First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS
Abstract
:1. Introduction
1.1. Physics of the Ionosphere
- The Global Ionospheric Scintillation propagation Model (GISM) [1] provides time series of intensity and phase scintillation models using a turbulent ionosphere, and an electromagnetic waves propagator in turbulent media, using the Multiple Phase Screen theory (MPS) [2]. GISM is the model accepted by the ITU-R (International Telecommunication Union - Radiocommunication Sector) for the ionospheric communications [3].
- The WideBand MODel (WBMOD) [4] is also based on electron-density irregularities and uses the MPS theory to compute the scintillation effects in an statistical sense. In this model it is possible to set-up a communication scenario (time, location, and other geophysical conditions).
- The Wernik-Alfonsi-Materassi Model (WAM) [5] also uses the MPS theory, but generates its statistics from in situ measurements on ionization fluctuations measured by the Dynamics Explorer 2 satellite. It can also predict the ionospheric index along a defined path given some environmental conditions.
- In polar and auroral regions the models still need a better description in terms of velocity, distribution, duration and intensity of the ionospheric effects.
- A better modelling (3D) of the equatorial plasma bubbles (EPBs) can be incorporated in the UPC/OE/RDA SCIONAV model, relating its 3D properties to the altitude, and the amount of plasma depletion with the produced [7].
- In GNSS-R applications, some anomalous fluctuations have been reported in equatorial regions in regions over calm ocean, which are supposed to come from ionospheric scintillation [8].
1.2. Using GNSS-R to Study the Ionosphere
2. Materials and Methods
2.1. CYGNSS Dataset Description
2.2. Data Processing
3. Results
3.1. Bubbles and Depletions
3.2. S4 Statistics
4. Discussion
4.1. Bubbles Study
4.2. Correlation to Local Time
4.3. Comparison with Plasma Density Data from Swarm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EPB | Equatorial Plasma Bubble |
ESA | European Space Agency |
GISM | Globa Ionospheric Scintillation Model |
GNSS | GeoNavigation Satellite System |
GNSS-R | GNSS Reflectometry |
GPS | Global Positioning System |
ITU-R | International Telecommunications Union, Radiocommunication Sector |
LEO | Low Earth Orbit |
LT | Local Time |
NNeFI | Normalized Ne Fluctuation Index |
PO.DAAC | Physical Oceanography Distributed Active Archive Center |
SNR | Signal-to-Noise Ratio |
UTC | Coordinated Universal Time |
References
- Béniguel, Y. Global Ionospheric Propagation Model (GIM): A propagation model for scintillations of transmitted signals. Radio Sci. 2002, 37, 4-1–4-13. [Google Scholar] [CrossRef] [Green Version]
- Knepp, D.L. Multiple phase-screen calculation of the temporal behavior of stochastic waves. Proc. IEEE 1983, 71, 722–737. [Google Scholar] [CrossRef]
- ITU. Ionospheric Propagation Data and Prediction Methods Required for the Design of Satellite Services and Systems. Recommendation ITU-R531-10; International Telecommunication Union: Geneva, Switzerland, 2017; Available online: https://www.itu.int/rec/R-REC-P.531-10-200910-S/en (accessed on 18 October 2020).
- Fremouw, E.J.; Secan, J.A. Modeling and scientific application of scintillation results. Radio Sci. 1984, 19, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Wernik, A.W.; Alfonsi, L.; Materassi, M. Scintillation modeling using in situ data. Radio Sci. 2007, 42, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Camps, A.; Barbosa, J.; Juan, M.; Blanch, E.; Altadill, D.; González, G.; Vazquez, G.; Riba, J.; Orús, R. Improved modelling of ionospheric disturbances for remote sensing and navigation. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2682–2685. [Google Scholar]
- Tulasi Ram, S.; Ajith, K.K.; Yokoyama, T.; Yamamoto, M.; Niranjan, K. Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations. J. Geophys. Res. Space Phys. 2017, 122, 6584–6594. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Foti, G.; Gommenginger, C. Ionospheric Effects in GNSS-Reflectometry From Space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5851–5861. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Garrison, J.L. Utilizing GPS to Determine Ionospheric Delay over the Ocean; NASA Technical Memorandum 4750; NASA: Hampton, VA, USA, 1996.
