 1–2, Bridge 2–2, Bridge 3–2 Bridge 2–1, Bridge 3–1
3 Bridge 1–2, Bridge 2–1, Bridge 2–2, Bridge 3–1 Bridge 1–2, Bridge 2–2

As mentioned in Section 4.1, a grid search and three-fold cross-validation were used to optimize
the size and overlap ratio of the blocks input into the three classification models. Optimal values
were selected using the grid search of two block-related hyperparameters from among the various
parameters used in each model. The range of the block size included multiples of 3 m and the range of
overlap ratio included were from 50% (2 × 2 times) to 80% (5 × 5 times). The overlap ratio indicates the
extent to which one block and its adjacent blocks overlap (Figure 6), and sufficient training data for the
models can be obtained when the overlap ratio increases. The values of hyperparameters not related
to blocks are listed in Table 3. Table 4 shows the OA values according to the hyperparameters for each
model. DGCNN had the highest OA (94.49%), while PointNet and PointCNN were less accurate at
93.83% and 92.55%, respectively.
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Table 3. Hyperparameter tuning for the three models.

Model Hyperparameter Value

PointNet Epoch 60
Batch size 36

Learning rate 0.001
PointCNN Epoch 60

Batch size 8
Learning rate 0.001

DGCNN Epoch 60
Batch size 12

Learning rate 0.001
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Table 4. Performance comparison of the semantic segmentation models according to block
parameter variation.

Block Size 50% 66% 75% 80%

PointNet
3 m 70.09% 79.99% 88.96% 93.83%
6 m 65.65% 67.17% 69.48% 68.31%
9 m 60.30% 64.46% 63.41% 65.60%
12 m 61.14% 59.68% 62.32% 64.89%
15 m 58.25% 56.51% 55.42% 61.22%

DGCNN
3 m 84.69% 89.67% 93.44% 94.49%
6 m 69.58% 76.36% 75.62% 87.03%
9 m 54.73% 64.12% 74.12% 69.53%
12 m 55.08% 59.33% 61.97% 63.00%
15 m 58.16% 63.10% 52.47% 59.41%

PointCNN
3 m 91.25% 89.57% 91.04% 91.39%
6 m 92.55% 91.58% 91.94% 92.00%
9 m 91.14% 91.07% 90.49% 91.23%
12 m 89.79% 91.41% 91.12% 90.71%
15 m 90.64% 90.85% 91.14% 90.19%

As mentioned earlier, three optimized deep-learning models were used to classify the point cloud
data of three bridges. Table 5 shows the prediction performance of each model for the validation
set based on the IoU for the point cloud data belonging to their respective components. The mean
IoU represents the mean of the IoU for all components; DGCNN had the highest mean IoU with
94.49%. The IoU for the abutments (i.e., the vertical components) of DGCNN was higher than that of
PointNet by 18.81%. The IoU for the piers of PointNet was relatively high, but this is not because of
their excellent classification performance, but because PointNet classified most vertical members as
piers. The bridge component classification accuracy of DGCNN, which learns the relationship with
the surrounding points along with the position and color information of each point, was higher than
PointNet, which learns only the position and color information.

Table 5. Segmentation results for the bridges in the cross-validation for each class.

IoU PointNet PointCNN DGCNN

Abutment 55.47% 30.87% 73.78%
Slab 97.90% 95.69% 96.39%
Pier 92.22% 75.45% 79.11%

Girder 90.96% 92.18% 91.71%
Surface 80.59% 78.45% 88.38%

Background 88.62% 88.06% 91.74%

Mean IoU 84.29% 76.78% 86.85%

The qualitative results of the three classification models are presented in Figure 7. The color of each
point represents the classified component (abutment, background, deck, girder, pier, slab, and surface).
PointNet did not accurately classify the piers, abutments, and background located on the same z-axis,
whereas the girders were distinguished based on specific z values. PointNet also could not classify the
abutments and the columns (Figure 7a). The PointNet network, which learns only the independent
features for each point and the global features using symmetric functions on the input points, did not
learn the relationship with the surrounding points. In contrast, PointCNN learns the relationship
with the adjacent points in the xyz coordinate system and thus accurately classified the background
and the girders (i.e., the horizontal components) as well as the piers and abutments (i.e., the vertical
components). However, it did not accurately classify the piers and abutments that did not have large
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differences in the local features (Figure 7a). DGCNN accurately classified the components that were
separated from each other such as the piers and abutments because it learned the relationships with
points adjacent to each other in xyz space and that were similar based on its self-updated features.
However, as shown in Figure 7b, because various self-updated features were used, the edges between
the piers and the background were relatively less accurate than with PointCNN.
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6. Conclusions

In this study, three deep learning models—PointNet, PointCNN, and DGCNN—were compared
to classify the components of bridges. Point cloud data were acquired from a Rahmen bridge, a girder
bridge, and a gravity bridge to determine the best performing model for use with various bridge types.
Three-fold cross-validation was employed, and OA and IoU were used as performance measures.

DGCNN exhibited higher accuracy (OA: 94.49%; mIoU: 86.85%) than PointNet (OA: 93.83%;
mIoU: 84.29%) and PointCNN (OA: 92.55%, mIoU: 76.78%), which has been used in the construction
industry. Unlike PointNet, which only learns the global features of the input points and the information
of each point, DGCNN, which also learns the information for neighboring points, produced features
suitable for the classification of various bridge components as defined by the relationship with the
surrounding components.

Accurately classifying bridge components based on their relationship with the surrounding
components can assist in identifying whether a structurally important main component is damaged.
Thus, the proposed method has the potential for use in automating the storage of information in 3D
space that was originally recorded in 2D drawings and in evaluating the safety class of a bridge based
on damage information for its main components. However, because the same bridges were used in the
learning and validation datasets due to the small number of bridges tested, sufficient data for bridges
of the same form need to be procured to establish separate training and validation datasets in future
research. In addition, the main regions of each bridge need to be identified for automated bridge
safety inspection.
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