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Abstract: The ability to quantify green vegetation across space and over time is useful for studying
grassland health and function and improving our understanding of the impact of land use and climate
change on grasslands. Directly measuring the fraction of green vegetation cover is labor-intensive
and thus only practical on relatively smaller experimental sites. Remote sensing vegetation indices,
as a commonly-used method for large-area vegetation mapping, were found to produce inconsistent
accuracies when mapping green vegetation in semi-arid grasslands, largely due to mixed pixels
including both photosynthetic and non-photosynthetic material. The spectral mixture approach has
the potential to map the fraction of green vegetation cover in a heterogeneous landscape, thanks to its
ability to decompose a spectral signal from a mixed pixel into a set of fractional abundances. In this
study, a time series of fractional green vegetation cover (FGVC) from 1999 to 2014 is estimated using
the spectral mixture approach for a semi-arid mixed grassland, which represents a typical threatened,
species-rich habitat in Central Canada. The shape of pixel clouds in each of the Landsat images is
used to identify three major image endmembers (green vegetation, bare soil/litter, and water/shadow)
for automated image spectral unmixing. The FGVC derived through the spectral mixture approach
correlates highly with field observations (R2 = 0.86). Change in the FGVC over the study period
was also mapped, and green vegetation in badlands and uplands is found to experience a slight
increase, while vegetation in riparian zone shows a decrease. Only a small portion of the study area is
undergoing significant changes, which is likely attributable to climate variability, bison reintroduction,
and wildfire. The results of this study suggest that the automated spectral unmixing approach is
promising, and the time series of medium-resolution images is capable of identifying changes in
green vegetation cover in semi-arid grasslands. Further research should investigate driving forces for
areas undergoing significant changes.

Keywords: fractional green vegetation cover; spatial and temporal variations; spectral unmixing;
automated image endmember selection; semi-arid grasslands

1. Introduction

Grasslands occupy nearly half of the terrestrial globe and play a critical role in supplying
food, fiber, and fuel, supporting the biodiversity of animals and plants, maintaining water and air
quality, and supporting ecological processes that sustain ecosystems and landscapes [1,2]. However,
many grasslands are highly fragmented [3], and the remnants are vulnerable to the effects of adjacent
land use, management regimes, and climate variability [4]. Protecting and monitoring grassland health
has been a major priority for many local, national, and international agencies.
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Green vegetation cover is directly linked to photosynthetic activity and ecosystem productivity [5].
The ability to quantify green vegetation across space over time is thus particularly useful for studying
grassland health and function [6], investigating the impact of land use and climate change [7],
and improving our understanding of vegetation recovery after major disturbances such as wildfire [8].
Directly measuring green vegetation cover is labor-intensive and thus only practical on relatively small
experimental sites [9]. A practical means to map green vegetation cover at the landscape scale, or even
global scale, is only possible with remote sensing techniques [10].

Remote sensing has been commonly used to map different types of grassland ecosystems but
faces challenges when quantifying green vegetation for unmanaged or arid grasslands [11]. This is
because green vegetation in these grassland canopies is often discontinuous, either interspersed with
exposed soil in heavily exploited grasslands or by non-photosynthetic vegetative material in preserved
semi-arid or arid grasslands [12]. Fractional green vegetation cover (FGVC), defined as the ratio of the
vertical projection area of green vegetation on the ground to the total vegetation area, often reflects a
relatively limited amount of radiation in these grasslands. A large percentage of canopy reflectance
is reflected from non-photosynthetic material such as exposed soil and litter biomass. As a result,
individual pixels in grassland images typically contain a mixture of radiation from different ground
materials. High spatial resolution images may mitigate this mixed pixel problem to some degree,
but their relatively short existence, small coverage, low temporal resolution, and high cost can be an
issue for a sustainable and effective grassland monitoring program.

Early remote sensing studies on estimating green vegetation properties mostly used three
approaches: vegetation index (VI)-based regression modeling, radiative transfer modeling, and spectral
mixture analysis. The VI-based regression modeling approach involves establishing an empirical
relationship between a field-measured green vegetation variable, such as FGVC, to a vegetation index
calculated using canopy spectral data [7]. Normalized Density Vegetation Index (NDVI), derived from
the infrared and near-infrared bands of remote sensing data, has shown a reasonable relationship with
many field-measured vegetation biophysical parameters, such as leaf area index (LAI) and biomass,
and thus continues to be a commonly used indicator of green vegetation [13].

