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Abstract: This paper describes a methodology for processing spectral raw data from Micro Rain
Radar (MRR), a K-band vertically pointing Doppler radar designed to observe precipitation
profiles. The objective is to provide a set of radar integral parameters and derived variables,
including a precipitation type classification. The methodology first includes an improved noise level
determination, peak signal detection and Doppler dealiasing, allowing us to consider the upward
movements of precipitation particles. A second step computes for each of the height bin radar
moments, such as equivalent reflectivity (Ze), average Doppler vertical speed (W), spectral width
(σ), the skewness and kurtosis. A third step performs a precipitation type classification for each
bin height, considering snow, drizzle, rain, hail, and mixed (rain and snow or graupel). For liquid
precipitation types, additional variables are computed, such as liquid water content (LWC), rain rate
(RR), or gamma distribution parameters, such as the liquid water content normalized intercept (Nw)
or the mean mass-weighted raindrop diameter (Dm) to classify stratiform or convective rainfall
regimes. The methodology is applied to data recorded at the Eastern Pyrenees mountains (NE Spain),
first with a detailed case study where results are compared with different instruments and, finally,
with a 32-day analysis where the hydrometeor classification is compared with co-located Parsivel
disdrometer precipitation-type present weather observations. The hydrometeor classification is
evaluated with contingency table scores, including Probability of Detection (POD), False Alarm Rate
(FAR), and Odds Ratio Skill Score (ORSS). The results indicate a very good capacity of Method3
to distinguish rainfall and snow (PODs equal or greater than 0.97), satisfactory results for mixed
and drizzle (PODs of 0.79 and 0.69) and acceptable for a reduced number of hail cases (0.55),
with relatively low rate of false alarms and good skill compared to random chance in all cases
(FAR < 0.30, ORSS > 0.70). The methodology is available as a Python language program called
RaProM at the public github repository.

Keywords: Doppler radar; noise level; precipitation type classification; rainfall parameters;
spectral processing

1. Introduction

Precipitation is a key component of the hydrological cycle and a precise knowledge of the
precipitating hydrometeor type is essential for remote quantitative precipitation estimates either from
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scanning or from vertically pointing ground-based or spaceborne radars. Precipitation observations of
vertically pointing Doppler radars allow us to estimate the fall speed of hydrometeor particles which,
in general, are the sum of their terminal fall speed and vertical air velocity (Atlas et al. [1], Hauser and
Amayenc [2]). As it is well known, radar sensitivity to smaller particle detection increases with shorter
wavelengths but, on the other hand, attenuation by intense precipitation, particularly rainfall, increases.
Thus, a compromise exists between sensitivity and attenuation effects regarding the choice of operating
frequency, a crucial aspect in radar design for different applications and platforms (Battaglia et al. [3],
Kollias et al. [4]).

Unlike usual ground-based scanning precipitation weather radars operating at cm frequencies
(S, C or X-band), Doppler radar profilers do not provide the precipitation field over a wide area, but a
high spatial and temporal resolution vertical profile over the radar location. This approach has been
employed for decades to study fine-scale vertical precipitation characteristics, for instance with the
NOAA Aeronomy Laboratory S-band Doppler profiler (Ecklund et al. [5]), the X-band Precipitation
Occurrence Sensor System (POSS, Sheppard [6]), the K-band Micro Rain Radar (MRR, Löffler-Mang
et al. [7], Peters et al. [8]), and more recently, with shorter wavelength radars traditionally used for
cloud studies, such as the Ka-band ARM zenith radar (Chandra et al. [9]) or the Milešovka observatory
Ka-band cloud radar (Sokol et al. [10,11]), used to derive a hydrometeor classification, including four
precipitation types. A related application has been the use of lidar observations from the NASA
MPLNET network to resolve weak precipitation profiles (Lolli et al. [12,13]), particularly suited for
light rain, drizzle and virga, as if more intense precipitation exists, attenuation becomes too important.

Among the above-mentioned Doppler radar profilers, the MRR stands out. This has been
extensively used for a wide range of applications, including microphysical analysis of rainfall
characteristics using collocated ground disdrometers (Adirosi et al. [14,15], Chang et al. [16],
Gonzalez et al. [17], Jass et al. [18], Luo et al. [19], Tokay et al. [20]), diurnal and precipitation
characteristics at low-latitude mountains (Bendix et al. [21], Seidel et al. [22]), orographic effects
and low-level seeder-feeder processes (Arulraj and Barros [23]), bright-band (BB) radar signatures
(Cha et al. [24], Brast and Markmann [25]), or the monitoring of absolute calibration of C-band
polarimetric weather radars (Frech et al. [26]). Many of these applications rely on the separation
of the liquid to solid precipitation phase, for example above and below the BB, which is crucial for
accurate quantitative precipitation estimates (Fabry and Zawadzki [27], Sanchez-Diezma et al. [28],
Bordoy et al. [29]). A recent study by Makino et al. [30] described the use of MRR to predict the
hydrometeor type at ground level. However, to our best knowledge, no methodology based on
MRR data to partition precipitation profiles in different hydrometeor types has yet been described.
Such methodologies have been developed and improved in recent years for polarimetric scanning
precipitation radars (see, for instance, Ryzhkov et al. [31], Park et al. [32], Schuur et al. [33],
Dolan et al. [34], Chandrasekar et al. [35], Besic et al. [36]).

MRR units produce so-called raw data files, with spectral Doppler density data, which may be
processed with the MRR manufacturer software (Metek [37], hereafter Method1) to obtain derived
products, such as radar reflectivity Z, Doppler fall speed w or spectral width σ. Alternatively,
researchers may develop their own MRR raw data processing, such as the methodology by Maahn and
Kollias [38] which improves sensitivity and Doppler dealiasing and is suited for snowfall precipitation.
This methodology is freely available as a Python program, called ImproToo (hereafter Method2).

