Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018
Abstract
:1. Introduction
2. Background Information
2.1. CSES Satellite
2.2. VLF Transmitters around Indonesia
3. Earthquake Study on VLF Transmitters from CSES
3.1. SNR Analysis from NWC at 19.8 kHz
3.2. SNR from JJI at 22.2 kHz
4. Comparison with Other Physical Parameters
4.1. Electron Density in the Ionosphere
4.2. DC-ULF Electric Field and ion Drift Velocity
4.3. The Lower Ionosphere Height
5. Discussion
6. Conclusions
- (1)
- Significant decrease in SNR from the NWC and JJI transmitter signals 10 days before the Indonesia earthquake;
- (2)
- Simultaneous disturbances have been found in the electron density and ULF electric field recorded onboard CSES, and sometime on the same day in GPS TEC from NASA/JPL;
- (3)
- Enhancement of the ion horizontal movements and their upward decelerated movement along orbits with a decrease in SNR;
- (4)
- The lower ionosphere height around the epicenter area reduced during 26 July to 9 August at 85 km relative to those during 15 to 25 July at 95 km; and
- (5)
- The multi-parameter investigations suggest the presence of an overlapped electric field driven by AGWs in the coupling processes from the lower ionosphere to the topside. It results in a series of perturbations in the atmospheric and ionospheric parameters.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M. Earthquake Prediction with Radio Techniques; John Wiley and Sons: Singapore, 2015. [Google Scholar]
- Parrot, M. DEMETER satellite and detection of earthquake signals. In Natural Hazards Earthquakes, Volcanoes, and Landslides; Singh, R., Bartlett, D., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 115–138. [Google Scholar]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press: Stanford, CA, USA, 1965. [Google Scholar]
- Zhao, S.; Shen, X.; Zhang, X.; Pan, W. Full wave calculation of VLF waves penetrated into satellite altitude ionosphere. Chin. J. Space Sci. 2015, 35, 178–184, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Cohen, M.B.; Inan, U.S.; Paschal, E.W. Sensitive broadband ELF/VLF radio reception with the AWESOME instrument. Geosci. Remote Sens. IEEE Trans. 2010, 48, 3–17. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, G.; Ni, B.; Zhao, Z.; Gu, X.; Zhou, C.; Wang, F. Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res. 2016, 57, 1871–1880. [Google Scholar] [CrossRef]
- Parrot, M. DEMETER observations of manmade waves that propagate in the ionosphere. Comptes Rendus Phys. Elsevier Masson 2018, 19, 26–35. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Saha, M.; Khan, R.; Mandal, S.; Acharyya, K.; Saha, R. Possible detection of ionospheric disturbances during the Sumatra-Andaman islands earthquakes of December, 2004. Indian J. Radio Space Phys. 2005, 34, 314–318. [Google Scholar]
- Hayakawa, M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors 2007, 7, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
- Horie, T.; Yamauchi, T.; Yoshida, M.; Hayakawa, M. The wave-like structures of ionospheric perturbation associated with Sumatra earthquake of 26 December 2004, as revealed from VLF observation in Japan of NWC signals. J. Atmos. Sol. Terr. Phys. 2007, 69, 1021–1028. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y.; Yasuda, Y.; Yamaguchi, H.; Ohta, K.; Izutsu, J.; Nakamura, T. Possible precursor to the March 11, 2011, Japan earthquake: Ionospheric perturbations as seen by subionospheric very low frequency/low frequency propagation. Ann. Geophys. 2012, 55, 95–99. [Google Scholar] [CrossRef]
- Cohen, M.B.; Marshall, R.A. ELF/VLF recordings during the 11 March 2011 Japanese Tohoku earthquake. Geophys. Res. Lett. 2012, 39, L11804. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K.; Samanta, A. Comparative study of the possible lower ionospheric anomalies in very low frequency (VLF) signal during Honshu, 2011 and Nepal, 2015 earthquakes. Geomat. Nat. Hazards Risk 2019, 10, 1596–1612. [Google Scholar] [CrossRef] [Green Version]