The VI-based regression approach is mostly used in remote sensing because of its simplicity and
computational efficiency. However, detecting the green fraction of a grassland canopy using a popular
VI such as NDVI yields varying strength of regression relationships [14] due to the mixed canopy.
Some studies report a strong relationship between total and/or green vegetation cover, biomass or leaf
area index (LAI) and the NDVI (e.g., r2 = 0.89 [15], r2 = 0.81 to 0.87 [16], r2 = 0.82 [17], r2 = 0.71 to 0.74 [18],
r2 = 0.74 [19]), others observed only weak relationships (r2 = 0.66 [12], r2 = 0.54 [20], r2 = 0.42 [21],
r2 = 0 to 0.56 [22]). The inconsistent accuracies are, in fact, found to be a result of the large portion of
non-photosynthetic vegetative materials. Xu et al. [23] discovered that the percent of dead material
impacts the total biomass and NDVI relationships in mixed grasslands. A further fundamental problem
with the VI-based regression approach is its lack of generality. Canopy reflectance is a function of
the complex interaction of several internal (e.g., leaf shape, angle, and distribution) and external
(e.g., illumination conditions, viewing geometry) factors, and thus no universal relationships between
canopy variables and spectral signatures exist [24]. As a result, regression relationships are site-, time-,
and species-specific, lacking robustness and portability when transferring them from one area, time,
and species to another [24,25]. Radiative transfer modeling is a robust and transferable approach for
investigating vegetation features and has been used to estimate chlorophyll content and green leaf area
index through the inversion of the remote sensing data [26–30]. For mixed grasslands, Tong et al. [31]
found that PROSAIL, as the most widely-used leaf and canopy coupled radiative transfer model,
is capable of simulating the reflectance of homogeneous green grass canopies. However, the PROSAIL
does not yield accurate results when simulating mixed grassland scenes with senescent vegetative
materials. Radiative transfer modeling research groups have recently focused their efforts on improving
the performance of the models for the canopies that include senescent vegetation materials [29,30].
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In summary, the improvement of radiative transferring modeling for mixed scenes, including both
green and senescence vegetation, is well underway.

The above-mentioned approaches use an image pixel as the smallest entity, and the spatial
heterogeneity within the pixel is ignored. An increase heterogeneity within mixed pixels not
only reduces VI-regression accuracies [23] but also affects the precise simulation of the radiative
characteristics of land surfaces and the inversion of land surface parameters in the radiative transfer
models [32]. This is particularly true for the heterogeneous landscape of semi-arid grassland ecosystems
(Figure 1), where patches are often smaller than the dimensions of a median spatial resolution
image (e.g., Landsat 30 m) [33]. The relatively new method of the spectral mixture approach is a
promising alternative and has improved to better characterize heterogeneous landscapes through the
decomposition of a spectral signal from a mixed pixel into a set of fractional abundances, including FGVC
using spectral signatures from pure ground components called endmembers. The spectral unmixing
analysis describes physical components within the canopy and is thus different from the regression
approach and appreciated for its generality in nature. Spectral unmixing may be applied to a wide
range of landscapes over time, depending on the type of spectral unmixing algorithm employed.
For semi-arid ecosystems, spectral unmixing of remote sensing data yielded satisfactory results.
For example, Elmore et al. [13] quantified vegetation change in semi-arid environments and found that
the spectral unmixing approach correctly determined 87% of the change in percent live vegetation
cover, superior to NDVI, which only determined 67% of the change.
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Figure 1. A typical mixed grassland scene with exposed soil, photosynthetic grass,
and non-photosynthetic grass.

The success of spectral unmixing is largely dependent on endmember selection. Earlier studies
extracted endmembers from a spectra pool that was established by laboratory or fieldwork [34];
however, the spectral data in the pool are rarely acquired under the same conditions as the remote
sensing data and may misrepresent real endmembers in the images. Recent studies have paid more
attention to selecting quality endmembers from the images under investigation. These endmembers
(i.e., image endmembers) address the limitation of utilizing lab or field-based spectra pool as they are
collected under the same environmental conditions as mixed pixels in the images. It is widely noted
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that image endmembers should be selected from extreme values (i.e., the purest pixels and composed
only for one member) of the image spectral feature space [35].

Automated and fully objective methods for image endmember selection are essential for an efficient
image unmixing practice. Several research groups have started to identify the image endmembers by
investigating the shape of pixel clouds in spectral mixing spaces [36–38]. The optimal shapes of pixel
clouds for spectral unmixing are identified to be triangles and tetrahedrons in 2- and 3-dimensional
spectral mixing spaces, respectively [37]. When assigning the vertices of triangles and tetrahedrons as
endmembers, spectral unmixing has been demonstrated to be valid and meaningful for all the pixels
in the image. With this finding, the process of automated image spectral unmixing is thus narrowed
down to the characterization of an appropriate spectral mixing space so that the shape of the pixel
cloud resembles a triangle or a tetrahedron, and the vertices represent target endmembers.

This study aims to investigate the shape of pixel clouds in a series of Landsat images for a
semi-arid grassland and use the identified image endmembers for automated image spectral unmixing.
The ultimate goal is to provide an overview of the dynamics of fractional green vegetation cover for
the semi-arid mixed grassland, which represents a typical example of threatened, species-rich habitat
in central Canada.

