SUPPLEMENTARY FILE
Surface Subsidence in Urbanized Coastal Areas: PSI

Methods Based on Sentinel-1 for Ho Chi Minh City
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FIGURE S1: Vertical velocities of reference points for validation proxy

Ideally, leveling data would be available and leveraged, however that was not
feasible for this study considering that we were made aware that many of the
leveling stations had actually subsided themselves and new ones have recently
been commissioned within and after the period of study. We +didentify the lack
of leveling data as a shortcoming of the study, and as an 1indirect measure of
confidence, we used the reference points from the studies of Minh et al.
(2015) and Thoang and Giao (2015), as depicted above for the evaluation of our
results. These points allow us to show and calculate the overall agreement,

despite the different source and temporal reference.



The figure shows the agreement of subsidence rates retrieved from the
validation data of the two studies (y axis) with our measurements at these
locations (x axis). The overall coefficient of determination 1is 0.248, but the
two studies strongly differ in this regard: The reference data of Minh et al.
(2015) (blue dots) consist of 19 route leveling measurements from the south of
the center (circles in Figure 2) and result in a coefficient of determination
of R?=0.12. This is mostly caused by strong underestimations of subsidence
rates in the west of the study area (Figure 2). In turn the reference data of
Thoang and Giao (2015) (orange dots) were retrieved from a one-dimensional
Finite Element (FEM) consolidation model based on data from 2006 to 2010, and
resulted in clearly higher agreement with our data of R?=0.53). Both reference
datasets together result in an R? of 0.248 mostly indicating a general

underestimation of subsidence rates in our study.

e Minh, D. H. T., Van Trung, L., & Toan, T. L. (2015): Mapping ground
subsidence phenomena in Ho Chi Minh City through the radar +interferometry
technique using ALOS PALSAR data. Remote Sensing, 7(7), 8543-8562.

e Thoang, T. T., & Giao, P. H. (2015): Subsurface characterization and
prediction of land subsidence for HCM City, Vietnam. Engineering Geology,

199, 107-124.
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FIGURE S2: Spatial distribution of reference points

This figure shows the spatial distribution of the reference points which were

used as a proxy for validation (Figure 1), as well as their absolute

differences (mm per year) to the results of our study. The colors 1indicate

that the reference data indicated stronger subsidence as in our study in most

of the cases. However, the majority of the deviation was within +/- 2.5 mm per

year. Only the areas in the southwest show stronger discrepancies larger than

-20 mm / year. Note that the referenced studies were conducted
from 2010 and prior. Due to the nearly decade long gap between
frames, some differences in the spatial distribution are to be

between our study and the referenced studies. Yet, still there

leveraging data
the time
expected

is consistency



between our study and the reference studies, most notably in regions which are

known to have relatively stable formations such as in district 1.
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FIGURE S3: Temporal analysis in District 8- an area of rapid subsidence

Temporal analysis indicates that some of the high subsidence rates were lost
or inaccurate due to such significant subsidence in the transition from the
wet season to dry season (see the annual, not seasonal, trend pattern in the
figure below of this particular area of D8) that the deformation signal
exceeded that which can be measured given the wavelength and revisit of
Sentinel-1. Note that the wet seasons are elucidated by the blue bars 1in this
figure. If this error was a result of atmospheric signal, we would expect to
see a significant difference in noise between the wet season and the dry
season. As mentioned in our paper, the maximum differential deformation for
Sentinel-1 compared to ALOS, which used in previous studies, is ~11.7 mm/day
(or 1.4 cm/12 day 1interval) and ~12.8 mm/day (or 5.89 cm/46 day interval)
respectively (Crosetto et al., 2016, Zhou et al., 2009). Additionally, the
ALOS data used in previous studies is known to have the significant
disadvantage of ionospheric influence on the interferometric phase (more than
20 times stronger than in C band), of which ionospheric influence 1is much less
predictable than atmospheric influence (Chapin et al., 2006). Conversely, the
tropospheric-induced error is known to be much more significant in the other
suggested data sources mentioned previously, namely TerraSAR and COSMO-SkyMed
(Fornaro et al., 2014).
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FIGURE S4: Interferograms of unwrapped phases.

This figure shows the -interferograms of all descending image pairs used 1in
this study. It illustrates that the unwrapped phases are primarily consistent
with the observed data. Moreover, the few faulty 1interferograms that are
accounted for do not superimpose the overall pattern and we decided not to
exclude them from the analysis to maintain the consistent 12-day intervals
between consecutive images. In all time-series plots, the phase signal from
01-Jul-2018 can clearly be +identified as an outlier which deviates from the

overall trend, but without impacting its slope or direction.