The objective of this article is threefold. First, to present a novel MRR processing methodology,
called RaProM (hereafter Method3), which includes enhanced spectral processing and Doppler
dealiasing, a simplified novel hydrometeor classification scheme based on the assumption that the
air vertical velocity is negligible compared to the precipitation particle speed, including drizzle, rain,
snow, and hail, plus additional variables depending on the precipitation type. Second, to illustrate the
methodology with a detailed case study, where results are compared with those from Method1 and
Method2 and other co-located instruments, such as a Particle Size and Velocity (Parsivel) disdrometer
or a microwave radiometer. Third, an evaluation of the hydrometeor type classification at the lowest
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MRR height bin compared with Parsivel present weather precipitation type observations recorded in
32 days.

The rest of the article is organized as follows. Section 2 introduces the instruments and location
considered in this study, on the Eastern Pyrenees (NE Spain). Section 3 describes the new methodology
proposed, dealing with spectral data processing with a multi peak detection procedure and details
the derivation of spectral moments, hydrometeor classification and derived parameters. Section 4
presents a case study comparing, in detail, previous MRR processing methodologies and data from
additional instruments and also provides the evaluation of the hydrometeor precipitation classification
using contingency table scores and, finally, Section 5 presents a discussion and conclusion of the
achievements and limitations of the proposed methodology and ideas for further research.

2. Instruments and Site Description

A Micro Rain Radar (MRR) is a compact frequency modulated continuous wave (FMCW) vertically
pointing Doppler radar operating at 24.23 GHz, manufactured by Meteorologische Messtechnik GmbH
(Metek) [37], which recently is manufacturing a newer version, the MRR-PRO. A summary of technical
features of the MRR used here is given in Table 1. In this study, an MRR2 model was used and the
range gate resolution was set to 100 m so observations extended up to 3.1 km above ground level.
The unit was equipped with a heated antenna which prevented the accumulation of snow. Due to the
relatively high operating frequency, possible attenuation by precipitation had to be checked for the
data set analyzed.

Table 1. Main features from MRR.

Frequency (GHz) 24.23
Radar Type FMCW

Number of range gates 32
Number of spectral bins 64

Range resolution (m) 10–200
Frequency sampling (kHz) 125

Other instruments used here were a laser-optical disdrometer OTT Parsivel, a microwave
radiometer RPG HATPRO (MWR) and two Automatic Weather Stations (AWSs) of the Meteorological
Service of Catalonia [39]—see Supplementary Materials Table S1. All these instruments were deployed
for the Cerdanya-2017 field campaign at the Das aerodrome (OACI code: LECD) in the Eastern
Pyrenees mountain massif from December 2016 to April 2017. Part of the study makes use of additional
data collected at the same site during the period 2018 and 2019 by the MRR and Parsivel disdrometer.
The location is a relatively wide valley oriented west to east, with limited radar coverage due to
orographic beam blockage (Bech et al. [40], Trapero et al. [41]) so most of the MRR beam cannot be
directly compared with existing ground-based weather radar observations. The Cerdanya-2017 field
campaign aimed at studying various complex terrain phenomena, including cold pool formation,
mountain waves and orographic precipitation—see Gonzalez et al. [17]; Udina et al. [42] for more details.

The disdrometer records hydrometeor fall speed and size spectra at ground level and other derived
variables, such as hydrometeor type (e.g., rain or snow), radar reflectivity factor and precipitation
intensity for liquid precipitation, among others. The microwave radiometer provides air temperature
vertical profiles so the freezing level and other isotherm levels can be calculated. The two AWS are
located close or near the MRR location (at the same aerodrome and nearby but a higher altitude,
see Figure S1 in Supplementary Materials) and provide independent measurements of temperature,
precipitation and snow depth level.
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3. New Methodology Proposed

The methodology has two different sections. The spectral data processing is detailed in the first
section, and the equations and hypotheses are treated in the second section.

3.1. Spectral Data Processing

The initial processing stage of Method3 consists in the MRR spectral data processing and follows
the flow chart described in Figure 1. The first step is to transform the original signal backscattered
by hydrometeors to spectral reflectivity (η) following the equation proposed by the manufacturer
(Metek [37]):

η(n, i) = f (n, i)·
i2

TF(i)
·
C·∆h
1020 , (1)

where i is the range gate number (i = 0, . . . , 31), n is Doppler bin number (n = 0, . . . , 63), f(n,i) is the
original MRR signal saved in the so-called raw data files, TF(i) is a transfer function specific for each
height, C is the radar calibration constant and ∆h is the range resolution in m. The spectral reflectivity
η(n,i) has units of m−1 and TF(i) and C are stored in the original raw data files.
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The innovations introduced in Method3 are the modification of the integration time, the average
of spectra and the determination of maxima (peaks) in the signal. The integration time, usually set
to 60 s, is now selectable by the user. Method3 performs the averaging of the spectrum checking
that at least 50% of spectra contain a minimum valid signal. The 50% threshold is a value modifiable
by the user on the code of Method3. The signal is considered valid if it verifies the Hildebrand and
Sekhon [43] criterion:

η2

var(η)
=

(∑
η(n)
N

)2

∑
(η−η)2

N

< 60 , (2)

where var(η) is the spectral reflectivity variance and N the number of Doppler bins considered.
The detection of the maxima of the signal at a given height consists in using all Doppler bins of the

spectrum except the first and the last one, therefore all possible fall speed values are used, except the
lowest and the highest. This approach allows us to recover more than one single peak of the signal
more easily and provides more detail about the hydrometeor fall speed distribution potentially affected
by noise in the lowest range bin, the closest one to the ground, which is excluded, as in Method1.
Note that Method2, instead, excludes part of the highest and lowest Doppler bins, and discards the 3
lowest-range bins. The noise level is calculated for each height following the scheme detailed by the
manufacturer [37], which implies subtracting the noise level to the signal.

