Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors
Abstract
:1. Introduction
2. Materials
2.1. Introduction of An’yuan County
2.2. Collapse Inventory and Environmental Factors
2.2.1. Acquisition of Topographic and Hydrological Factors
2.2.2. Acquisition of NDVI, NDBI and MNDWI Factors
3. Methodologies
3.1. Uncertainties of CSP: Connection Methods and Data-Based Models
- (1)
- The data sources of collapse inventory and related environmental factors in the study area were obtained to construct the spatial datasets for CSP modeling;
- (2)
- A total of 20 different modeling conditions are proposed for CSP on the basis of the above five different connection methods and four different kinds of data-based models;
- (3)
- In the modeling processes, the CSP model was utilized, the CSM was drawn and the uncertainty analysis of the CSI was carried out under each coupled model condition;
- (4)
- The area under the ROC curve (AUC) [67] was used to evaluate the accuracy of the CSP results;
- (5)
- At the significance level of 0.05, the Friedman two-factor ANOVA analysis and test method were used to analyze the difference significance of the CSI distribution under each coupled model condition;
- (6)
- Numerical distribution characteristics of CSIs predicted by five correlation methods and four data-based models were analyzed from the perspective of mean values and standard deviation;
- (7)
- The optimal correlation method and data-based model coupled model condition was obtained through comparison analysis, so as to provide theoretical guidance for the CSP.
3.2. Collapse-Environmental Factors Connection Method
3.2.1. Probability Statistics
3.2.2. Frequency Ratio
3.2.3. Information Value
3.2.4. Index of Entropy
3.2.5. Weight of Evidence
3.3. Data-Based Models
3.3.1. Analytic Hierarchy Process
3.3.2. Multiple Linear Regression
3.3.3. C5.0 Decision Tree
3.3.4. Random Forest
3.4. Uncertainty Analysis of Results
3.4.1. ROC Curves and AUC Analysis
3.4.2. Statistical Law Analysis of CSI
4. Results
4.1. Collapse-Related Environmental Factor and Connection Results
4.2. Preparation of Spatial Dataset
4.3. Results of CSP Modeling in An’yuan County
4.3.1. CSP Using Heuristic Model: Analytic Hierarchy Process
4.3.2. CSP Using Conventional Mathematical Statistics Model: Multiple Linear Regression
4.3.3. CSP Using Machine Learning: C5.0 DT and RF
4.4. Creating Collapse Susceptibility Maps
5. Uncertainty Analysis
5.1. Accuracy Analysis of ROC
5.2. Distribution Rule of Collapse Susceptibility Index
5.3. Difference Significance Analysis of the CPS Results
6. Discussion
6.1. CSP Modeling under Different Collection Methods
6.2. CSP Modeling under Different Data-Based Models
6.3. CSP Modeling under Coupled Conditions of Connection Methods and Data-Based Models
6.4. CSP Modeling under Single Data-Based Models with No Connect Methods
7. Conclusions
- (1)
- Compared with the other four connection methods, WOE better reflects the nonlinear correlation between collapse and related environmental factors and has a better spatial information discrimination ability regarding environmental factors. Compared with the CSP modeling based on the FR, IV and IOE, the CSP accuracies of the WOE-based models are the highest, with the lowest mean values, average ranks and larger SDs. Meanwhile, the CSP accuracies of the three types of the FR, IV and IOE connection methods tend to be consistent, and their CSP performances are not as good as those of the WOE-based models. In addition, the prediction results of PS-based models are poor.
- (2)
- Compared with other kinds of data-based models, the RF model has the highest CSP accuracy, with the lowest mean value and mean rank of the CSIs and a larger SD, followed by the C5.0, MLR and AHP models. It can be seen that the advanced machine learning models can effectively improve the CSP accuracy, and the collapse susceptibility identification ability is significant.
- (3)
- Under the coupled conditions of different collection methods and data-based models, the CSP accuracy of the WOE-RF model is the highest with the lowest mean value and mean rank. The predicted CSIs of WOE-RF model is more in line with the actual characteristics of collapse probability distribution than the other coupled models. On the contrary, the PS-AHP model has the lowest prediction accuracy with a larger mean value and mean rank and smaller SD value.
