
remote sensing  

Article

A Satellite-Based High-Resolution (1-km) Ambient
PM2.5 Database for India over Two Decades
(2000–2019): Applications for Air
Quality Management

Sagnik Dey 1,2,* , Bhavesh Purohit 1, Palak Balyan 1, Kuldeep Dixit 1 , Kunal Bali 1,
Alok Kumar 1, Fahad Imam 1, Sourangsu Chowdhury 3, Dilip Ganguly 1 , Prashant Gargava 4

and V. K. Shukla 4

1 Centre for Atmospheric Sciences, IIT Delhi, New Delhi 110000, India; ast182713@cas.iitd.ac.in (B.P.);
Palak.Balyan@cas.iitd.ac.in (P.B.); kdixit@cas.iitd.ac.in (K.D.); Kunal.Bali@cas.iitd.ac.in (K.B.);
ird12852@cas.iitd.ac.in (A.K.); ird12990@cas.iitd.ac.in (F.I.); dilipganguly@cas.iitd.ac.in (D.G.)

2 Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi 110000, India
3 Max Planck Institute for Chemistry, 55128 Mainz, Germany; S.Chowdhury@mpic.de
4 Central Pollution Control Board, New Delhi 110000, India; prashant.cpcb@gov.in (P.G.);

vkshukla.cpcb@nic.in (V.K.S.)
* Correspondence: sagnik@cas.iitd.ac.in; Tel.: +91-11-2659-1315

Received: 17 August 2020; Accepted: 9 October 2020; Published: 26 November 2020
����������
�������

Abstract: Fine particulate matter (PM2.5) is a major criteria pollutant affecting the environment,
health and climate. In India where ground-based measurements of PM2.5 is scarce, it is important
to have a long-term database at a high spatial resolution for an efficient air quality management
plan. Here we develop and present a high-resolution (1-km) ambient PM2.5 database spanning two
decades (2000–2019) for India. We convert aerosol optical depth from Moderate Resolution Imaging
Spectroradiometer (MODIS) retrieved by Multiangle Implementation of Atmospheric Correction
(MAIAC) algorithm to surface PM2.5 using a dynamic scaling factor from Modern-Era Retrospective
analysis for Research and Applications Version 2 (MERRA-2) data. The satellite-derived daily
(24-h average) and annual PM2.5 show a R2 of 0.8 and 0.97 and root mean square error of 25.7 and
7.2 µg/m3, respectively against surface measurements from the Central Pollution Control Board India
network. Population-weighted 20-year averaged PM2.5 over India is 57.3 µg/m3 (5–95 percentile
ranges: 16.8–86.9) with a larger increase observed in the present decade (2010–2019) than in the
previous decade (2000 to 2009). Poor air quality across the urban–rural transact suggests that this is a
regional scale problem, a fact that is often neglected. The database is freely disseminated through a
web portal ‘satellite-based application for air quality monitoring and management at a national scale’
(SAANS) for air quality management, epidemiological research and mass awareness.
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1. Introduction

Exposure to ambient fine particulate matter (PM2.5) is one of the leading causes of health burden
in India [1,2]. The rising ambient PM2.5 concentration [3,4] and its staggering health burden [5,6] led
the Government of India to launch the National Clean Air Program (NCAP) in early 2018. Though the
NCAP addressed air pollution as a national scale problem, its focus on the urban centres essentially fails
to recognize the air quality status in the rural areas. This is reflected in the ground-based monitoring
network maintained by the Central Pollution Control Board (CPCB) with all of the 230+ continuous and
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650+ manual monitoring sites (www.cpcb.nic.in) deployed in the urban centres. Although the number
of ground-based monitoring sites seems to be large, it is not adequate for air quality management [7]
because (1) the network is disproportionately distributed (Figure A1 in the Appendix A); (2) PM2.5

monitoring started in 2009 (unlike PM10 that has a longer record [8]), but the network expanded
nationally only after 2015–2016; and (3) the manual monitoring sites only sample twice a week and do
not provide continuous data. The population-weighted distance to the nearest monitoring site in India
is estimated to be 80 km [7].

These limitations rendered the surface measurements inadequate for air quality management
at a regional scale [9] and restricted the epidemiological community from using these data alone to
generate indigenous evidence of air pollution health impacts consistently [10]. Furthermore, many
cities in India do not have any surface measurements to determine if they are or are not non-attainment
sites (with respect to the Indian annual national ambient air quality standard, NAAQS of 40 µg/m3).
We earlier demonstrated the utility of satellite-derived aerosol products to infer surface PM2.5 and
complement the surface measurements [3,5,11,12]. With the improvement of the spatial resolution of
satellite-based aerosol optical depth (AOD) products and modelling techniques, we were able to track
PM2.5 buildup in the Delhi national capital region (NCR) at a high resolution (1-km) over 15-years [13].
These analyses demonstrated the need to have a long-term PM2.5 national database for an efficient air
quality management under the NCAP.

Broadly, there are two methods to estimate surface PM2.5 from satellite AOD. Several studies have
adopted a regression-based or machine learning-based approaches that train the model with various
geospatial variables [14,15]. In the other approach, a scaling factor (η, that is the ratio of PM2.5 and
AOD) is derived to convert satellite AOD to PM2.5 [16–19]. The global database generated for the Global
Burden of Disease (GBD) study derived the scaling factor from a chemical transport model at a coarse
(usually 2◦ × 2.5◦) resolution and interpolates it to match satellite AOD spatial resolution. Subsequently,
the accuracy of the product was improved by fusion with the local surface measurements [20].
However, having a national database that is tuned against local surface measurements will be a better
representative of the local conditions. Furthermore, the database can be updated as per the national
requirement and used for policy.