Figure 2 shows two examples of noise subtraction and peak detection using Method3 applied to
the lowest processed range bin (i = 1, here from 100 to 200 m a.g.l.) and the ninth range bin (i = 10,
from 900 to 1000 m a.g.l.). Figure 2a,b display a single peak detection and Figure 2c,d a two peak
detection. Note that these detections could not be possible with Method2, as it discards the 100 m to
200 m bin height (panels a and b) and does not consider all Doppler bins processed by Method3.
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Figure 2. Examples of Method3 noise subtraction and signal detection: single peak (a,b panels) and
multi-peak (c,d panels). (a,c) show the original Doppler signal from raw file and (b,d) show the noise
subtraction and signal detection. The (a) case was recorded at the first height bin (100 to 200 m a.g.l.)
and the (c) case at the ninth height bin (900 to 1000 m a.g.l.).

The next step is the conversion of the reflectivity spectra from n Doppler bins to velocity v
according to Equation (3). Note that this transformation depends on specific MRR2 data acquisition
features, such as wavelength or sampling frequency:

η(v, i) = η(n, i)·
( fsampling

2·nmax·imax
·
λ
2

)−1

, (3)

where fsampling is 125 kHz, nmax is 64, imax is 32 and λ is the wavelength (~1.24 cm).
The last step in the spectral processing of Method3 implements a dealiasing scheme, partly based

on Kneifel et al. [44] who noticed that in some snowfall cases, MRR2 provided unrealistically high
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values of hydrometeor fall speed, much higher than terminal snowflake fall speeds. This was due to
two assumptions of the original manufacturer software: (i) precipitation observed was always in liquid
form, so there was an inherent dependence between hydrometeor terminal fall speed versus particle
diameter and (ii) only downward velocities were allowed, which is the most usual situation but is not
always the case for snowflakes or convective rainfall. The snowfall case is discussed in Maahn and
Kollias [38] and a dealiasing system to solve it is implemented in Method2. The dealiasing scheme
proposed in Method3 consists in, for a given height, combining information from spectra of adjacent
(upper and lower) height levels to determine the hydrometeors’ fall speeds to extend the original
speed range from 0 to 12 m/s to a dealiased range of −12 to 24 m/s. The lower-level spectra are used to
expand the speed range to −12 to 0 m/s and the upper one to 12 to 24 m/s. The vertical continuity of
the speed profile is used to provide the dealiased speed spectra, as illustrated in the example displayed
in Figure 3. The Method2 dealiasing scheme works well for snowfall and finds possible snowflake
upward movements but does not work properly for cases of intense rainfall with hydrometeor falling
velocities greater than 8 m/s, unlike the proposed scheme implemented in Method3.
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Figure 3. Spectral reflectivity after noise extraction of Doppler spectrum with Method3 on 27 March
2017 12:18 UTC. (a) Original spectral reflectivity after peaks and noise determination. (b) Extended
spectral reflectivity from height bin i− 1, i and i + 1. (c) Dealiased Method3 spectral reflectivity. The blue
symbol thickness is proportional to their contribution to the total Doppler spectrum for each height bin.
The red dashed vertical lines indicate the original Nyquist velocity interval (from 0 to 12 m/s).

3.2. Parameters Calculation

Once Method3 spectral processing is completed, data are ready to proceed with the calculation
of subsequent parameters, which is divided in two parts. The first part computes the basic Doppler
radar parameters: the Doppler velocity, which is assumed here to be the hydrometeor fall speed,
and the radar equivalent reflectivity factor. The second part provides an estimation of hydrometeor
type and based on this, the calculation of derived parameters, such as precipitation rates for different
precipitation types. Figure 4 provides an overview of parameters calculations.
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and kurtosis) and subsequent estimation without assuming any hypothesis between terminal fall speed
and particle diameter of precipitation type into snow, m, drizzle/rain—hail and unknown.

3.2.1. Basic Parameters

The term basic parameters are applied here to integral parameters which can be calculated
independent of the type of hydrometeor as they only depend on the spectral reflectivity. The parameters
are the radar equivalent reflectivity (Ze), the Doppler velocity, which here corresponds to the mean
fall speed of hydrometeors (w), and higher order moments of the Doppler speed distributions:
Doppler spectral width (σ), skewness and kurtosis as described in Equations (4)–(8):

Ze = 1018
·
λ4

π5 ·
1

|K|2
·∆v·

∑
η(v), (4)

w =

∑
η(v, i)·v(i)∑
η(v, i)

(5)

σ =

√∑
η(v, i)·(v(i) −w)2∑

η(v, i)
(6)

skewness =

∑
η(v, i)·(v(i) −w)3∑

η(v, i)·σ3 (7)

kurtosis =

∑
η(v, i)·(v(i) −w)4∑

η(v, i)·σ4
(8)

Note that the calculation of the radar equivalent reflectivity does not take into account possible
attenuation effects which may be relevant for high precipitation rates, considering that MRR operates
at the K-band. However, this can be handled in the case of liquid hydrometeors, where the path
attenuation is calculated (see Section 3.2.4).
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3.2.2. Hydrometeor Type Classification

As mentioned earlier, there are a number of hydrometeor classification algorithms developed
mainly for scanning polarimetric weather radars, some considering up to 10 different precipitation
species. Here, a simplified approach is adopted aiming to distinguish, for each height bin, 5 possible
precipitation types: drizzle, rain, snow, mixed and hail. For the purpose of this paper, we consider
either wet snow, a mixture of snow and rain, or graupel in the mixed category.