2. Methodology

2.1. Study Area

The study area was located in the West Block of the Grasslands National Park (GNP)
(49◦19′26.3” N, 107◦32′37.4” W) in southwestern Saskatchewan, Canada (Figure 2). This area is
defined as a semi-arid, mixed-grass prairie ecosystem that falls within the northern extent of the
Great Plains [7]. The park was established in 1988 to conserve and protect a portion of the remaining
natural grasslands that were once so extensive in southwest Saskatchewan. The climate in the study
area is typical of a semi-arid environment, with long cold and dry winters, short and hot summers,
and low precipitation [39]. The mean annual temperature is approximately 4.1 ◦C and ranges from
−10.8 ◦C in January to 18.5 ◦C in July, while the mean annual precipitation is approximately 352.5 mm.
The soils in the West Block of the GNP are brown Chernozemic clay to clay loam soils according to
the Canadian System of Soil Classification. The dominant native grass species found in the study
area were June grass (Koeleria gracilis), needle-and-thread grass (Stipa comata), blue grama (Bouteloua
gracilis), western wheatgrass (Agropyron smithii), and northern wheatgrass (Agropyron dasystachym).
A non-native invasive grass species, crested wheatgrass (Agropyron cristatum), was also a dominant
type found in the study area. Three typical grassland landscape units, including badlands, uplands,
and riparian grasslands (Figure 2), can be found in GNP; however, the majority of the grassland
landscape in GNP consists of exposed soil and mixed non-photosynthetic grass and green vegetation
patches (Figure 1).

2.2. Field Campaigns, Landsat Images, and Climatic Data

Seven field campaigns (i.e., 2003, 2005, 2006, 2010, 2011, 2012, and 2013) were carried out to
determine various grassland biophysical characteristics during the peak growing season (Middle June
to Middle July). A total of 118 field sites were visited over the seven years, and these sites were
distributed across uplands, badlands, and riparian zone (Figure 2). Samples in each site were collected
along two 100 m transects that ran north-south and west-east, forming a perpendicular bisector.
The perpendicular bisector design was developed for use with moderate spatial resolution sensor data
such as Landsat, where each site will cover about nine pixels of a 30-m resolution Landsat image.
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(a–c) are photos were taken from badlands, upland grassland, and riparian grassland areas, respectively.

A detailed list of sites surveyed during each field campaign can be found in Table 1. To investigate
the feasibility of Landsat images in constructing the spectral feature space and in distinguishing
green vegetation from bare soil/litter and water for this grassland, we also collected a few field
variables, including canopy composition and canopy hyperspectral reflectance. Field measurements
were recorded within a 50 cm by 50 cm sampling frame along each 100 m transect at 10 m intervals,
resulting in a total of 20 plots at each site. Canopy composition measurements, including percent
coverage of the green vegetation, litter, soil, and water percentage coverages, were collected from
each sampling site through both field interpretation and field photo classification. In specific, the field
photos taken from each sampling frame were used to estimate the percent coverage of different
features through unsupervised classification schemes in Geomatica® 10.3 (PCI Geomatics, Richmond
Hill, ON, Canada). The consistency between field interpreted vegetation cover, and the field photo
classification was analyzed to ensure the validity of field data. In addition, field-based hyperspectral
reflectance was measured from each plot to simulate Landsat bands and construct spectral feature space.
The reflectance data were taken approximately 1 m above each plot using an Analytical Spectral Device
(ASD) FieldSpec® 3 Max field portable spectroradiometer (Malvern Panalytical Inc., Westborough,
MA, USA), which is equipped with a fiber optic that has three detectors, each operating in either the
visible, near-infrared (NIR), or short-wave infrared region. The ASD spectroradiometer was frequently
calibrated with a certified white reference, and spectral measurements were only taken on days with
clear sky conditions between 10:00 and 14:00 h. All field measured data were then amalgamated into
mean values for each 100 by 100 m site, and the field green vegetation cover data for those sites were
used to validate the Landsat-unmixed FGVC.
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Table 1. Field campaigns, field sites, and Landsat images used.

Year of Field Campaigns No. of Sites Surveyed Landsat Images Used
Acquisition Date Sensor

23-August-1999 L7
8-July-2000 L7
27-July-2001 L7
20-June-2002 L5

2003 12 10-August-2003 L5
2005 40 14-July-2005 L5
2006 22 17-July-2006 L5

4-July-2007 L5
23-August-2008 L5

23-June-2009 L5
2010 8 26-June-2010 L5
2011 6 15-July-2011 L5
2012 18 2-August-2012 L5
2013 12 4-July-2013 L8

8-August-2014 L8

Geometrically and atmospherically-corrected Landsat Level-2 images were downloaded between
the years 1999 and 2014 from the USGS Landsat archive. Images with an acquisition time as close
to peak growing season (15 June to 30 August) and as cloud-free as possible for the study area were
eventually used in this work to minimize the effects of vegetation phenology and ensure consistency
with field data (Table 1). This resulted in a time series of at least one image every summer, other than
the year of 2004, in which year all images suffered from cloud issues, and as such no images were used
from this year.