In this work, we develop and present a satellite-based national PM2.5 database at a high resolution
(1-km) for India over two decades (2000–2019). The database is used to understand the long-term
trends in PM2.5, the urban vs. rural air quality comparison, seasonal fluctuation in PM2.5 and the
state-level statistics, all of which are highly important for air quality management.

2. Materials and Methods

2.1. Details of the Algorithm to Estimate PM2.5 from Satellite AOD

We build our algorithm based on the philosophy of the previous works following the scaling
factor approach [3,16–19]. This scaling factor includes the impacts of local emissions, atmospheric
processes, meteorology and regional transport on the AOD–PM2.5 relationship. Here, we derive η

from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) reanalysis
product because (1) MERRA-2 data are continuously available at near real-time, and (2) processing
MERRA-2 data is computationally much less expansive than running a chemical transport model.
We note that MERRA-2 spatial resolution is finer than that of the GEOS–Chem model that was utilized
to derive η for the global data. We also analyze the Aerosol Robotic Network (AERONET) data to
assess the satellite and MERRA-2 AOD products. The steps in the algorithm are as follows (Figure 1).
To clarify the source of the various parameters discussed below, we denote the respective products
from AERONET, satellite and reanalysis by using sub-scripts “AERO”, “sat” and “model”, respectively.

www.cpcb.nic.in
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Figure 1. The flow chart of the entire process with the Modern-Era Retrospective analysis for Research
and Applications Version 2 (MERRA-2) calibration steps shown in blue colored font, satellite fine
particulate matter (PM2.5) evaluation in red colored font and generation of the final products that are
disseminated through the ‘satellite-based application for air quality monitoring and management at a
national scale’ (SAANS) portal in bold black font.

First, we process level 2 AOD data retrieved by the Moderate Resolution Imaging
Spectroradiometer (MODIS) using the Multiangle Implementation of Atmospheric Correction (MAIAC)
algorithm at 1-km × 1-km resolution for each day (i) from 26 February 2000, to 31 December 2019.
MAIAC provides global AOD retrievals over dark and bright surfaces using an explicit surface
reflectance model and it features an improved cloud detection scheme, a general lack of bias in the
urban areas and a better spatial coverage relative to the deep-blue or dark-target approach [21]. In this
study, we have used the combined Terra and Aqua AOD product (MCD19A2) provided by the MODIS
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science team. The combined product enhances the spatial and temporal coverage and provides a more
representative AOD during 10:00 AM to 2:00 PM local time [21]. MAIAC AOD validation over South
Asia revealed that it has a better accuracy than the deep blue and dark-target AOD products [22].
We also examine the product over India (Figure A2) and find that MODIS–MAIAC AOD at 550 nm
shows a statistically significant (p < 0.05) correlation and root mean square error (RMSE) of 0.13 with
AOD from AERONET [23] sites in India. MAIAC AOD is provided at 550 nm wavelength, therefore
for a proper comparison, we estimate AERONET AOD at 550 nm wavelength from the spectral AOD
measurements and Angstrom Exponent (α) at 440–870 nm wavelength following:

AOD550,AERO = AOD500,AERO ×

(500
550

)αAERO
(1)

When the MAIAC–AOD tiles are merged, it shows a high variance along its swath edge.
To minimize the edge effect across the swaths, we use the Savitzky–Golay filter [24] with a frame length
of five pixels across the X- and Y-directions of the target pixel.

In the second step, we analyze aerosol products of MERRA-2 available at 0.5◦ × 0.625◦ [25].
MERRA-2 PM2.5 is estimated as:

PM2.5,model = Dust2.5,model + SS2.5,model + BCmodel + OCmodel × 1.6 + SO4
2−

model × 1.375 (2)

where Dust2.5,model and SS2.5,model are dust and sea–salt masses in size bins smaller than 2.5 µm,
BCmodel is black carbon, OCmodel is organic carbon and SO4

2−
model is the sulfate. OC is multiplied

by a factor of 1.6 to estimate total organic matter [26]. Sulfate in the MERRA-2 dataset is present in
neutralized (NH4)2SO4 form, so a factor of 1.375 is used [25]. MERRA-2 PM2.5 is underestimated
over the Indian region [27]. We therefore calibrate MERRA-2 hourly PM2.5 with the coincident hourly
PM2.5 from 120 sites in the CPCB network that provide multi-year data from 2009 to 2019 (Figure A1).
These CPCB stations use an automatic air quality monitoring system, where quality-control procedures
are performed routinely to remove any unreliable, low-quality and invalid observations arising from
instrument malfunction and electric power outage [28]. We note that the length of observations differs
from site to site. To ensure enough samples, we use all quality-controlled data. We could not use the
data from the manual monitoring sites because the robustness of the quality and the days when they
are sampled are not consistent.