- Rozhnoi, A.; Solovieva, M.; Hayakawa, M.; Yamaguchi, H.; Hobara, Y.; Levin, B.; Fedun, V. Tsunami-driven ionospheric perturbations associated with the 2011 Tohoku earthquake as detected by subionospheric VLF signals. Geomat. Nat. Hazards Risk 2014, 5, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Maurya, A.K.; Venkatesham, K.; Tiwari, P.; Vijaykumar, K.; Singh, R.; Singh, A.K.; Ramesh, D.S. The 25 april 2015 Nepal earthquake: Investigation of precursor in VLF subionospheric signal. J. Geophys. Res. Space Phys. 2016, 121, 10403–10416. [Google Scholar] [CrossRef] [Green Version]
- Phanikumar, D.V.; Maurya, A.K.; Kumar, K.N.; Venkatesham, K.; Singh, R.; Sharma, S.; Naja, M. Anomalous variations of VLF sub-ionospheric signal and mesospheric ozone prior to 2015 Gorkha Nepal earthquake. Sci. Rep. 2018, 8, 9381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molchanov, O.A.; Rozhnoi, A.; Solovieva, M.; Akentieva, O. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazards 2006, 6, 745–753. [Google Scholar] [CrossRef]
- He, Y.F.; Yang, D.M.; Chen, H.R.; Qian, J.D.; Zhu, R.; Parrot, M. SNR changes of VLF radio signals detected onboard the DEMETER satellite and their possible relationship to the Wenchuan earthquake. Sci. China Ser. D Earth Sci. 2009, 52, 754–763. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, S.; Song, R.; Zhai, D. The propagation features of LF radio waves at topside ionosphere and their variations possibly related to Wenchuan earthquake in 2008. Adv. Space Res. 2019, 63, 3536–3544. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. Lab. 1996, 43, 169–180. [Google Scholar]
- Rodger, C.; Clilverd, M. Modeling of subionospheric VLF signals perturbations associated with earthquakes. Radio Sci. 1999, 34, 1177–1185. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Ghosh, S.; Palit, S.; Chakrabarti, S.K.; Ray, S. Numerical modeling of possible lower ionospheric anomalies associated with Nepal earthquake in May, 2015. Adv. Space Res. 2017, 60, 1787–1796. [Google Scholar] [CrossRef]
- Lizunov, G.; Skorokhod, T.; Hayakawa, M.; Korepanov, V. Formation of ionospheric precursors of earthquakes-probable mechanism and its substantiation. Open J. Earthq. Res. 2020, 9, 142–169. [Google Scholar] [CrossRef] [Green Version]
- Piesanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G.; Diego, P.; Ubertini, P. Magnetospheric-ionospheric-lithospheric coupling model. 1: Observations during the 5 August 2018 Bayan earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Molchanov, O.; Solovieva, M.; Gladushev, V.; Akentieva, O.; Berthelier, J.J.; Parrot, M.; Lefeuvre, F.; Hayakawa, M.; Castellana, L.; et al. Possible seismo-ionosphere perturbations revealed by VLF signals collected on ground and on a satellite. Nat. Hazards Earth Syst. Sci. 2007, 7, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Hobara, Y. Simultaneous study of VLF/ULF anomalies associated with earthquakes in Japan. Open J. Earthq. Res. 2020, 9, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolik, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth Parts A/B/C 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Novikov, V.; Shen, X. Variations of ionospheric plasma at different altitudes before the 2005 Sumatra Indonesia Ms 7.2 earthquake. J. Geophys. Res. Space Phys. 2016, 121, 9179–9187. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M.; Santis, A.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful Educator (Mw = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, H.; Yuan, X.; Wang, S.G.; Cao, L.W.; Huang, J.B.; Zhu, J.P.; Piergiorgio, X.H.; Dai, J.P. The state-of-the-art of the China seismo-electromagnetic satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Shen, X.H.; Zong, Q.G.; Zhang, X. Introduction to special section on the China seismo-electromagnetic satellite and initial results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- Zhang, X.; Frolov, V.; Zhao, S.; Zhou, C.; Wang, Y.; Ryabov, A.; Zhai, D. The first joint experimental results between SURA and CSES. Earth Planet. Phys. 2018, 2, 527–537. [Google Scholar] [CrossRef]