Daily precipitation data for this study were downloaded from a nearby weather station (Val Marie
Southeast Saskatchewan, Climate ID: 4338412) from Environment Canada (http://climate.weather.gc.
ca/historical_data/search_historic_data_e.html). The daily precipitation data for the weather station
were accumulated to 3 days, 1 week, 2 weeks, 3 weeks, and a month before each image was taken to
show how vegetation in badlands, uplands, and riparian zone responded to climate conditions.

2.3. Spectral Unmixing

The flowchart (Figure 3) provides a general overview of the spectral unmixing procedure described
below. Specifically, the spectral unmixing uses an image as input, followed by spectral mixing space
construction, endmember identification, and linear unmixing. The resultant unmixing maps are
then validated by ground truth data, and the final maps will then be produced along with an
associated accuracy.

2.3.1. Determining an Appropriate Spectral Mixing Space

To determine which image bands can be used to distinguish photosynthetic grass from other typical
ground features including litter, bare soil, and water, field measured spectra (Figure 4a) were plotted
against wavelengths and further used to simulate Landsat bands. Generally, photosynthetic grass
has a typical green vegetation spectra curve: high reflectance in green, low in red, and very high in
NIR. Litter and bare soil have a very similar spectra curve: reflectance showing an increasing trend
from short to longer wavelength regions. In comparison with the spectra of typical green vegetation,
the reflectance of a typical semi-arid mixed grassland canopy comprised of green vegetation, bare soil,
and a large portion of senescent leaves is lower in green, higher in Red, and much lower in NIR.

http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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Figure 4. Geometric interpretation of the mixture problem in a two-dimensional space using
field-collected hyperspectral data; (a) field observed spectra curves of typical ground features including
vegetation, litter, soil, water, and a mixed canopy; (b) point cloud plotted from field spectral simulated
Landsat Thematic Mapper (TM) red and near-infrared (NIR) bands for the typical ground features
(vertexes forming a triangle shade) and for all field-collected plot spectra (black dots).

The spectral mixing space (Figure 4b) constructed by simulated Landsat red and NIR bands from
ASD spectroradiometer measurements indicates that these two bands are able to distinguish green
vegetation from bare soil/litter and water. As identified in [40], the reflectance spectra of bare soil and
litter are similar enough in simulated Landsat bands to be considered as one ground feature. The three
ground features (green vegetation, bare soil/litter, and water) formed the vertices of a point cloud
triangle in the red-NIR spectral mixing space (Figure 4b). The majority of spectra from the mixed field
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plots are found to be within the triangle. The spectra in a few plots that are not within the triangle
likely resulted from the different biophysical or/and biochemical properties of vegetation and soil
within these plots, in comparison with those of the selected typical green vegetation and soil.

2.3.2. Image Endmember Optimization and Spectral Mixing Space Translation

The above section demonstrated that simulated Landsat Red and NIR bands could be used
to distinguish photosynthetic grass from other typical ground features, including litter, bare soil,
and water. We can now proceed to identify endmembers from each image under study. The NIR and
red values from all pixels in each Landsat image were plotted in the spectral scatterplot to form a
specific spectral mixing space [36].

A recently proposed endmember optimization method was employed to automatically identify the
endmembers of vegetation and bare soil/litter in the Landsat red-NIR feature space for each year [37].
Specifically, an endmember spatial measure index (ESM2) is directly proportional to the determinant
(Det) of all endmember vectors,

ESM2 ∝ Det
(
−−−→

EMV
−−−→

EMS

)
, (1)

where
−−−→

EMV and
−−−→

EMS represent the endmember vectors of vegetation and bare soil/litter in a
2-dimensional space, respectively. The higher value of ESM2 indicates a better endmember combination
for spectral unmixing. It is obvious that the value of ESM2 is proportional to the area of the triangle
constructed by the three endmembers. The best endmember combination is, in effect, corresponding to
the largest area of the triangle among all the triangles constructed by any three vertices. Considering that
the water endmember is fixed to the pixel nearest the coordinate origin, we just need to search for the
other two endmembers (vegetation and soil/litter endmembers) from the remaining pixels so that the
three vertices construct the largest triangle. To accelerate the process of endmember identification,
the convex hull Graham’s scan algorithm [41] that was demonstrated to work well in Yang et al. [42]
was applied. The assumption behind this process is that the three pixels that construct the largest
triangle area must be located at the convex hull of all the pixels scattered in a two-dimension space.
The convex hull was first extracted for the spectral scatter plot by implementing Graham’s scan [41],
which is a time-efficient method of computing the convex hull of a finite set of points in the plane.