We train our calibration model for the 55 MERRA-2 grids having at least one CPCB site and
develop a percentile-based calibration factor [3]. For every 10 percentile ranges, we estimate the ratio
of surface PM2.5 and MERRA-2-derived PM2.5 for each site. Using the site-specific calibration factors
representative for each month, we tune the MERRA-2 hourly PM2.5 data in these grids close to the
observed values and use the nearest neighbor algorithm to adjust the bias for the grids devoid of any
CPCB site. Using this calibrated PM2.5 and hourly AOD (at 550 nm) from MERRA-2, we estimate η for
every day (i) and every grid (x and y) as:

ηi,x,y,model =
PM2.5 i,x,y,model

AODi,x,y,model
(3)

We find that MERRA-2 and AERONET AOD show a statistically significant (p < 0.05 for N = 4546)
R2 of 0.71 (Figure A3) with a RMSE similar to that of MAIAC AOD. Therefore, we interpret that
calibrating the MERRA-2 PM2.5 is sufficient to improve the calibration of η and apply on satellite AOD.

In the third step, we interpolate η to finer resolution using spline interpolation to match the
resolution of the AOD product (1-km × 1-km). The spatial patterns of interpolated η for every month
are shown in Figure A4. Wherever η values are high (>160), most of the particles within the column
stay close to the surface, resulting in high PM2.5 due to a stable boundary layer (e.g., winter months).
Whenever the atmospheric condition is conducive for dispersion (e.g., in summer months), particles
are raised above the boundary layer and hence although PM2.5 remains moderate (between 100 to 160),
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AOD remains high (i.e., moderate η values). During the monsoon, both AOD and PM2.5 remain low
and the high convective strength does not contain particles closer to the surface. As a result, η is found
to be low (<100). We convert MAIAC AOD for the day i during the satellite overpass time (h) to PM2.5

at the same resolution using the η values from Equation (2) as:

PM2.5,i,x,y,h,sat = ηi,x,y,model ×AODi,x,y,h,sat (4)

We call this PM2.5 as the instantaneous PM2.5 because the satellites carrying the MODIS sensor
cross the Indian region between 10:00 AM and 2:00 PM local time, and therefore, the satellite-derived
PM2.5 does not represent the 24-h cycle.

We assume that the spatial heterogeneity in PM2.5 within a coarse MERRA-2 grid (used to derive
η) can be captured by the MAIAC AOD data at 1-km resolution and will not be affected much by the
interpolation of η. We compare (Figure 2) the interpolated η from MERRA-2 with that derived directly
for the grids having at least one CPCB site by taking the ratio of PM2.5 (measured from the ground)
and AOD (from MAIAC). Though most of the data points lie within 1:2 and 2:1 lines, the MERRA-2 η

shows slightly low bias with respect to the in-situ data with a correlation coefficient that is statistically
significant (p < 0.05) and a RMSE of 66.8 (that corresponds to an error of 20 µg m−3 in retrieved PM2.5 for
an AOD of 0.3). To minimize this bias in satellite-derived instantaneous PM2.5 due to the interpolation
of η to a finer resolution, in the fourth step, we perform the second calibration. We estimate the
calibration factors for each 10 percentile ranges as the ratio of PM2.5 measured at the surface during the
satellite overpass time and satellite-derived instantaneous PM2.5. Using the site-specific calibration
factors representative for each month, we tune the satellite-derived instantaneous PM2.5 data in these
grids closer to the observed values and use the nearest neighbor algorithm to adjust the bias for the
grids devoid of any CPCB site.
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In the fifth step, we estimate the diurnal scaling factor (DSF) of each grid (x, y) for the conversion
of calibrated satellite-derived PM2.5 during the satellite overpass time (h) to the 24-h average of each
day (i) using MERRA-2 data as:

DSFi,x,y,h,model =
PM2.5 i,x,y,24−h,model

PM2.5 i,x,y,h,model
(5)

The spatial patterns of the mean monthly diurnal scaling factors are shown in Figure A5. We find
that the PM2.5 concentrations during the satellite overpass time are lower than the 24-h average (hence
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the ratio is >1) almost everywhere in every month, except over the Western Ghats during July and
August and parts of Central India in May. We also compare the diurnal scaling factor derived from
MERRA-2 with that from CPCB data (Figure 2). We find that the MERRA-2 diurnal scaling factor shows
a statistically significant (p < 0.05) correlation with CPCB diurnal scaling factor, but with a low bias
and a RMSE of 0.3. It implies that the retrieved 24-h PM2.5 concentration is likely to be underestimated
(as compared to the reference monitoring) if the diurnal scaling factors are underestimated.

In the sixth and final step, we convert the satellite-derived instantaneous PM2.5 to 24-h average
PM2.5 (our daily product) using DSFi,x,y,h,model as:

PM2.5 i,x,y,24−h,sat = DSFi,x,y,h,model × PM2.5,i,x,y,h,sat (6)

We find that our daily (i.e., 24-h average) PM2.5 product has spatial gaps due to the cloud cover
and satellite-retrieval issues. This gap is filled when we average the daily PM2.5 to generate the monthly
and subsequently the annual PM2.5 product. All the products are developed for the entire duration
(26 February 2000–31 December 2019).