The classification is based on a decision tree, considering empirical relations between hydrometeor
fall speed and equivalent radar reflectivity, size and particle diameter characteristics for different
hydrometeors and the existence or absence of the bright band. As a starting point, the empirical
relations reported by Atlas et al. [1], linking radar reflectivity and fall speeds of rain (vRain) and snow
(vSnow) in the absence of bright band, are considered:

vRain = 2.65·Ze0.114 (9)

vSnow = 0.817·Ze0.063 (10)

These relationships are used to compute, given Ze, vRain and vSnow, which are the average fall
speed expected for each precipitation type on those two cases. Additional parameters considered are
the mean Doppler fall speed w, the Doppler spectral width σ and the Skewness Sk, calculated for each
height bin. Moreover, a BB detection scheme is used (Cha et al. [24]). In case there is BB, then the
existence and height of its top (BBTop) and bottom (BBBottom) levels are computed, following the
methodology described by Wang et al. [45]. From all the above, the decision tree can be grouped in
three main branches with additional conditions (Figure 4):

1. If vSnow is within the interval w ± σ and vRain exceeds w + σ, then:

• If the bin height is lower than the BBBottom, the hydrometeor is classified as:
Drizzle/Rain—Hail.

• If the bin height is equal or above the BBBottom or BBBottom is not present: Mixed: if Sk > −0.5
and wvSnow; Snow: otherwise.

2. If vRain and vSnow are within the interval w ± σ, then:

• If the bin height is below the BBBottom or BBBottom is not present: Drizzle/Rain—Hail.
• If the bin height is above the BBBottom: Mixed: if the Sk > −0.5 and the wvSnow;

Snow: otherwise.

3. If vRain is within the interval w ± σ and vSnow is lower than w − σ, then:

• If the bin height is below the BBTop or BBTop is not present: Drizzle/Rain—Hail.
• If the bin height is above the BBTop: Mixed: if the Sk > −0.5 and the wvSnow; Snow: otherwise.

4. Cases not included in any of the previous categories are labelled as unknown.

The category “Drizzle/Rain—Hail” is further disaggregated considering additional conditions
(Figure 5). The basic criteria stem from the precipitation hydrometeor definitions. Drizzle and
rain are formed only by liquid particles AMS (2020) [46,47] and are here distinguished by their
skewness Sk in their fall speed distribution and for Ze differences (∆Ze) between levels. According to
Acquistapace et al. [48], if skewness (Sk) is lower than or equal to −0.5 and ∆Ze ≥ 1 dBZ, then the
hydrometeor is classified as drizzle and otherwise as rain. Hail is defined in the function of the
maximum diameter on the Doppler velocity spectrum, considering here a threshold of maximum
diameters greater than 5 mm. Snow and mixed class are stratified when the height is below the BBBottom

as described by Kalesse et al. [49].
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Fig. 5 
Figure 5. Flowchart of parameter calculation assuming Mie backscattering regime and the estimation
of precipitation type (hail, drizzle and rain).

3.2.3. Snowfall Rate

Despite solid precipitation presents a greater variability than liquid precipitation, Matrosov and
Heymsfield [50] studied the relation between equivalent radar reflectivity and snowfall rate at different
wavelengths and proposed empirical relations between those variables. In particular, snowfall rate
(SR) can be estimated from Ze by inverting the Ze–SR power–law relationship:

SR =
(Ze

a

)1/b
(11)

where SR is in mm/h, Ze in mm6 m−3, a and b are the coefficients from the corresponding Ze–SR relation
and their values, for K band, are 56.00 and 1.20. It should be noted that the estimated SR might differ
from actual values, given the high variability of the mass–size relation of different snow particles,
as discussed in Souverijns et al. [51].

3.2.4. Rainfall Parameters from Drizzle/Rain

Rainfall parameters can be calculated if hydrometeors are in liquid phase. Section 3.2.2 details
that the Drizzle/Rain types are liquid hydrometeors, thus on these types the rainfall parameters are
calculated, but it is also necessary to introduce a dependence between the hydrometeor terminal fall
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speed and the diameter of the hydrometeor, which implies the hydrometeor particle size distribution
(N) for each n Doppler bin and height level i:

Nn,i(Dn) =
η(D)

σn,i
(12)

where η(D) is the spectral reflectivity as a function of the diameter and σn,i is the Mie backscattering
cross section for liquid spherical particles. Note that the initial spectral reflectivity is only a function
of the fall speed using the relation between Doppler bins n. The spectral reflectivity as a function of
the raindrop diameter is determined using the Gunn and Kinzer [52] expression, which relates the
fall speed with the raindrop diameter plus a correction factor for the fall speed δv(h) that takes into
account air density changes with height:

η(D, i)
[
ms−1mm−1

]
= η(v, i)·6.18·δv(i·∆h)·e−0.6 mm−1

·D[mm] (13)

where D is expressed in mm and η(D,i) is in m s−1 mm−1. The correction factor δv(h) is computed
assuming the US Standard Atmosphere and a second order approximation following Foote and Du
Toit [53]

δv(h) =
(
1 + 3.68·10−5

·h + 1.71·10−9
·h2

)
(14)