Since the vertex closest to the coordinate origin is not exactly the origin itself (Figure 4b), the origin
cannot represent the endmember of water. We thus initiated coordinate translation to ensure that the
vertex closest to the coordinate origin matches the origin before the implementation of linear spectral
unmixing (Figure 5). The coordinate translation was done in such a way that it would not impact
the triangle shape made by the endmembers; therefore, it would not affect the unmixed fractions.
As a result, the water endmember was moved to the coordinate origin in the spectral mixing space.
The vertex of the pixel cloud triangle close to the axis of the NIR band represents the vegetation
endmember, while the one close to the axis of the red band represents the bare soil/litter endmember.

2.3.3. Linear Spectral Unmixing Model

As mentioned above, linear spectral unmixing was applied to obtain the fractions of vegetation,
soil/litter, and water for any pixel in an image. Linear spectral unmixing in the translated spectral
mixing space is the process of solving the following linear equations:{

ρ(RED) = fVρV(RED) + fSρS(RED) + fWρW(RED)

ρ(NIR) = fVρV(NIR) + fSρS(NIR) + fWρW(NIR)
, (2)

where ρ(RED) and ρ(NIR) are the spectra of the mixed pixel in the red and NIR band; fv, fs, and fw are the
fractions of vegetation, bare soil/litter, and water, respectively; ρV(RED) and ρV(NIR) denote the spectra
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of vegetation endmember in the red and NIR band, whereas ρS(RED) and ρS(NIR) represent the spectra
of bare soil/litter endmember. Since the coordinate origin is the water endmember, its spectra (ρW(RED),
ρW(NIR)) were assigned as (0, 0). Equation (2) can be rewritten as:{

ρ(RED) = fVρV(RED) + fSρS(RED)

ρ(NIR) = fVρV(NIR) + fSρS(NIR)
, (3)

In a typical grassland scene, the sum of vegetation, bare soil/litter, and water fractions should be
equal to one. The fraction of water can thus be calculated as:

fV + fS + fW = 1, (4)
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are always located within this triangle (Figure 4b). For any outlier, the proposed approach will search 

Figure 5. An illustration of a translated pixel cloud triangle in the 2-dimensional spectral mixing space
constructed by the red and NIR band. EMV, EMS, and EMW represent the endmembers of vegetation,
bare soil/litter, and water, respectively.

2.3.4. Refinement

In addition to Equation (4), a valid spectral unmixing requires that each endmember fraction
is within the range of zero to one. The translated pixel cloud triangle in the 2-dimensional spectral
mixing space is shown in Figure 6. EMV and EMS are the pair of pixels with the highest ESM2 value.
It is apparent that the pixels within the triangle with the vertices of EMV, EMS, and EMW have a
meaningful fraction of vegetation, bare soil, and water (i.e., from 0 to 1). However, not all the pixels are
always located within this triangle (Figure 4b). For any outlier, the proposed approach will search
for the point on the boundary of this triangle with the minimum Euclidean distance to the outlier.
In particular, two zones were used to deal with the outlier pixels (Figure 5). For the pixels in Zone 1,
the unmixing solution is the closest endmember (i.e., EMV or EMS), indicating they are pure pixels of
vegetation or bare soil class. On the other hand, the solution for the pixels in Zone 2 is the closest point
on either side of the triangle. From this point of view, the Refinement was able to ensure the validity of
unmixed fractions for all the pixels in the entire image for each year.
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2.3.5. Vegetation Fraction Estimation and Accuracy Assessment

Linear regression between the endmember fraction and the field observed green vegetation cover
is then implemented to evaluate the spectral unmixing results. The field data are randomly split into
70% and 30% groups, with 70% to form the regression between unmixed FGVC and observed green
cover and 30% for further calibration and evaluation. Linear regression is used because many previous
studies have demonstrated its usefulness for evaluating spectral unmixing through its parameters,
including the coefficient of determination (R2), mean error (ME), mean absolute error (MSE), and root
mean square error (RMSE). A high R2, as well as low MAE and RMESE, indicates a better quality
of spectral unmixing. After validation, the vegetation maps over multiple years were produced,
and vegetation change maps and pixels with significant changes (p < 0.01 or p < 0.05) between 1999 to
2014 were calculated.

ME =
1
n

Σ(Xpredicted −Xobserved), (5)

MAE =
1
n

Σ|Xpredicted −Xobserved|, (6)

RMSE =

√
1
n

Σ(Xpredicted −Xobserved)2, (7)

where Xpredicted and Xobserved are the predicted or observed vegetation fraction cover, and n is the number
of samples used to validate the predicted vegetation cover.