2.2. Comparison of Satellite-Derived and Ground-Based Daily and Annual PM2.5

For cross-validation, we train our two-stage calibration model with 70% of the surface
measurements randomly chosen from 120 CPCB sites. The remaining 30% of the data are used
for validation. We find that the calibration improves the R2 of satellite-derived instantaneous PM2.5

and surface measurements during the overpass from 0.51 to 0.67. Since our main products are the
daily (24-h average) and annual satellite-derived PM2.5, we further compare these two against surface
measurements from the CPCB network (Figure 3). Note that no further calibration is carried out
after we estimate the daily PM2.5 in the sixth and final step from the calibrated instantaneous PM2.5.
The slope (0.98) of the regression line and the intercept (2.6 µg/m3) of the daily satellite-derived
and surface measured PM2.5 are close to the ideal values. The regression statistics are statistically
significant at 95% CI following student’s t-test (p < 0.05). Less than 0.5% of data points (out of the
total number of samples = 34324) lie outside the 1:2 and 2:1 line. The cases (<0.3%) where surface
measurements are more than double the satellite-based PM2.5 are confined to the Delhi NCR when
the satellite fails to capture the extreme pollution events [13]. In the other cases (<0.2%) where the
surface measurements are much lower than the satellite-derived PM2.5, the satellite data are overfitted.
Most of the epidemiological studies [4] are carried out with annual PM2.5 exposure and the NCAP also
aims to reduce the annual PM2.5 concentration. Our annual PM2.5 product shows a RMSE of 7.2 µg/m3

and R2 of 0.97 with the slope and the intercept similar to those of the daily product.
To understand the behavior of the error in the retrieved PM2.5 dataset across a wide range of

PM2.5, we plot the retrieval bias (which is PM2.5 from the CPCB sites—PM2.5,sat) as a function of PM2.5

from the CPCB sites (Figure 4). The median bias remains lower than 10 µg/m3 (<5%) up to a PM2.5

level of 200 µg/m3, beyond which the underestimation in PM2.5,sat starts to increase. Ground-based
measurements reveal that 24-h PM2.5 concentration in India usually remains below 200 µg/m3 in most
of the days [28]. PM2.5 concentration exceeds this range during the peak pollution season for a few
days, that too, mostly in the Delhi NCR, which the satellite-derived data underestimate. Retrieval
of these extreme cases is challenging in urban areas [13]. Further, we segregate the entire dataset of
our daily product into various seasons (Figure A6) and various geographic regions (Figure A7) to
understand if there is any systematic seasonal or regional bias in the dataset. Seasonally, we get the
highest R2 during the winter (DJF) season followed by the post-monsoon (ON) season with comparable
RMSE, when the PM2.5 level remains high (as shown in Section 3.2). In the other seasons, the RMSEs
are lower and though R2 values are slightly lower they are statistically significant (p < 0.05). We note
that there are no ground-based monitoring sites in North and Northeast India. However, comparable
regression statistics across the various geographical regions covering a diverse land use attest to the
robustness and applicability of the dataset for air quality management. As the ground-based network
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is being expanded including the rural areas under the NCAP, we expect further improvement in the
product in future.
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2.3. Analysis of PM2.5 Trends and Meteorological Parameters

We examine the PM2.5 trends in two different ways. First, we estimate the linear trends in
annual PM2.5 within the last decade (2000 to 2009) and the present decade (2010 to 2019). Secondly,
we estimate the mean seasonal PM2.5 over the entire duration for the winter (December–February),
pre-monsoon (March–May), monsoon (June–September) and post-monsoon (October–November)
seasons. The seasonal variations are examined in terms of the anomaly (i.e., mean seasonal PM2.5–mean
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annual PM2.5) related to the annual concentration. The mean seasonal values are then used to estimate
the linear trends in each season. The grids that are statistically significant (p < 0.05) following the
student’s t-test are marked.

We also analyze the planetary boundary layer (PBL) height and wind speed from the MERRA-2
reanalysis data. PBL height is inversely proportional to PM2.5 as the particles get trapped if PBL
height is low. Similarly, wind speed is also inversely proportional to PM2.5 as stronger wind will allow
particles to disperse easily. The combined effect of these two important meteorological factors on the
PM2.5 concentration is represented by the ventilation coefficient (VC), which is simply the product of
PBL height and wind speed [29]. High VC implies a favorable condition for the dispersion, while low
VC implies the condition as unfavorable. Therefore, the spatial and seasonal variations in PM2.5 can be
partially attributed to the changes in VC. We estimate the seasonal anomaly in VC with respect to the
annual mean to understand the observed seasonal changes in PM2.5 and the seasonal trends in VC to
understand the seasonal trends.

2.4. Exposure Attribution

Population-weighted PM2.5 exposure is estimated using the population data from the Indian
Census. To separate the urban and rural PM2.5, we analyze the Global Human Settlement Layer
(GHSL) data [30]. This dataset was developed as part of a European Union project using 40-years of
Landsat imagery that tracked the land use and land cover changes globally. Various other geospatial
data (e.g., global cover of the artificial surface, open street maps, global urban extents and population
distribution) are integrated with the land use data to identify each 1-km × 1-km grid as one of
the four classes—high-density urban (at least 1500 per km2 population density), low-density urban
(300–1500 per km2 population density), rural (<300 per km2 population density) and no-settlement
(no permanent human occupancy). The GHSL provides the information in four distinct years—1975,
1990, 2000 and 2015. Here, we combine the high-density and low-density urban grids into a single
urban class. Since the satellite-derived PM2.5 is available from 26 February 2000, we consider the urban
and rural PM2.5 in 2001 as a baseline and estimate the changes in 2015. We assume that the human
settlement pattern did not change much from 2000 to 2001 to affect our results.