So, the corrected terminal fall speed as a function of drop diameter and height is:

v(D)[m/s] = δv(h)·
(
9.65− 10.3·e−0.6 mm−1

·D[mm]
)

for 0.109 mm ≤ D ≤ 6 mm (15)

After the drop size distribution is determined, the Path Integrated Attenuation (PIA) is determined
using the approach detailed in Metek [37], wherein the single particle extinction coefficient is necessary.
The result is the drop size distribution with attenuation correction (Na(D,i)) which allows us to calculate
the reflectivity (Z), the liquid water content (LWC), and the rain rate (RR):

Z =
∑

Nan·Dn
6
·∆D (16)

LWC = ρw·
π
6
·

∑
Nan·Dn

3
·∆D (17)

RR =
π
6
·

∑
Nan·Dn

3
·v(D)·∆D (18)

Following Thurai et al. [54], Method3 implements the calculation of the mean mass-weighted
raindrop diameter (Dm) and the intercept parameter of the gamma distribution normalized to the
liquid water content (Nw), where it is assumed that D0 is equal to Dm:

Dm =

∑
Nan·Dn

4
·∆D∑

Nan·Dn3·∆D
(19)

Nw =
256
π·ρw

·
LWC
D4

m
(20)

These parameters are useful for discriminating between convective and stratiform rainfall, as
discussed later.

4. Results

The results are divided into two parts. The first part examines a case study to assess the
characteristics of Method3, compared with Method1 and Method2. In the second part, an objective
validation of the hydrometeor classification is performed to show the performance of Method3 to
distinguish different types of precipitation.
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4.1. Case Study

The performance of the new methodology proposed (Method3) is assessed during a precipitation
event, mostly stratiform, that took place on 27 March 2017. The event produced rainfall at Das AWS
(4.9 mm) and 6.3 mm of equivalent rainfall amount, which fell as snow, at Malniu AWS located
1100 m aloft. These precipitation amounts are relatively modest in terms of daily amounts for the
season and region (Gonzalez and Bech [55]). As the freezing level was about 750 m above ground,
a substantial part of the profile observed was snow, which allows us to illustrate different features of
Method3. The results are compared with Method1, Method2 and with data from other instruments—see
Supplementary Materials Table S1. Comparisons may include different data subsets; for example,
Method2 vs. Method3 profiles or Method3 lowest bin gate vs. disdrometer estimates.

4.1.1. Fall Speed

Precipitation fall speed profiles estimated with Method3 are displayed in Figure 6, overlaid with
isotherm heights (0 ◦C, −10 ◦C and −20 ◦C levels), plus Parsivel fall speed at ground, indicating the
consistency between the observations derived from the three independent instruments. On the one
hand, a sharp increase in Method3 fall speed is generally observed below the 0 ◦C level, as expected
when solid precipitation changes to liquid precipitation. On the other hand, the lowest Method3 height
bin (100 m a.g.l.) presents fall speed values and temporal trends comparable to the Parsivel ones. 

2 

 

 
Fig 6 
 
 
 

Figure 6. Fall speed height time indicator obtained from Method3 corresponding to 27 March 2017
overlaid with microwave radiometer derived isotherm levels of 0 ◦C, −10 ◦C and −20 ◦C and fall
speed calculated from Disdrometer shown at bottom level (0 to 50 m a.g.l.). Downward fall speeds are
defined positive.

The lowest range bin (100 m height) estimated with Method3 is compared with Parsivel
measurements (Figure 7a). Some discrepancies are expected due to the different measurement principle
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of each instrument and also the different heights compared. Both data sets compare reasonably well
for speeds up to 8 m/s, and particularly well for 3 to 6 m/s fall speeds (note the higher density of data
for that range, as shown in Figure 7a). All Method3 speeds are below 8 m/s, whereas disdrometer data
exceed 12 m/s, so major discrepancies occur for disdrometer speeds above 8 m/s. This discrepancy
could be partly due to raindrop coalescence in the lowest 100 m above ground level.
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speed from disdrometer. (b) Fall speed comparison of the lowest three height bins between Method3
and Method1. (c) Scatter plot of fall speed from Method2 and Method3. (d) Similar to (c) but indicating
different precipitation hydrometeor types. Color scales of panels (a,c) represent data density.

An analysis of the first three height bins obtained with Method3 is performed with a comparison
with Method1 (Figure 7b). Note that Method2 cannot be included in this comparison as it discards the
two lowest height bins. All negative fall speeds detected by Method1 are discarded according to the
manufacturer approach, which assumes only positive values. The agreement found is generally good,
with a few cases where Method3 overestimates Method1.

A comparison of profiles except for the lowest two bins not processed by Method2 is performed
between Method2 and Method3 (Figure 7c). As displayed by the data density the fall speed agreement
is generally good (R2 of 0.995); however, a few cases present discrepancies, typical of the order of
1 m/s. Figure 7d shows a scatter plot between Method2 and Method3 where data are labelled to
hydrometeor type classified by Method3 and illustrates that the largest discrepancies shown in Figure 7c
are originated by snow and mixed cases.



Remote Sens. 2020, 12, 4113 13 of 23

The fall speed difference between the two methods, expressed here as:

∆w = wMethod3 −wMethod2, (21)

is further examined in terms of hydrometeor type according to the new hydrometeor classification
methodology performed by Method3 and fall speed range, considering the different speed classes
(Table 2). It can be seen that, for all classes, the absolute value of the mean error is equal or lower than
0.02 m/s. Moreover, a few snow and mixed cases present speed differences above 1 m/s. Root mean
square errors are similar for all hydrometeor classes.