2.4. Time Series Analysis

Following the time series analysis conducted by Bonney et al. [43], we used the unmixed FGVC
maps for trend analysis using the “raster” package in R [44]. The changes in the FGVC magnitude
were mapped on a per pixel basis through linear regressions, where FGVC was the dependent variable
and the image acquisition year was the independent variable. Specifically, the slope of each linear
regression was mapped for each pixel to indicate the FGVC change magnitude. The significance of
per pixel change was also mapped using the corresponding p-values of a t-test where p values were
mapped as p < 0.01, p = 0.01 to 0.05, and p > 0.05. FGVC trends with p ≤ 0.05 were considered a
significant change in green vegetation, and FGVC trends with p > 0.05 were considered an insignificant
change over the years.



Remote Sens. 2020, 12, 3826 11 of 19

The compiled FGVC maps were also used to extract FGVC data for each of the three dominant
landscape units (i.e., badlands, uplands, and riparian zone) in the study area. The effects of precipitation
from last 3 days, 1 week, 2 weeks, 3 weeks, and 1 month on vegetation were examined in these three
landscape units through a Pearson’s r correlation analysis. The significant r values suggested a
pronounced impact of the precipitation on the green vegetation cover over time.

3. Results

3.1. Unmixing Results

A total of 15 Red-NIR spectral feature spaces (i.e., scatter plots) were constructed for the 15 images
under study, and the two example feature spaces with one from 14 July 2005, and the other from
15 July 2011, are displayed in Figure 6. The overall form of the image-bases spectral spaces is consistent
between the two years, although the distributions of the mixed pixel values within the feature space
triangles vary (Figure 6). The similarity of the spectral spaces, as well as those not shown in the figure,
indicate that all 15 years of the images have a consistent feature space and thus similar endmembers.
A close look into the difference in the endmembers in 2005 and 2011 indicates that the vegetation
endmembers (EMv) are very close, with the EMv of (Red = 0.10, NIR = 0.62) for 2005 and EMv of
(Red = 0.10, NIR = 0.63) for 2011. Water endmember exhibits a higher water reflectance in 2005
(Red = 0.08, NIR = 0.06) than in 2011 (Red = 0.05, NIR = 0.04), and it is noticeable that there are fewer
water mixing points near the water endmember in 2005. Similarly, soil/litter reflectance has slightly
higher reflectance in both Red and NIR bands in 2005 than in 2011. The fewer water points and
higher soil/litter reflectance in 2005 suggest that 2005 is drier than 2011. Historical precipitation data
we downloaded from the nearby weather station confirm that the two years had distinctly different
precipitation conditions. The early summer of 2005 was very dry, with total precipitation of 36.8 mm in
May, 96.2 mm in June, and 16.8 mm from 1–14 July (i.e., right before the image was acquired). On the
contrary, the early summer of 2011 was wetter, and its total precipitation was 93.2 mm in May, 77.3 mm
in June, and 61.7 mm 1–14 July. Within the three days before the images were taken, the study area had
1.8 mm of rainfall on 13 July of 2005, but with 52.2 mm on 13 July 2011.

The 15 Landsat images are then unmixed with the image endmembers obtained from the Red-NIR
feature space. An example of the resultant unmixing images for 15 July 2011, is displayed in Figure 7.
Visual interpretation clearly indicates low green vegetation cover (purple in Figure 7a), high bare
soil/litter cover (dark brown in Figure 7b), and low water content (light blue in Figure 7c) in badlands.
On the contrary, there is obvious high green vegetation cover (green in Figure 7a) and low bare
soil/litter cover (light yellow in Figure 7b) along the Frenchman River running from northwest to
southeast. These results suggest that the unmixing approach resulted in a reasonable FGVC estimation
for the study area. However, water content is notably low (light blue to white in Figure 7c) along the
Frenchman River, which is likely due to high green vegetation cover in the form of the dense green
shrubs and tall grasses growing along the riverbank.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 20 
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A quantitative evaluation was then conducted to validate spectral unmixing results using ground
observation data. A strong linear relationship (R2 = 0.86) between the unmixed FGVC and 70% of
observed green cover data is observed (Figure 8a). The regression-derived relationship between
unmixed green vegetation cover and 70% of observed field data was applied to the entire map of the
unmixed FGVC, which was then validated by the remaining 30% of observed green vegetation cover
data. The results indicate that the correction led to a strong FGVC estimation with an R2 value of 0.93
and an RMSE of 7.05% (Figure 8b).
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Figure 8. The relationship between unmixed green fraction and 70% of observed green vegetation
cover (a), and the relationship between predicted green vegetation cover and the remaining 30% of
observed green vegetation cover (b).

3.2. Time Series Results

The FGVC maps from 1999 to 2014 are displayed in Figure 9. The field data that were reserved
for validation were also used to calculate the RMSE for each year between the unmixing FGVC and
observed green vegetation cover. The RMSE ranges from the lowest value of 3.35% in 2010 to the
highest 22.33% in 2003. It is clear that the farther the image acquisition date was away from the field
data collection season (15 June to 15 July), the greater the RMSE is. For example, the unmixing result in
2003 has a large error, while the 2013 image was taken on August 10, about a month after the field data
were collected. In contrast, the FGVC in 2010 has a small RMSE, corresponding to a complete match
between the field season and image acquisition date of 26 June.