The state/union territory (UT)-averaged urban and rural settlement fractions in India for the
year 2000 and 2015 are shown in Figure A8. Overall, both the urban and rural settlement area has
increased in India in a varying proportion to accommodate the growing population. We match each
1-km × 1-km grid of satellite-based PM2.5 with the GHSL data and estimate the urban and rural
PM2.5 population-weighted exposure in each state and UT for the years 2001 and 2015. We compare
and report the statistics of rural and urban exposure along with the changes between 2001 and 2015
(Table A1). For the geographical locations of the states, UTs and the regions, see Figure A1.

3. Results

This section is divided into four subsections. First, we present the spatial pattern of PM2.5

concentration over India in Section 3.1, followed by the seasonal changes in Section 3.2, the trend
analysis in Section 3.3 and the urban–rural divide in PM2.5 exposure in Section 3.4.

3.1. Spatial Pattern in PM2.5 Concentration over India

The spatial distribution of PM2.5 at the annual scale shown in Figure 5a mimics the spatial
pattern observed by satellite-derived AOD (Figure 5b). Four points are notable in this figure. First,
ambient PM2.5 exceeds the annual NAAQS of 40 µg/m3 in every state except the states of Jammu and
Kashmir (including the new Ladakh UT), Himachal Pradesh, Sikkim, Arunachal Pradesh, Manipur and
Nagaland (see Figure A2 for the geographical locations), where the population is sparse and a large part
is covered by mountains. As of 2019, we find that 99.5% of the Indian districts (second administrative
levels) do not meet the World Health Organization (WHO)-air quality guideline (AQG) of 10 µg/m3.
Second, the PM2.5 level in the Indo-Gangetic Plain (IGP) and the western arid region is more than
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double the annual NAAQS. The IGP is a low-lying fertile alluvial plain bounded by the Himalayas
in the north and central Indian highlands in the south. Due to its fertility, it is densely populated
with a population more than 700 million. Continuous emissions of primary PM2.5 and secondary
precursor gases (that contribute to PM2.5 eventually) from a range of anthropogenic activities (e.g.,
household solid fuel use, power plants, industries, open biomass and solid-waste burning, vehicles,
brick kilns, diesel generator sets, construction activities, etc.) coupled with unfavorable topography
and meteorology lead to a massive PM2.5 buildup. This PM2.5 does not disperse away towards the
north or south (bounded by the mountains); rather it oscillates east–west by the seasonal winds [31].
The only pathway of the pollution dispersion is through the Gangetic West Bengal towards the Bay of
Bengal. The IGP, therefore, has become a giant valley trapped with high annual PM2.5 that persists
throughout the year. Third, the PM2.5 shows a north (high)–south (low) gradient, which, to some extent,
mimics the population distribution (and therefore the anthropogenic source distribution). The only
exception is the western arid region, which is sparsely populated but highly polluted because of the
large contribution of desert dust raised by wind [3]. Fourth, PM2.5 is not proportionally (as compared
to the IGP states) high over the states of Odisha, Telangana and Andhra Pradesh where AOD is high.
In these regions, the condition for dispersion is favourable for February–October (as shown by low η

values in Figure A4). We note that a large part of the IGP and many other states where the ambient
PM2.5 is high are rural. We discuss the urban–rural contrast in PM2.5 exposure separately.
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3.2. Seasonal Anomaly in PM2.5 Concentration

Figure 6 shows the seasonal anomaly in PM2.5 relative to the annual average PM2.5 distribution.
PM2.5 is the highest in the winter season across the country except for the high-altitude regions in
the north and the western arid region. This wintertime enhancement (a positive anomaly ranging
from 5 to 40 µg/m3 relative to the annual average) in PM2.5 has been attributed to the additional
emission from households (especially in the colder places due to space and water heating) and a
stable atmosphere under calm conditions [12]. In the western arid region, dust activity remains at a
minimum during the winter and in the high-altitude states of Jammu and Kashmir, Himachal Pradesh
and Uttarakhand, major commercial activities remain closed due to extreme cold. Therefore, PM2.5

shows a negative anomaly relative to the annual average. In the pre-monsoon season, the PBL expands
with a rise in the surface temperature and wind speed increases, allowing PM2.5 to be dispersed. As a
result, PM2.5 concentration decreases over the highly polluted IGP. However, this impact is partially
compensated by the additional dust load in west India and emissions from seasonal open biomass
burning over a large part of the northeast and peninsular India [3].
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PM2.5 decreases in the monsoon season (as shown by a negative anomaly ranging from −5 to
−35 µg/m3 relative to the annual average) substantially as the particles are washed out by monsoon
rain. The largest reduction is observed over the eastern IGP and along the west coast of India. In this
season, PM2.5 level remains lower than 40 µg/m3 over entire India except for the arid region in the west
(where the monsoon rain is scanty) and the western IGP including Delhi NCR (where the emission
strength is so high that the aerosol recovery overcompensates the loss due to washout [32]). However,
we note that PM2.5 does not meet the 24-h WHO–AQG (25 µg/m3) on most of the days in most parts
of the country even in this season, suggesting the severity of the problem. The temperature starts
dropping with the monsoon retreat, especially in the north (including the IGP), northeast, west and
central India in the post-monsoon season. In addition, the open biomass burning is prevalent across
the country, more so in the western and central IGP, in this season, which adds to the regional PM2.5

buildup due to a lower average PBL height [13].