Table 2. Fall speed differences ∆w between Method3 and Method2 stratified by speed values and
hydrometeor type. Hail, mixed and unknown values were not found so only four hydrometeor classes
(Rain, Drizzle, Mixed and Snow) are considered. Values listed correspond to number of height bins for
each fall speed and hydrometeor class and mean error (ME) and root mean squared error (RMSE).

(m/s) Rain Drizzle Mixed Snow

|∆w| < 1 1142 88 1057 7441
1 ≤ |∆w| ≤ 2 0 0 0 4
|∆w| > 2 0 0 2 1

ME −0.01 −0.02 0.00 0.01
RMSE 0.06 0.03 0.16 0.08

The distinct behavior of snow cases is also seen in Figure S2 in the Supplementary Materials,
which shows the difference in distribution for the four hydrometeor types, shown in Table 2. Rain and
mixed cases present similar quasi symmetric distribution patterns, while drizzle is much more
leptokurtic and snow is platykurtic. The systematic differences between Method2 and Method3 may
be due to differences in the spectral processing of the methods. However, note that these differences
are very small in absolute value.

4.1.2. Equivalent Reflectivity

Equivalent reflectivity (Ze) profiles obtained with Method3 are displayed with selected temperature
levels (0 ◦C, –10 ◦C and –20 ◦C) retrieved from the microwave radiometer (MWR) and the reflectivity
observed at ground-level by the disdrometer (Figure 8). It can be seen that the 0 ◦C level, around 750 m
A.G.L., matches approximately with an abrupt increase in Ze consistent with a bright band signature
caused by the change from solid to liquid hydrometeors and an increase in the fall speed (shown
previously). The disdrometer reflectivity is also consistent with the profiles and reproduces particularly
well the timing of the local maxima (>25 dBZ).

A comparison of the reflectivities provided by Method3 at the lowest bin and the disdrometer is
shown in Figure 9a, which indicates an overall agreement but a slight overestimation of the disdrometer
compared to Method3 for values lower than 20 dBZ. The three lowest height bins provided by Method1
and Method3 present generally similar values (Figure 9b); however, some discrepancies are found in a
few cases, mainly due to Method3 overestimating Method1. These variations appear because Method1
does not apply the dealiasing. Figure 9c shows a scatter plot comparing Method3 and Method2, which
also show a good global agreement between the two methods (R2 of 0.993), except in a few cases.
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Figure 8. Equivalent reflectivity obtained from Method3 corresponding to 27 March 2017 overlaid
with microwave radiometer-derived isotherm levels of 0, −10 and −20 ◦C and equivalent reflectivity
calculated from Disdrometer, shown at bottom level (0 to 50 m a.g.l.).
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Figure 9. (a) Scatter plot of equivalent reflectivity (dBZ) from the Method3 lowest height bin and
disdrometer data. (b) Comparison of equivalent reflectivity (dBZ) for the three lowest height bins from
Method3 and Method1. (c) Scatter plot of equivalent reflectivity obtained with Method2 and Method3.
(d) As (c) but indicating different precipitation hydrometeor types. Color scales of panels (a,c) represent
data density.
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Those discrepancies are examined in more detail by considering the difference ∆Ze between the
two methods:

∆Ze = ZeMethod3 −ZeMethod2 (22)

Aside from a few isolated snow and mixed cases, both snow and rain provide similar differences
in terms of RMSE (~1 dB) and ME (~–0.40 dB), so Method3 provides slightly lower reflectivity values
than Method2—see Table 3. Despite these similarities, the distribution of differences present distinct
patterns, as highlighted in Figure S3 in the Supplementary Materials: they all present a mode value
close to 0 dB but it is much less marked for snow than for others types.

Table 3. As Table 2 but for reflectivity differences ∆Ze between Method3 and Method2.

(dBZ) Rain Drizzle Mixed Snow

|∆Ze| < 1 1003 88 1023 6518
1 ≤ |∆Ze| ≤ 5 135 0 32 914
|∆Ze| > 5 4 0 4 14

ME −0.38 −0.01 −0.14 −0.45
RMSE 1.28 0.04 0.75 0.80

4.1.3. Hydrometeor Classification

The evolution of the hydrometeor classification provided by Method3 is shown in Figure 10,
overlaid with temperature levels (0, –10, –20 ◦C) from radiometer and Parsivel hydrometeor classification
at ground level. Parsivel classification is derived from the World Meteorological Observations standard
code 4677 used in surface synoptic observations (SYNOPs), grouped here as rain, drizzle, mixed,
snow and hail (see details in Supplementary Materials Table S2). 

4 

fig 10 Figure 10. Hydrometeor precipitation type obtained from Method3 corresponding to 27 March 2017
overlaid with microwave radiometer derived isotherm levels of 0, −10 and −20 ◦C and present weather
data from Disdrometer, shown at bottom level (0 to 50 m a.g.l.).
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Figure 10 shows clearly that the 0 ◦C level is slightly above the rain level, which may be explained
by the local cooling caused by heat exchange with the environment due to snow melting. From 12 to 15
UTC the freezing level increases, as does the rain level, and later decreases, a trend also followed by the
rain level. It can also be seen that the disdrometer hydrometeor classification detects rain and drizzle,
consistently with Method3. About 17:30 UTC a short precipitation event with liquid precipitation over
the freezing level is observed. In this case, no bright band was detected and both MRR Doppler fall
speed and spectrum width did not change along the precipitation profile substantially (not shown),
which is consistent with the fact that it was a brief shallow convective event.