The amount of green vegetation varies substantially from year to year, and the change is not
uniform across space (Figure 9). To further investigate the difference in the greenness in the study area,
we selected the unmixed FGVC maps from 14 July 2005 and 15 July 2011, for a detailed comparison.
Consistent with higher precipitation in 2011 than in 2005, the unmixed FGVC has a generally higher
vegetation cover in the year of 2011 (i.e., the wet year) than in the year of 2005 (i.e., the dry year). This is
demonstrated by more areas with a light green color (i.e., closer to 100% FGVC) and by badlands
having a lighter purple color (i.e., farther from 0% vegetation) in 2011 in comparison with 2005 images
(Figure 10a,b). The enlarged maps (Figure 10(a1,b1) further show that a few ponds full of water in the
2011 FGVC map (purple colored polygons in Figure 10(b1)) were occupied by dense green vegetation
(dark green colored polygons in Figure 10(a1)) in the 2005 FGVC map. These results confirm that water
availability is the primary driver of variations in green vegetation cover in this semi-arid area.
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FGVC trends from the year 1999 to 2014 were mapped over the entire study area (Figure 11a).
An increase in FGVC of less than 1% per year is observed in most of the study area. Only a small
portion of the study area has experienced a decreasing trend, mainly along the Frenchman River and
its tributaries, with a reduced rate of less than 1% per year. Significant changes, both increasing and
decreasing (Figure 11b), occurred mainly in the west half of the study area or along the river.
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Figure 11. FGVC trend over the study period (a) and their significant level (b).

The unmixed FGVC for badlands, uplands, and riparian zone were further extracted from each
FGVC map, and their temporal variations are displayed in Figure 12. FGVC is always higher in the
riparian zone, followed by the uplands and then the badlands. Consistent with the significance map
(Figure 11b), the linear regression trend lines in Figure 12a also suggest a slight increase in FGVC in
the uplands and badlands but a decrease in the riparian zone. The vegetation greenness in badlands
and uplands are most highly correlated with the total precipitation accumulated from 3 days before
the images were taken (Table 2). Similarly, the last 3-day total precipitation also showed a slightly
increasing trend during the study period (Figure 12b). On the other hand, vegetation greenness in the
riparian zone is less impacted by the short-term precipitation, as shown by their weaker correlation in
comparison with the correlations for the badlands and uplands. Vegetation in the riparian zone tends
to have a stronger correlation with the last 7-day precipitation (Table 2).

Table 2. Correlations between the unmixed FGVC and total precipitation from the last 3 days to the
last month before the images were taken.

Total Precipitation (mm)

Last 3 Days Last Week Last 2 Weeks Last 3 Weeks Last Month

Badland FGVC 0.45 0.30 0.35 0.19 0.18
Upland FGVC 0.64 * 0.57 * 0.29 0.27 0.33
Riparian FGVC 0.37 0.46 0.15 0.19 0.26

* Indicating significance at 0.05 level.
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Figure 12. The unmixed FGVC extracted from typical badlands, typical riparian zone, and typical
uplands from 1999 to 2014, their linear regression trend lines (a), and the total precipitation from the
last three days to the last month before the images were taken and the last three-day total precipitation
linear regression trend line (b).

4. Discussion

As an important branch of soft classification, spectral unmixing has been commonly used in
many remote sensing applications, especially for medium/low-resolution imagery. In recent years,
several studies have started to unmix fine-scale imagery (i.e., IKONOS and WorldView-2) through the
analysis of spectral mixing space [36,37]. In comparison with the conventional spectral unmixing,
these studies identified and determined the endmembers by investigating the shape of pixel clouds
in spectral mixing spaces. Specifically, the shape of the pixel cloud in the spectral mixing space
constructed by the red and NIR band was found to be a triangle, and the three vertices of this triangle
were 100% vegetation, bare soil/litter, and water endmembers. The image-based red-NIR space feature
space is consistent over the years, and similarly, vegetation endmembers are also stable for this study
area, suggesting a simple linear mixture is able to construct a consistent grassland reflectance. Using the
endmembers identified from each image, spectral unmixing was successfully conducted, and the
unmixed FVGC with an acceptable RMSE indicates fully automated spectral unmixing is possible for
the semi-arid mixed grasslands and yields reasonable vegetation fraction estimation.