3.3. Trends in PM2.5 Concentration

We next present the rate of changes in annual PM2.5 concentration (i.e., the annualized rate of
changes) in the last and the current decade (top panel in Figure 7). The state-level statistics are shown
in Table A1 (in the Appendix A). During the last decade, PM2.5 over India shows a significant (p < 0.05)
increase (by >1 µg/m3 per year) over the states of Jharkhand, Chhattisgarh, Odisha, Telangana, Andhra
Pradesh, Tamil Nadu, Kerala, and parts of Karnataka, Maharashtra and north-east India, while it
decreases (not significantly though) over the high-altitude states of Jammu and Kashmir and Himachal
Pradesh, and the Indian desert. In the current decade, the increase is found to be significant (p < 0.05)
over the states of West Bengal, Odisha, Telangana, Maharashtra, and parts of Gujarat, Karnataka, Bihar,
Uttar Pradesh, Madhya Pradesh and Uttarakhand. The decline continues over the eastern part of
Jammu and Kashmir (now Ladakh UT) and parts of Rajasthan.

Emission data of primary PM2.5, BC and OC and secondary gaseous precursors (e.g., SO2, NO2

and volatile organics) from the Evaluating the Climate and Air Quality Impact of Short-lived Pollutants
(ECLIPSE) emission inventory [33] suggest that the emissions from anthropogenic sources increased
steadily over the last two decades everywhere in India with a larger increase in the eastern and central
part of India dominated by mining activities and related industries and thermal power plants [34].
However, since we do not have continuous data, we can only qualitatively attribute the observed
decadal trends in PM2.5 to the rising emissions. The decadal changes in the VC (bottom panel in
Figure 7) suggest that the meteorological condition became increasingly unfavorable in the last decade.
This, coupled with the rising emissions, led to the observed increase in PM2.5 in eastern and peninsular
India. In the current decade, the VC does not show a significant trend. In fact, it has slightly increased
(although not significantly) over western and central India, where we find a decrease in PM2.5. However,
in southeastern Maharashtra, the PM2.5 increased despite an increase in VC. We only speculate that,
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perhaps, the meteorological impact is overcompensated by the impact of rising emissions and regional
transport in this region. For more quantitative interpretation, simulations from a chemical transport
model are required and are beyond the scope of this work.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 28 
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and (bottom panel) ventilation coefficient, VC (in m2/s per year) over India during the last decade
(2000–2009) and the current decade (2010–2019). The statistically significant trends (p < 0.05) are
identified as stippled marks.

The annualized rate of changes at the seasonal scale is displayed in Figure 8. We note several key
features. First, ambient PM2.5 shows a significant increase (p < 0.05) over almost the entire country
in the post-monsoon and winter seasons, except over the arid regions in the west and high-altitude
regions in the north and northeast. The largest trends (>2 µg/m3 per year) are observed over the
IGP, eastern and southeast India (along the east coast), large parts of peninsular India and the state
of Gujarat. In the pre-monsoon season, PM2.5 increases over east, northeast and peninsular India,
which are affected by open biomass burning [35]. The decreasing trend over west and northwest
India is perhaps attributed to the declining dust activity [36]. In the monsoon season when PM2.5

generally remains low (Figure 6), no apparent trend is observed, except over some patches in the west
and central IGP. In terms of major emission sources, open biomass burning is a seasonal source and
is observed in the pre-monsoon (after the wheat cultivation) and the post-monsoon (after the rice
cultivation) seasons. Studies have suggested that the post-monsoon burning has increased post-2009
in the states of Punjab and Haryana [13] while the pre-monsoon burning marginally increased all over
the country [37]. Since the PM2.5 shows an increasing trend over the peninsular and east India in the
three seasons, the largest trend in annual PM2.5 is observed in these regions (Figure 9a). The trend
over the IGP, the most polluted region in India (and one of the top polluted regions in the world),
is governed mainly by the rising PM2.5 during the post-monsoon to winter seasons. Overall, the trends
are higher over eastern and peninsular India (>1.6% per year) where the number of hazy days has
been increasing at a faster rate than over the IGP [38] where the annual PM2.5 is the highest but the rate
of increase is <1.2% per year (Figure 9b).
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3.4. Urban vs. Rural PM2.5