The Malniu station, located about 1100 m above ground level from Das, recorded mostly air
temperatures below 0 ◦C and an increase in snow depth at the time the precipitation occurred
(Figure S4 in Supplementary Materials), confirming that, at that height, precipitation was falling as
snow, as indicated by the Method3 hydrometeor classification. On the other hand, Das station—where,
initially, there was no snow on the ground—did not record any increase in snow height, as expected
for a rain event.

4.1.4. Rain Rate

Rain rate obtained from the lowest bin height (100 m a.g.l.) provided by Method3 is compared to
ground level rain rate, calculated with disdrometer and AWS data located at Das. Disdrometer rain
rate was calculated using the raindrop number concentration per unit volume of air following Friedrich
et al. [56]. The smallest raindrops detected by the disdrometer had diameters about 0.312 mm,
which limits the capacity of the instrument to measure weak precipitation formed by small raindrops.
This is reflected in Figure 11, which shows a comparison of concurrent 1 min rain rates obtained
with Method3 and Parsivel; the latter considerably underestimates Method3 values for rates below
0.1 mm/h, but overestimates them for some cases above 1 mm/h.
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Figure 11. (a) Scatter plot of rain rate from disdrometer and the first height bin (100 m above disdrometer)
from Method3. (b) Particle number concentration per unit volume from Method3 first height bin. (c) As
(b) but obtained from the disdrometer.
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Another comparison is performed considering 30 min averages, which is the AWS time resolution,
shown in Figure 12. It displays the first (lowest) and third height bin provided by Method3 (which is
the first bin available for Method2) and the AWS and disdrometer rain rates. It shows a substantial
agreement between the disdrometer and the AWS data and some variability when compared to
Method3 rain rates.
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4.1.5. Stratiform vs. Convective Rain

Following the criteria proposed by Thurai et al. [54], two parameters of the fitted gamma raindrop
size distribution (Dm and Nw described in Section 4) are used by Method3 to classify bins identified
as rainfall into three possible regimes: convective, stratiform or transition. Figure 13a illustrates the
classification in the Dm and Nw space calculated from Method3 processing for all heights where rainfall
is detected, confirming the predominantly stratiform character of the episode, with some periods
of convective rain. Figure 13b shows a similar scatterplot comparing the lowest MRR height bin
(100 m a.g.l.) and the values obtained with the disdrometer, where it is apparent that both instruments
share a similar pattern but with differences that can be explained by the fact that the disdrometer has a
detection limit on the smallest raindrops (~0.25 mm) and a much smaller sampling volume. This is
particularly evident for log(Nw) values below 2 m−3 mm−1. The agreement between these instruments
is consistent with the recent results obtained by Adirosi et al. [15].

4.2. Hydrometeor Classification Verification

4.2.1. Verification Data and Methodology

The quality of Method3 hydrometeor classification is assessed by comparing the lowest height
bin (from 100 to 200 m a.g.l.) with Parsivel present weather precipitation type at 1 min intervals.
This high temporal resolution may easily introduce double penalty effects in the case of rapidly
changing precipitation types, so a fuzzy verification approach is required considering neighborhoods
either on the observations or on the forecast—see, for example, Ebert [57] or Trapero et al. [58] for two
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dimensional fuzzy verification procedures. Here, this is evaluated as a one-dimensional data set so the
neighborhood is simply a time interval around the observation time.
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Figure 13. (a) Nw versus Dm for stratiform, convective and transition regimes computed for all heights
during the 27 March 2017 event. (b) as (a) but only for the lowest Method3 height bin and disdrometer.
As a reference, the dashed black line indicates separation between convective and stratiform regimes
according to the criteria of Thurai et al. [54] with −1.6 and 6.3 for c1 and c2, respectively.

To choose the interval length, two aspects are considered. First, the time required for hydrometeor
particles to reach the ground due to their fall speed. Second, the precipitation drift caused by horizontal
wind, which hampers matching the radar observation with ground records (Collier [59], Sandford [60]).
To illustrate the first aspect, we may consider that the smallest raindrop detected by Parsivel (~0.25 mm)
at 200 m a.g.l., which takes about 4.5 min to reach the ground so at least a 5 min window after the
observation time should be considered—other precipitation particles as snowflakes may take even
more. In the case of horizontal wind, the situation is more complex, as it may be impossible to
observe aloft the same observation particle recorded on the ground, particularly for the long drifts
possible for winter precipitation types (Thériault et al. [61]). Moreover, the relative position (upwind
or downwind) from the ground record requires us to consider positive and negative time intervals
(i.e., time windows centered on the observation time). Considering these aspects, a time window of
±20 min was considered for evaluation.

A data set of 32 different days from January 2017 to October 2019 was selected (45,384 min),
representing a wide variety of precipitation types and coverage of every season according to local
climatology. The seasonal day distribution was: 5 winter days, 19 in spring, 4 in summer and 4 in
autumn. Two examples of verification days are shown in Figure 14, a ground level transition from rain
to snow, and a warm season convective event with some minutes of hail.
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Verification scores based on a contingency table were calculated for each individual hydrometeor
type, in particular the Probability of Detection (POD), the False Alarm Rate (FAR) and the Odds Ratio
Skill Score (ORSS), which assess how good a forecast is compared to random chance (see Appendix A).

4.2.2. Verification Results

Table 4 shows for each precipitation type the value of POD, FAR and ORSS plus the total number
of minutes of each type in the Method3 and disdrometer data sets, which share generally a similar
proportion. Note that the number of hail minutes is rather limited; however, it is included to illustrate
the relatively good results achieved. During the verification of the lowest bin, no cases of Method3
unclassified precipitation type arose, but they are marginally present in some bins aloft.

Table 4. Verification scores comparing Method3 precipitation type with Parsivel observations.