- Zhang, X.; Frolov, V.; Shen, X.; Wang, Y.; Zhou, C.; Lu, H.; Huang, J.P.; Ryabov, A.; Zhai, D.L. The electromagnetic emissions and plasma modulations at middle latitudes related to SURA-CSES experiments in 2018. Radio Sci. 2020, 55, e2019RS007040. [Google Scholar] [CrossRef]
- Zhao, S.F.; Zhang, X.M.; Zhao, Z.Y.; Shen, X.H.; Zhou, C. Temporal variations of electromagnetic responses in the ionosphere excited by the NWC communication station. Chin. J. Geophys. 2015, 58, 2263–2273, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol. Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Cheng, D.K. Field and Wave Electromagnetics; Addison-Wesley Publishing: Reading, MA, USA; Menlo Park, CA, USA, 1989. [Google Scholar]
- Toledo-Redondo, S.; Parrot, M.; Salinas, A. Variation of the first cut-off frequency of the Earth-ionosphere waveguide observed by DEMETER. J. Geophys. Res. 2012, 117, A04321. [Google Scholar] [CrossRef] [Green Version]
- Samanes, J.; Raulin, J.P.; Cao, J.B.; Magalhaes, A. Nighttime lower ionosphere height estimation from the VLF modal interference distance. J. Atmos. Sol. Terr. Phys. 2018, 167, 39–47. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A. NASDA/UEC team. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A. NASDA/UEC team. Achievements of NASDA’s earthquake remote sensing frontier project. Terr. Atmos. Ocean. Sci. 2004, 15, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liu, Y.; Zhao, S.F.; Liu, J.; Zhang, X.M.; Huang, J.P.; Shen, X.H.; Ni, B.B.; Zhao, Z.Y. An electric field penetration model for seismo-ionospheric research. Adv. Space Res. 2017, 60, 2217–2232. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X.; Zhao, S.; Yao, L.; Ouyang, X.; Qian, J. The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes. J. Asian Earth Sci. 2014, 79, 42–52. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G.; Fedder, J.A. Sami2 is another model of the ionsopehre (SAMI2): A new low-latitude ionosphere model. J. Geophys. Res. 2000, 105, 23. [Google Scholar]
- Scherliess, L.; Fejer, B. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 1999, 104, 6829. [Google Scholar] [CrossRef]
Code | Country | Frequency(kHz) | Longitude(°E) | Latitude(°N) | Power(kW) |
---|---|---|---|---|---|
NWC | Australia | 19.8 | 114.20 | −21.80 | 1000 |
JJI | Japan | 22.2 | 130.81 | 32.04 | 200 |
3SB | China | 20.6 | 103.33 | 39.60 | - |
3SA | China | 20.6 | 111.67 | 25.03 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, Y.; Boudjada, M.Y.; Liu, J.; Magnes, W.; Zhou, Y.; Du, X. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sens. 2020, 12, 4050. https://doi.org/10.3390/rs12244050
Zhang X, Wang Y, Boudjada MY, Liu J, Magnes W, Zhou Y, Du X. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sensing. 2020; 12(24):4050. https://doi.org/10.3390/rs12244050
Chicago/Turabian StyleZhang, Xuemin, Yalu Wang, Mohammed Yahia Boudjada, Jing Liu, Werner Magnes, Yulin Zhou, and Xiaohui Du. 2020. "Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018" Remote Sensing 12, no. 24: 4050. https://doi.org/10.3390/rs12244050
APA StyleZhang, X., Wang, Y., Boudjada, M. Y., Liu, J., Magnes, W., Zhou, Y., & Du, X. (2020). Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sensing, 12(24), 4050. https://doi.org/10.3390/rs12244050