Unlike the developed countries where PM2.5 is considered to be an urban problem, we observe that
high PM2.5 cuts across the urban–rural transect. We therefore present comparative statistics of urban
vs. rural population-weighted PM2.5 exposure in Figure 10 for the year 2001 and the state-averaged
changes in urban and rural population-weighted exposure from 2001 to 2015 in Figure 11. We observe
that the urban PM2.5 exposure in Delhi increased by 10.9% from 82.2 (5–95 percentile ranges: 27.8–168.9)
µg/m3 in 2001 to 91.3 (33.7–190.7) µg/m3 in 2015. During the same period, the rural PM2.5 exposure
increased by 11.9% from 81.1 (27.8–163.4) µg/m3 to 90.7 (32.5–192.5) µg/m3. We point out that though
the urban and rural exposure is comparable, the urban area (80%) is disproportionately higher in Delhi
than the rural area (10%). The remaining 10% area does not have any permanent human settlement
and therefore can be considered as the background. Several key features are now presented. First,
population-weighted PM2.5 exposure increased in all the states/UTs from 2001 to 2015 (Table A1).
Second, in 2001, all the states/UTs except Arunachal Pradesh (28.1 µg/m3), Manipur (38.9 µg/m3),
Mizoram (39.7 µg/m3), Nagaland (35.2 µg/m3) and Puducherry (24.6 µg/m3) had rural PM2.5 exposure
exceeding the NAAQS. In 2015, the rural PM2.5 exposure remained below the NAAQS only in Arunachal
Pradesh (33.5 µg/m3), Puducherry (26.9 µg/m3) and Sikkim (39.7 µg/m3). Sikkim was the only state
where rural exposure reduced. Third, in 2001, the urban PM2.5 exposure exceeded the NAAQS in all
the states/UTs except Arunachal Pradesh (34.1 µg/m3), Daman and Diu (36.2 µg/m3), Goa (33.9 µg/m3),
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Kerala (36.7 µg/m3), Nagaland (37.4 µg/m3), Puducherry (25.3 µg/m3) and Tamil Nadu (38.0 µg/m3),
while in 2015, it remained below the NAAQS only in two states/UTs—Arunachal Pradesh (38.7 µg/m3)
and Puducherry (30.3 µg/m3). Fourth, both rural and urban PM2.5 exposure exceeded the double of the
NAAQS in 2001 in only Delhi (81.0 and 82.3 µg/m3), while in 2015, it happened in five states—Delhi
(90.7 and 91.3 µg/m3), Haryana (84.5 and 85.7 µg/m3), Uttar Pradesh (82.4 and 82.8 µg/m3), Bihar (81.3
and 81.4 µg/m3) and Jharkhand (81.1 and 83.2 µg/m3). Finally, in most of the states, the urban and
rural PM2.5 exposure are comparable.
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Figure 10. State-wise urban and rural population-weighted PM2.5 exposure in 2001. World Health
Organization air quality guideline, WHO AQG (10 µg/m3) and the interim targets (IT-1: 35 µg/m3;
IT-2: 25 µg/m3 and IT-3: 15 µg/m3), and national ambient air quality standard, NAAQS (40 µg/m3)
are marked by the vertical lines. The states/union territories are arranged in the decreasing order of
PM2.5 level.
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4. Discussion

In this work, we develop and present a 20-year ambient PM2.5 database for India at a high (1-km)
spatial resolution. The data are disseminated freely through a web portal ‘satellite-based application of
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air quality monitoring and management at a national scale’, SAANS (www.saans.co.in) for use in air
quality management, epidemiological studies and creating awareness amongst the citizens, especially
from the states/UTs where the ground-based measurements are unavailable or scanty. Our work adds
to the recent efforts of retrieving PM2.5 at high resolution [19,22] for an improved exposure assessment.
We note the following issues for the proper interpretation of our database. First, we could not calibrate
the scaling factor with ground-based data before 2009 and assume the calibration factors would be
the same in this period. Second, the evaluation of the data is restricted to the urban centres as rural
air quality monitoring from the surface does not exist in India. In future, when the surface network
will be expanded to the rural area, the true error in satellite-based PM2.5 can be identified. We discuss
several important implications and potential applications of our database.

High PM2.5 in the rural area is not surprising as a large fraction of the population still relies on
solid fuel for domestic use (cooking, heating and lighting) [4]. These emissions do not remain confined
with the household and filtrate out to pollute ambient air. Household sources are found to be the
largest contributor to ambient PM2.5 in India [39–42]. This implies that poor air quality in India is not
an urban-centric problem; rather it is a regional scale problem. Therefore, India requires a regional scale
management strategy that transcends urban boundaries and focuses on regional airsheds. The NCAP
focuses on 122 non-attainment cities. Many cities/towns in India do not have any ground-based
measurements and hence whether they are non-attainment could not be determined during the early
phase of the NCAP. Using our database, we found that 436 cities/towns with a population more
than 100,000 (as per the 2011 Indian Census) exceed the NAAQS in 2019. We recommend setting up
ground-based monitoring in these cities/towns on a priority basis.

The Government of India launched a program—Pradhan Mantri Ujjwala Yojana (PMUY, the Prime
Minister’s program of clean household fuel)—in 2014 to empower rural women by promoting clean
cooking fuel (LPG) in the rural areas. This policy is highly important as mitigating emissions completely
from the household sources can potentially help India achieve the NAAQS [43]. As the PMUY is rolled
out, it lacks a mechanism to track its progress. Since the household sources contribute more than 50%
to ambient PM2.5 in the rural areas [44], successful implementation of PMUY with sustained usage
should arrest or even reverse the increasing trend in rural PM2.5 in recent years.

The high-resolution database will enable track the local hotspots within a city, especially where a
single or no ground-based monitoring sites exist. It also will facilitate identification of the representative
sites for the expansion of the CPCB network under the NCAP in the coming years.

In India, the epidemiological studies are either time-series (as summarized in [12]) or by design
establishing the association, not causality [45], or the acute exposure impact on health outcomes like
birthweight [46]. For the chronic exposure impacts on mortality and various health outcomes, we still
rely on the GBD framework [1,2,4] that does not include any cohort study from India on ambient
PM2.5 exposure. Our database will be highly useful to fill this important gap by planning retrospective
cohorts with the existing health data and generating India-specific exposure-response functions.