- (4)
- In general, the CSP performance of single data-based models not considering connect methods was slightly worse than those of the connection method-based models. The comparison results further demonstrate the importance of spatial correlation analysis of environmental factors for CSP modeling.
- (5)
- Although this study mainly analyzes the uncertainty rules of CSP modeling under the conditions of different data-based models and connections between collapses and environmental factors, the conclusions of this study also have some reference values for other kinds of geological disasters’ (landslide, debris flow, etc.) susceptibility predictions. This is because the evolution processes of these geological disasters are closely related to various environmental factors in the spatial perspective.
Author Contributions
Funding
Conflicts of Interest
References
- Boualla, O.; Mehdi, K.; Zourarah, B. Collapse dolines susceptibility mapping in doukkala abda (western morocco) by using gis matrix method (gmm). Modeling Earth Syst. Environ. 2016, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sheng, Y.; Chai, B.; Zhang, W.; Zhang, T.; Wang, J. Collapse susceptibility assessment using a support vector machine compared with back-propagation and radial basis function neural networks. Geomat. Nat. Hazards Risk 2020, 11, 510–534. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Jaksa, M.B.; Kuo, Y.L.; Ostendorf, B. Identifying areas susceptible to high risk of riverbank collapse along the lower river murray. Comput. Geotech. 2015, 69, 236–246. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.J.; Galindo-Zaldívar, J.; González-Castillo, L.; Azañón, J.M. Collapse susceptibility map in abandoned mining areas by microgravity survey: A case study in candado hill (Málaga, southern Spain). J. Appl. Geophys. 2016, 130, 101–109. [Google Scholar] [CrossRef]
- Santo, A.; Budetta, P.; Forte, G.; Marino, E.; Pignalosa, A. Karst collapse susceptibility assessment: A case study on the Amalfi coast (southern Italy). Geomorphology 2017, 285, 247–259. [Google Scholar] [CrossRef]
- Hong, H.; Miao, Y.; Liu, J.; Zhu, A.X. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena 2019, 176, 45–64. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Di Napoli, M.; Marsiglia, P.; Di Martire, D.; Ramondini, M.; Ullo, S.L.; Calcaterra, D. Landslide susceptibility assessment of wildfire burnt areas through earth-observation techniques and a machine learning-based approach. Remote Sens. 2020, 12, 2505. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Alizadeh, M.; Chen, W.; Mohammadi, A.; Ahmad, B.B.; Panahi, M.; Hong, H.; et al. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, Malaysia. Remote Sens. 2018, 10, 1527. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide susceptibility prediction based on remote sensing images and gis: Comparisons of supervised and unsupervised machine learning models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Chen, L.; Yin, K.; Huang, J.; Gui, L. Object-oriented change detection and damage assessment using high-resolution remote sensing images, tangjiao landslide, three gorges reservoir, China. Environ. Earth Sci. 2018, 77, 183. [Google Scholar] [CrossRef]
- Chen, W.; Hong, H.; Panahi, M.; Shahabi, H.; Wang, Y.; Shirzadi, A.; Pirasteh, S.; Alesheikh, A.A.; Khosravi, K.; Panahi, S. Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo). Appl. Sci. 2019, 9, 3755. [Google Scholar] [CrossRef] [Green Version]
- Sahin, E.K.; Colkesen, I.; Kavzoglu, T. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 2020, 35, 341–363. [Google Scholar] [CrossRef]
- Chen, W.; Chen, X.; Peng, J.; Panahi, M.; Lee, S. Landslide susceptibility modeling based on anfis with teaching-learning-based optimization and satin bowerbird optimizer. Geosci. Front. 2021, 12, 93–107. [Google Scholar] [CrossRef]
- Garosi, Y.; Sheklabadi, M.; Conoscenti, C.; Pourghasemi, H.R.; Van Oost, K. Assessing the performance of gis- based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Sci. Total Environ. 2019, 664, 1117–1132. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Pham, Q.B. Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci. Total Environ. 2020, 711, 134514. [Google Scholar] [CrossRef]
- Kavoura, K.; Sabatakakis, N. Investigating landslide susceptibility procedures in greece. Landslides 2019, 17, 127–145. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, K.; Wang, J. Evaluation of landslide susceptibility for wanzhou district of three gorges reservoir. Chin. J. Rock Mech. Eng. 2016, 35, 284–296. [Google Scholar]