- Garrison, J.L.; Katzberg, S.J. Detection of ocean reflected GPS signals: Theory and experiment. In Proceedings of the IEEE SOUTHEASTCON ’97, ‘Engineering the New Century’, Blacksburg, VA, USA, 12–14 April 1997; pp. 290–294. [Google Scholar]
- Ye, Z.; Satorius, H. Channel modeling and simulation for mobile user objective system (MUOS)—Part 1: Flat scintillation and fading. In Proceedings of the IEEE International Conference on Communications, 2003, ICC’03, Anchorage, AK, USA, 11–15 May 2003. [Google Scholar] [CrossRef]
- Ruf, C.; Gleason, S.; Jelenak, Z.; Katzberg, S.; Ridley, A.; Rose, R.; Scherrer, J.; Zavorotny, V. The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; pp. 1–7. [Google Scholar]
- Ruf, C.; Gleason, S.; Ridley, A.; Rose, R.; Scherrer, J. The Nasa CYGNSS Mission: Overview and Status Update. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2641–2643. [Google Scholar]
- CYGNSS. CYGNSS Level 1 Science Data Record Version 2.1. 2018. Available online: https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1 (accessed on 8 September 2020).
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef] [Green Version]
- Korn, P. Formulation of an unstructured grid model for global ocean dynamics. J. Comput. Phys. 2017, 339, 525–552. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Brokopf, R.; Crueger, T.; Esch, M.; Fiedler, S.; Helmert, J.; Hohenegger, C.; Kornblueh, L.; Köhler, M.; Manzini, E.; et al. ICON-A, the atmosphere component of the ICON Earth System Model: I. Model description. J. Adv. Model. Earth Syst. 2018, 10, 1613–1637. [Google Scholar] [CrossRef]
- InMeteo. Ventusky—Weather Forecast Maps. Available online: www.ventusky.com (accessed on 11 June 2020).
- Blanch, E.; Altadill, D.; Juan, J.M.; Camps, A.; Barbosa, J.; González-Casado, G.; Riba, J.; Sanz, J.; Vazquez, G.; Orús-Pérez, R. Improved characterization and modeling of equatorial plasma depletions. J. Space Weather. Space Clim. 2018, 8, A38. [Google Scholar] [CrossRef] [Green Version]
- Australian Goverment Bureau of Meteorology, S.W.S. About Ionospheric Scintillation. Available online: https://www.sws.bom.gov.au/Satellite/6/3 (accessed on 4 November 2020).
Parameter | Value |
---|---|
Orbital altitude | ∼520 km |
Inclination | ∼35 |
Period | 95 min |
Linear speed | |
Covered region | 40N to 40S |
Number of satellites | 8 |
Number of GNSS satellites tracked per receiver | 4 |
DDM sample rate | 1 Hz |
DDM size | (Doppler, delay) |
DDM Doppler bin resolution | 200 Hz |
DDM Delay bin resolution | 0.2552 chips |
Total number of DDMs per day | |
Dataset volume per day | 10.4 GB |
Date (dd-mm-yy) | LT | Sat | Ch | Lat (°) | Lon (°) | Duration (s) | Length (km) | Inclination (°) | Max |
---|---|---|---|---|---|---|---|---|---|
24-08-2017 | 4:34 | 1 | 1 | 36.53 | −60.96 | 9 | 67.3 | 29.2 | 0.31 |
24-08-2017 | 4:59 | 2 | 1 | 36.63 | −62.13 | 7 | 52.8 | 21.1 | 0.25 |
24-08-2017 | 7:05 | 2 | 2 | 35.02 | −34.24 | 6 | 44.1 | 26 | 0.28 |
24-08-2017 | 4:21 | 3 | 2 | 34.96 | −50.14 | 6 | 43.8 | 23.8 | 0.27 |
24-08-2017 | 4:23 | 3 | 2 | 35.88 | −41.51 | 7 | 52.1 | 17.3 | 0.24 |
24-08-2017 | 2:16 | 3 | 3 | 29.71 | −69.37 | 7 | 48 | 10.3 | 0.36 |
24-08-2017 | 6:31 | 5 | 1 | 32.88 | −29.54 | 5 | 35.6 | 18 | 0.22 |
24-08-2017 | 2:45 | 6 | 1 | 20.66 | −82.03 | 5 | 32 | 53.2 | 0.25 |