5. Conclusions

Using a novel high-resolution (1-km) ambient PM2.5 database, we examine the trends in PM2.5

concentrations in India over two decades (2000–2019). Our key conclusions are: (1) the urban and rural
ambient PM2.5 exposure increased by an almost similar margin from 2001 to 2015; (2) particulate air
quality in India is a regional scale problem and needs a coordinated clean air action plan addressing
the urban and rural sources simultaneously; and (3) mitigating emissions during October–February
in the north and east India and December–May in peninsular India would arrest the rising annual
PM2.5 trend.
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Figure A1. Central Pollution Control Board monitoring sites that are used to calibrate the satellite-PM2.5

dataset. The location of the Indo–Gangetic Plain, IGP (as discussed in the main text) is demarcated by
oval shape, the Thar Desert by the rectangular box and Peninsular India by a dotted box. The size of
the circles indicates the number of data and the colors represent the year from which the measurements
started in each site.
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Figure A8. State-averaged fractional area (e.g., <0.05 means <5% area) populated by the urban and rural
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Table A1. State/UT level statistics of population-weighted PM2.5 exposure along with 5–95 percentile
ranges for the years 2001 and 2019. The states/UTs are arranged in the decreasing order of urban area
fraction in 2015. The urban and rural exposure changes shown here are estimated for the period 2001 to
2015, since the Global Human Settlement Layer (GHSL) data are available up to 2015.

State/UT PM2.5 in 2001
(µg/m3)

PM2.5 in 2019
(µg/m3)

Change in Urban
Exposure from
2001–2015 (%)

Change in Rural
Exposure from
2001–2015 (%)

Chandigarh 62.0 (23.9–127.2) 61.9 (24.5–141.5) 18.7 13.4
Delhi national capital territory 82.3 (27.9–169.8) 86.7 (34.2–185.3) 10.9 11.9

Puducherry 34.6 (22.4–56.7) 44.9 (21.1–80.5) 19.7 9.5
Dadra and Nagar Haveli 53.3 (24.2–99.9) 62.9 (24.6–121.9) 19.0 20.3

Kerala 40.5 (19.6–75.4) 51.1 (20.4–105.1) 24.2 21.9
West Bengal 66.6 (27.3–156.8) 78.2 (29.4–166.4) 19.3 17.2

Goa 44.1 (18.5–86.4) 60.4 (19.7–120.3) 36.4 37.3
Daman and Diu 54.6 (25.9–95.8) 61.2 (26.2–114.7) 25.7 17.3

Bihar 76.2 (27.6–175.9) 80.2 (29.7–176.2) 7.6 7.8
Punjab 70.3 (31.4–140) 73.4 (31.7–140.8) 13.6 14.9

Tamil Nadu 38.5 (20.5–69.8) 47.2 (21.9–91.6) 10.1 11.1
Haryana 75.9 (29.9–155.1) 81.5 (33.5–162.4) 13.6 13.2

Andhra Pradesh 42.3 (21.1–77.8) 54.6 (21.9–121.2) 20.1 18.9
Uttar Pradesh 71.8 (26.3–163.8) 79.3 (31–164.7) 13.2 13.7

Telangana 47.5 (23.6–89.1) 58.4 (24.1–113.7) 14.6 16.5
Jharkhand 68.4 (27.4–144.9) 79.1 (28.1–164.5) 15.1 16.2
Karnataka 42.4 (16.9–84.3) 51.3 (16.8–104.5) 16.6 17.1

Gujarat 54.7 (31.2–92.9) 63.4 (28–108.3) 16.5 16.7
Maharashtra 48.3 (21.7–83) 58.1 (22.4–107) 24.0 21.0

Assam 45.7 (16.4–111.5) 48.4 (17.3–97.9) 11.0 12.7
Odisha 55.7 (26.1–109.2) 72.7 (25.6–153.1) 28.2 28.3
Tripura 50.1 (17–149.7) 48.6 (16.8–102.1) 4.9 23.8

Uttarakhand 42.5 (12.4–68.3) 41.4 (15.4–73.8) 16 13.7
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Table A1. Cont.

State/UT PM2.5 in 2001
(µg/m3)

PM2.5 in 2019
(µg/m3)

Change in Urban
Exposure from
2001–2015 (%)

Change in Rural
Exposure from
2001–2015 (%)

Madhya Pradesh 53.8 (24.6–106.2) 60.3 (26.4–117) 11.2 12.8
Chhattisgarh 51.8 (23.7–96.3) 60.2 (23.2–121.5) 17.3 17.6

Himachal Pradesh 27.0 (13.3–52.8) 23.9 (12.1–50.2) 8.0 8.5
Rajasthan 74.8 (35.4–139.4) 74.7 (35.8–133) 7.5 7.9
Manipur 35.6 (5.6–94.9) 36.1 (6.5–90.2) 13.4 16.2

Jammu and Kashmir 17.1 (9.8–38.7) 13.1 (6.5–33.5) 2.1 7.3
Nagaland 36.2 (7.2–95.2) 37.9 (7.7–96.6) 17.5 17.1

Meghalaya 49.6 (16.5–139.7) 49.9 (17.4–107.4) 5.4 6.4
Mizoram 41.0 (7.5–115.3) 42.3 (8.3–97.7) 18.2 24.1

Arunachal Pradesh 23.3 (4.1–63) 25.9 (4.9–77.9) 13.4 18.9
Sikkim 27.9 (5.1–59.2) 29.4 (6.1–55) 0.2 −4.3
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