- Demir, G. Gis-based landslide susceptibility mapping for a part of the north anatolian fault zone between reşadiye and koyulhisar (Turkey). Catena 2019, 183, 104211. [Google Scholar] [CrossRef]
- Huang, F.; Yao, C.; Liu, W.; Li, Y.; Liu, X. Landslide susceptibility assessment in the nantian area of china: A comparison of frequency ratio model and support vector machine. Geomat. Nat. Hazards Risk 2018, 9, 919–938. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G.; Lee, D.K.; Park, C.; Ahn, Y.; Kil, S.-H.; Sung, S.; Biging, G.S. Estimating landslide susceptibility areas considering the uncertainty inherent in modeling methods. Stoch. Environ. Res. Risk Assess. 2018, 32, 2987–3019. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, Z.; Yuanyao, L.I.; Chai, B.; Jizhi, L.U. Susceptibility assessment of rock collapse hazards in longjuba area based on dummy variables analysis. Hydrogeol. Eng. Geol. 2017, 44, 127–135. [Google Scholar]
- Lombardo, L.; Opitz, T.; Huser, R. Numerical recipes for landslide spatial prediction using r-inla. In Spatial Modeling in Gis and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–83. [Google Scholar]
- Bragagnolo, L.; Silva, R.V.D.; Grzybowski, J.M.V. Landslide susceptibility mapping with r.Landslide: A free open-source gis-integrated tool based on artificial neural networks. Environ. Model. Softw. 2020, 123, 104565. [Google Scholar] [CrossRef]
- Sepe, C.; Confuorto, P.; Angrisani, A.C.; Di Martire, D.; Di Napoli, M.; Calcaterra, D. Application of a statistical approach to landslide susceptibility map generation in urban settings. In Iaeg/Aeg Annual Meeting Proceedings, San Francisco, California, 2018—Volume 1; Springer: Cham, Switzerland, 2019; pp. 155–162. [Google Scholar]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in gis and their comparison at mugling–narayanghat road section in nepal himalaya. Nat. Hazards 2012, 65, 135–165. [Google Scholar] [CrossRef]
- Dao, D.V.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Phong, T.V.; Ly, H.-B.; Le, T.-T.; Trinh, P.T.; et al. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 2020, 188, 104451. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena 2020, 191, 104580. [Google Scholar] [CrossRef]
- Iglesias, R.; Fabregas, X.; Aguasca, A.; Mallorqui, J.J.; Lopez-Martinez, C.; Gili, J.A.; Corominas, J. Atmospheric phase screen compensation in ground-based sar with a multiple-regression model over mountainous regions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2436–2449. [Google Scholar] [CrossRef]
- Saha, S.; Saha, M.; Mukherjee, K.; Arabameri, A.; Ngo, P.T.T.; Paul, G.C. Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, reptree: A case study at the gumani river basin, india. Sci. Total Environ. 2020, 730, 139197. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, H.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, L.; Fan, L.; Huang, J.; Huang, F.; Chen, J.; Zhang, Z.; Wang, Y. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network. Sensors 2020, 20, 1576. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Chen, W. Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation. Remote Sens. 2020, 12, 2180. [Google Scholar] [CrossRef]
- Li, D.; Huang, F.; Yan, L.; Cao, Z.; Chen, J.; Ye, Z. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: Comparisons with multilayer-perceptron-only, bp neural network, and information value models. Appl. Sci. 2019, 9, 3664. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Lee, C.-W.; Lee, S.; Lee, M.-J. Landslide susceptibility mapping and comparison using decision tree models: A case study of jumunjin area, korea. Remote Sens. 2018, 10, 1545. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhao, X.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Wang, X.; Ahmad, B.B. Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J. Hydrol. 2020, 583, 124602. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Huang, F.; Huang, J.; Jiang, S.-H.; Zhou, C. Prediction of groundwater levels using evidence of chaos and support vector machine. J. Hydroinformatics 2017, 19, 586–606. [Google Scholar] [CrossRef] [Green Version]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide susceptibility mapping: Machine and ensemble learning based on remote sensing big data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- He, Q.; Shahabi, H.; Shirzadi, A.; Li, S.; Chen, W.; Wang, N.; Chai, H.; Bian, H.; Ma, J.; Chen, Y.; et al. Landslide spatial modelling using novel bivariate statistical based naive bayes, rbf classifier, and rbf network machine learning algorithms. Sci. Total Environ. 2019, 663, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. Landslide susceptibility mapping in mizunami city, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena 2015, 135, 271–282. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using bayes algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Liu, W.; Luo, X.; Huang, F.; Fu, M. Prediction of soil water retention curve using bayesian updating from limited measurement data. Appl. Math. Model. 2019, 76, 380–395. [Google Scholar] [CrossRef]