Caution should be taken when applying the automated spectral unmixing approach, because a close
look at the unmixing images suggests a systematic FGVC underestimation (Figure 8a), resulting from
the overestimation of water percentage in the mixed pixels. A potential explanation for water
overestimation is the contribution of standing vegetation shadows to the unmixing results but not
to the field observation data. In the field, the shadows of standing grasses would not contribute to
the visual interpretation of the green vegetation cover, and thus the canopy cover will be estimated
properly by a field crew. However, the shadows of grasses would contribute to spectral unmixing
because shadow spectra are inherent in each mixed pixel, and the shadow spectra are similar to
water given lower spectral values of shadow in the red and NIR region. Similarly, Li et al. [45]
and Jiang et al. [46] also found that the presence of shadow leads to NDVI saturation, which then
results in the overestimation of FVGC.
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It is also worth noting that this study only focused on green vegetation cover, so it was not an issue
to combine bare soil and litter as one endmember. However, if the goal is to obtain litter abundance or
soil coverage, SWIR or the decay pigment index may be added to separate litter and soil [30,47]. Still,
attention should be paid to ensure that these endmembers are not correlated. Otherwise, the inversion
of the linear spectral mixture model would become unstable, and the estimated fractions would be
highly sensitive to random error [48,49]. It has been advised that an appropriate spectral mixing space
is required to avoid endmember collinearity and multi-collinearity, to further improve the quality of
spectral unmixing [37].

The study showed an increasing trend in FGVC in general for badlands and uplands in the study
area. The results are consistent with previous studies; for example, Ju and Masek [50] found a greening
trend from 1984 to 2012 using Landsat in Canadian grasslands in Southern Saskatchewan. In our
study site, however, the FGVC in the riparian zone has shown a slight negative trend over the years.
The different trends in different landscape units are likely a result of different plant communities and
their various sensitivities to climatic conditions, especially precipitation. Native grass-dominated
uplands and badlands are more likely dependent on precipitation (Table 2), while the riparian zone
with more tall shrubs and dense invasive vegetation is not as sensitive to the precipitation as grass,
especially to 3-day precipitation. Similarly, Flanagan etc. also suggested that grasslands respond
greatly to annual precipitation variation [51], and they further indicated that the responses are not
even. Knapp and Smith found that grasslands experience an increase in productivity in wet years and
a reduction during drought years [52].

Only a small portion of the pixels exhibited a significant change in our study area. This is
understandable because the area represents the Prairie Grasslands natural region in Canada and has
been protected from human activities for decades. The pixels undergoing significant change are likely
a result of climate dynamics and natural disturbances. Other than precipitation, moisture has been
identified as a limiting factor for plant growth in semi-arid ecosystems like the northern mixed-grass
and shortgrass prairie [8], and litter is a critical structural component which conserves moisture.
Two other potential factors may have contributed to a decreased green vegetation cover in the riparian
zone by reducing litter amount and further leading to lower soil moisture. The first is that the GNP
reintroduced bison into the park in 2005 [12], and the second is a massive wildfire that occurred in the
riparian zone of the study area in 2013 [8]. However, these are only possible explanations, and future
work is warranted to confirm this. In specific, longer-term changes (e.g., the past 40 years) and the
reasons behind these significant changes need to be further explored.

Other than the different drivers that may contribute to the FGVC trends, the phenological stage
when an image is taken could also impact the FGVC values in certain years and further contribute
to the trends. We have five images taken from August (1999, 2003, 2008, 2012, 2014), and apparent
lower FGVC values in 1999, 2008, and 2012 (Figure 12) could have been a combined result of climate
conditions and plants experiencing a different phenological stage. Sonnenschein et al. (2011) also found
high variability in vegetation temporal trends in grasslands, and they further indicated that high
phenological variability potentially affects a single year’s relationship between different vegetation
estimates and leads to varying trends. They suggested that stratifying a study region prior to trend
analyses may address the varying trends. Following the advice, we performed a trend analysis over
three different landscape units in the study area and did observe a different trend between units. Still,
when interpreting our trend analysis results, the readers should keep in mind that phenological stages
of varying vegetation communities may have played a role in our trend analysis results.

5. Conclusions

In this study, an automated spectral mixture approach is applied to a series of Landsat images to
unmix green vegetation cover for a mixed grassland between 1999 and 2014. The spectral unmixing
results correctly reflected the spatial and temporal variations of green vegetation cover in the study
area. An increasing trend in FGVC is observed in general for the study area during the period, and this
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increase is mainly observed in the badlands and uplands, as a result of temporal variation in the short
term precipitation. In contrast, a decreasing trend is observed in riparian zone vegetation, likely due
to its insensitivity to precipitation. Further research should explore the ways to remove the impact
of grass shadows in the spectral unmixing, distinguish bare soil and litter by introducing another
endmember, and understand the drivers behind the pixels with a significant decrease in this endangered
grassland environment. With precipitation in Canadian prairies predicted to fluctuate under a warmer
climate [53], further studies on this topic will be essential to understand the implications of climate
dynamics on grassland functions [52].
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