24-08-2017 | 1:45 | 6 | 2 | 30.04 | −87.14 | 152 | 1044.6 | 50.8 | 0.42 |
24-08-2017 | 5:31 | 6 | 3 | 37.27 | −62.21 | 7 | 53.3 | 27.9 | 0.31 |
24-08-2017 | 7:14 | 7 | 2 | 33.22 | −29.58 | 7 | 50.1 | 26.6 | 0.26 |
24-08-2017 | 2:24 | 7 | 3 | 30.42 | −69.66 | 5 | 34.5 | 12.1 | 0.37 |
24-08-2017 | 2:22 | 7 | 4 | 19.67 | −76.12 | 62 | 396.2 | 59.5 | 0.45 |
24-08-2017 | 3:56 | 8 | 1 | 34.56 | −61.95 | 7 | 51.1 | 18.6 | 0.32 |
24-08-2017 | 1:50 | 8 | 2 | 30.05 | −86.84 | 144 | 988.1 | 48.8 | 0.54 |
24-08-2017 | 6:02 | 8 | 3 | 34.94 | −34.41 | 7 | 51.3 | 13.7 | 0.31 |
24-08-2017 | 2:50 | 8 | 4 | 21.28 | −81.78 | 76 | 490.4 | 51.3 | 0.57 |
Date (dd-mm-yy) | LT | Sat | Ch | Lat (°) | Lon (°) | Duration (s) | Length (km) | Inclination (°) | Max |
---|---|---|---|---|---|---|---|---|---|
20-05-2019 | 19:05 | 1 | 3 | −1.25 | 58.34 | 7 | 42.6 | 39.9 | 0.32 |
20-05-2019 | 06:08 | 1 | 3 | −16.87 | 121.40 | 6 | 37.7 | 58.7 | 0.28 |
20-05-2019 | 08:59 | 2 | 1 | 15.00 | 41.64 | 325 | 2069.9 | 14.5 | 0.51 |
20-05-2019 | 16:40 | 2 | 1 | 17.24 | 111.29 | 11 | 68.7 | 33.3 | 0.47 |
20-05-2019 | 08:21 | 2 | 2 | 6.79 | 55.99 | 6 | 36.2 | 27.1 | 0.28 |
20-05-2019 | 09:00 | 2 | 3 | 18.41 | 40.30 | 245 | 1555.9 | 33.7 | 0.41 |
20-05-2019 | 08:21 | 2 | 4 | 2.89 | 58.37 | 6 | 36.0 | 59.3 | 0.27 |
20-05-2019 | 17:18 | 2 | 4 | 11.00 | 97.45 | 65 | 396.6 | 20.0 | 0.63 |
20-05-2019 | 17:30 | 4 | 1 | 8.86 | 97.49 | 146 | 881.6 | 20.2 | 0.27 |
20-05-2019 | 07:55 | 4 | 3 | 7.04 | 74.61 | 8 | 48.2 | 16.3 | 0.32 |
20-05-2019 | 08:32 | 4 | 3 | 9.07 | 56.36 | 7 | 42.4 | 33.1 | 0.33 |
20-05-2019 | 16:59 | 4 | 3 | 12.92 | 53.16 | 27 | 166.9 | 66.0 | 0.26 |
20-05-2019 | 08:05 | 5 | 2 | 13.69 | 97.45 | 192 | 1186.6 | 25.4 | 0.74 |
20-05-2019 | 08:39 | 5 | 2 | 9.66 | 75.84 | 106 | 645.0 | 36.3 | 0.52 |
20-05-2019 | 09:15 | 5 | 2 | 11.98 | 52.58 | 38 | 235.0 | 22.9 | 0.35 |
20-05-2019 | 07:35 | 5 | 3 | 3.05 | 57.99 | 6 | 36.2 | 34.2 | 0.30 |
20-05-2019 | 09:16 | 5 | 3 | 9.80 | 56.21 | 6 | 36.4 | 53.2 | 0.29 |
20-05-2019 | 17:06 | 5 | 4 | 12.01 | 71.56 | 20 | 126.0 | 68.3 | 0.34 |
20-05-2019 | 07:09 | 6 | 3 | 5.67 | 73.95 | 9 | 53.9 | 52.4 | 0.27 |
20-05-2019 | 18:48 | 6 | 3 | 7.98 | 116.57 | 32 | 197.5 | 37.3 | 0.48 |
20-05-2019 | 09:16 | 6 | 4 | 7.13 | 98.00 | 53 | 326.0 | 65.4 | 0.28 |
20-05-2019 | 07:45 | 6 | 4 | 0.33 | 57.62 | 6 | 35.6 | 45.6 | 0.30 |
20-05-2019 | 17:13 | 7 | 2 | 16.22 | 112.29 | 12 | 75.5 | 38.1 | 0.36 |
20-05-2019 | 08:17 | 7 | 3 | 6.87 | 75.01 | 6 | 36.7 | 49.5 | 0.29 |
20-05-2019 | 08:43 | 8 | 2 | 16.92 | 41.11 | 265 | 1673.2 | 41.9 | 0.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, C.; Camps, A. First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS. Remote Sens. 2020, 12, 3782. https://doi.org/10.3390/rs12223782
Molina C, Camps A. First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS. Remote Sensing. 2020; 12(22):3782. https://doi.org/10.3390/rs12223782
Chicago/Turabian StyleMolina, Carlos, and Adriano Camps. 2020. "First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS" Remote Sensing 12, no. 22: 3782. https://doi.org/10.3390/rs12223782
APA StyleMolina, C., & Camps, A. (2020). First Evidences of Ionospheric Plasma Depletions Observations Using GNSS-R Data from CYGNSS. Remote Sensing, 12(22), 3782. https://doi.org/10.3390/rs12223782