Class POD FAR ORSS Method3
(min)

Method3
(%)

Disdrometer
(min)

Disdrometer
(%)

Rain 0.99 0.29 0.99 7095 15.6 7173 15.8
Drizzle 0.69 0.26 0.72 3502 7.7 3108 6.8

Hail 0.55 0.01 0.98 49 0.1 88 0.2
Snow 0.97 0.14 0.99 3700 8.2 3897 8.6
Mixed 0.79 0.17 0.89 1001 2.2 933 2.1

No precipitation 0.94 0.05 0.99 30,037 66.2 30,185 66.5

POD values indicate that both rain and snow, and also no precipitation, are the classes best
detected (above 0.93), rain being the highest (0.99) and hail the lowest (0.55). F ranges from 0.29 (rain)
to 0.01 (hail) and 0.05 (no precipitation). ORSS values indicate the substantial skill of Method3
hydrometeor classification, starting drizzle from 0.72 and yielding rain, snow, and no precipitation,
the best results (0.99). Overall, these results illustrate that Method3 provides a reasonable classification
of the precipitation types considered.

5. Discussion and Conclusions

A new methodology has been presented for processing K-band vertically pointing Doppler radar
data recorded with Micro Rain Radar (MRR) systems. The methodology, referred to here as Method3,
has been compared with two previously existing processing systems, Method1 (from the manufacturer)
and Method2 (detailed in Maahn and Kollias [38]), using a vertical resolution of 100 m and time
resolution of 1 min.

Method3 processes as input data spectral reflectivity (MRR raw data files) and produces as output
data a number of fields. The first part of Method3 processing deals with spectral density processing
and includes a new peak signal selection and noise treatment approach, considering all Doppler bins
but the first and the last one. Then, a dealiasing method allowing for upward velocities, similar to the
one included in Method2, is applied. With this new spectral processing, Method3 is able to extend
the precipitation profile to the second lowest height level; in this case 100 to 200 m above ground.
Moreover, the new methodology allows us to select the integration time (set here to 60 s), for example
to improve sensitivity.

In Method3, the second processing part produces different variables, which include equivalent
reflectivity (Ze), Doppler fall speed and derived parameters, such as spectral width, skewness,
and kurtosis, plus a simplified precipitation-type classification. The precipitation classes considered
are drizzle, rain, snow, mixed, and hail. For liquid precipitation, Mie backscattering is assumed,
which allows us to provide integral parameter reflectivity (Z), liquid water content (LWC), rainfall rate
(RR) and a gamma drop size distribution fit, including the computation of the normalized intercept
parameter with respect to the liquid water (Nw), and the mean mass-weighted raindrop diameter
(Dm). Snow rate is also calculated for snow precipitation type. Compared to previously existing MRR
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processing methodologies, Method3 provides a comprehensive set of variables to study precipitation
profiles to support precipitation microphysics analysis.

Method3 is illustrated with a case study comparing the results with Method2, Method3,
microwave radiometer derived temperature profiles and ground data provided by a Parsivel
disdrometer and two AWS, yielding consistent results. The comparison with Method2 denotes
a high correlation for W and Ze (R2 of 0.995 and 0.993, respectively) with some exceptions for low
reflectivity values, which may arise from differences in the signal detection and dealiasing. Comparisons
with Method2 indicate that Method3 provides very similar patterns of fall speed and reflectivity.

Additionally, the Method3 precipitation type classification is compared with Parsivel present
weather observations using contingency table scores. Results indicate a very good capacity of Method3
to distinguish rainfall and snow (PODs equal or greater than 0.97), satisfactory results for mixed
and drizzle (PODs of 0.79 and 0.69) and acceptable for a reduced number of hail cases (0.55), with
relatively low rate of false alarms and good skill compared to random chance in all cases (FAR < 0.30,
ORSS > 0.70).

The methodology presented in this article has been implemented in Python and is freely available
in the repository github as RaProM (https://github.com/AlbertGBena/RaProM). The parameters
calculated in Method3 and the new hydrometeor classification proposed will facilitate the analysis of
precipitation profiles for the MRR data-user community. Future work planned includes the extension
of Method3 to process MRR-PRO data and the application to a larger data set to further verify the
results presented here.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/24/4113/s1.
Figure S1: Location of the study area, Figure S2: Histograms of differences in fall speed between Method3 and
Method2 for different hydrometeor types, Figure S3: As Figure S2 but for equivalent reflectivity, Figure S4:
Temperature and snow depth from two AWS (Malniu and Das), Table S1: Summary of details of instruments used,
and Table S2: WMO precipitation type classification grouping criteria.
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Appendix A

The comparison between Method3 precipitation type and disdrometer present weather
observations is performed considering a contingency table for each precipitation type, where “hits”
represent the number of events (precipitation type) forecast by Method3 and observed by the
disdrometer, “misses” the events not forecast, “false alarms” the forecast events that did not occur
and “correct negatives” the events that did not occur correctly forecast. Scores used are Probability of
Detection (POD), indicating the fraction of correct forecast events, False Alarm Rate (FAR), indicating
fraction of “no event”’ incorrectly forecast, and Odds ratio skill score (ORSS), indicating forecast skill
compared to random chance, which are given by:

POD =
hits

hits + misses
(A1)

FAR =
f alse alarms

correct negatives + f alse alarms
(A2)

https://github.com/AlbertGBena/RaProM
http://www.mdpi.com/2072-4292/12/24/4113/s1
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ORSS =
hits·correct negatives−misses· f alse alarms
hits·correct negatives + misses· f alse alarms

(A3)

where best (worst) score values are, respectively, 1, 0, and 1 (0, 1, and 0).
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