- Yilmaz, I.; Marschalko, M.; Bednarik, M. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in gis environ. J. Earth Syst. Sci. 2013, 122, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y. Gis-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena 2020, 195, 104777. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W. Gis-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena 2021, 196, 104833. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Du, J.; Glade, T.; Woldai, T.; Chai, B.; Zeng, B. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 2020, 270, 105572. [Google Scholar] [CrossRef]
- Gayen, A.; Pourghasemi, H.R.; Saha, S.; Keesstra, S.; Bai, S. Gully erosion susceptibility assessment and management of hazard-prone areas in india using different machine learning algorithms. Sci. Total Environ. 2019, 668, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory. Environ. Earth Sci. 2016, 75, 1376. [Google Scholar] [CrossRef]
- Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hashim, M. Landslide susceptibility mapping at central zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Shirzadi, A.; Solaimani, K.; Roshan, M.H.; Kavian, A.; Chapi, K.; Shahabi, H.; Keesstra, S.; Ahmad, B.B.; Bui, D.T. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena 2019, 178, 172–188. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Yao, C.; Chang, Z.; Jiang, Q.; Li, S.; Guo, Z. Susle: A slope and seasonal rainfall-based rusle model for regional quantitative prediction of soil erosion. Bull. Eng. Geol. Environ. 2020, 79, 5213–5228. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; He, T. Analysis of influence factors and displacement prediction of reservoir landslide-a case study of three gorges reservoir. China 2016, 23, 617–626. [Google Scholar]
- Rabby, Y.W.; Ishtiaque, A.; Rahman, M.S. Evaluating the effects of digital elevation models in landslide susceptibility mapping in rangamati district, bangladesh. Remote Sens. 2020, 12, 2718. [Google Scholar] [CrossRef]
- Jiang, S.-H.; Huang, J.; Huang, F.; Yang, J.; Yao, C.; Zhou, C.-B. Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Appl. Math. Model. 2018, 63, 374–389. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, M.; Zhou, Z.; Shi, X.; Zhang, L.; Balz, T. Landslide deformation analysis by coupling deformation time series from sar data with hydrological factors through data assimilation. Remote Sens. 2016, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Luo, X.; Liu, W. Stability analysis of hydrodynamic pressure landslides with different permeability coefficients affected by reservoir water level fluctuations and rainstorms. Water 2017, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Song, X.; Huang, F.; Hu, L. Experimental study on the disintegration of granite residual soil under the combined influence of wetting–drying cycles and acid rain. Geomat. Nat. Hazards Risk 2019, 10, 1912–1927. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A novel ensemble approach for landslide susceptibility mapping (lsm) in darjeeling and kalimpong districts, west bengal, India. Remote Sens. 2019, 11, 2866. [Google Scholar] [CrossRef] [Green Version]
- Nachappa, T.G.; Ghorbanzadeh, O.; Gholamnia, K.; Blaschke, T. Multi-hazard exposure mapping using machine learning for the state of salzburg, Austria. Remote Sens. 2020, 12, 2757. [Google Scholar] [CrossRef]
- Cantarino, I.; Carrion, M.A.; Goerlich, F.; Martinez Ibañez, V. A roc analysis-based classification method for landslide susceptibility maps. Landslides 2018, 16, 265–282. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hubl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the bostanlik district, uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef]
- Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling gully-erosion susceptibility in a semi-arid region, iran: Investigation of applicability of certainty factor and maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (ahp) to landslide susceptibility mapping at haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Liu, X.; Hu, X.; Sun, M.; Song, Y. Establishment of a deformation forecasting model for a step-like landslide based on decision tree c5.0 and two-step cluster algorithms: A case study in the three gorges reservoir area, China. Landslides 2017, 14, 1275–1281. [Google Scholar] [CrossRef]
- Huang, F.; Chen, J.; Du, Z.; Yao, C.; Huang, J.; Jiang, Q.; Chang, Z.; Li, S. Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. Isprs Int. J. Geo-Inf. 2020, 9, 377. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Wen, T.; Ma, J.; Zou, Z.; Xiong, C. Point and interval predictions for tanjiahe landslide displacement in the three gorges reservoir area, China. Geofluids 2019, 2019, 1–14. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Yeon, Y.-K.; Han, J.-G.; Ryu, K.H. Landslide susceptibility mapping in injae, korea, using a decision tree. Eng. Geol. 2010, 116, 274–283. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Is the roc curve a reliable tool to compare the validity of landslide susceptibility maps. Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef] [Green Version]
- Corsini, A.; Mulas, M. Use of roc curves for early warning of landslide displacement rates in response to precipitation (Piagneto Landslide, Northern Apennines, Italy). Landslides 2017, 14, 1241–1252. [Google Scholar] [CrossRef]
- Sezer, E.A.; Nefeslioglu, H.A.; Osna, T. An expert-based landslide susceptibility mapping (lsm) module developed for netcad architect software. Comput. Geosci. 2017, 98, 26–37. [Google Scholar] [CrossRef]
- Almeida, S.; Holcombe, E.A.; Pianosi, F.; Wagener, T. Dealing with deep uncertainties in landslide modelling for disaster risk reduction under climate change. Nat. Hazards Earth Syst. Sci. 2017, 17, 225–241. [Google Scholar] [CrossRef] [Green Version]
- Romer, C.; Ferentinou, M. Shallow landslide susceptibility assessment in a semiarid environment—A quaternary catchment of KwaZulu-Natal, South Africa. Eng. Geol. 2016, 201, 29–44. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Jiang, S.-H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Huang, F.; Yang, J.; Zhang, B.; Li, Y.; Huang, J.; Chen, N. Regional terrain complexity assessment based on principal component analysis and geographic information system: A case of Jiangxi province, China. Isprs Int. J. Geo-Inf. 2020, 9, 539. [Google Scholar] [CrossRef]
- Pisano, L.; Zumpano, V.; Malek, Z.; Rosskopf, C.M.; Parise, M. Variations in the susceptibility to landslides, as a consequence of land cover changes: A look to the past, and another towards the future. Sci. Total Environ. 2017, 601–602, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wan, S.; Huang, F.; Luo, X.; Fu, M. Experimental study of subsurface erosion in granitic under the conditions of different soil column angles and flow discharges. Bull. Eng. Geol. Environ. 2019, 78, 5877–5888. [Google Scholar] [CrossRef]
- Chang, Z.; Gao, H.; Huang, F.; Chen, J.; Huang, J.; Guo, Z. Study on the creep behaviours and the improved burgers model of a loess landslide considering matric suction. Nat. Hazards 2020, 103, 1479–1497. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Jiang, S.H.; Huang, F.; Chang, Z. A web-based gps system for displacement monitoring and failure mechanism analysis of reservoir landslide. Sci. Rep. 2017, 7, 17171. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Yin, K.; Gui, L.; Liu, Q.; Huang, F.; Wang, T. Regional rainfall warning system for landslides with creep deformation in three gorges using a statistical black box model. Sci. Rep. 2019, 9, 8962. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Luo, X.; Huang, F.; Fu, M. Uncertainty of the soil–water characteristic curve and its effects on slope seepage and stability analysis under conditions of rainfall using the markov chain monte carlo method. Water 2017, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, Y.; Zhang, Y.; Sun, X. Geohazard susceptibility evaluation in zhaotong of yunnan based on the multivariate linear regression model. Hydrogeol. Eng. Geol. 2016, 43, 159–163. [Google Scholar]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using gis. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
Data Type | Spatial Resolution | Time | Data Use |
---|---|---|---|
DEM | 30 m | Topographic factors | |
Landsat 8 TM | Multispectral 30 m | 2013-10-15 | NDVI, MNDWI, NDBI |
Geological map | 1:100,000 | Lithology |
Environmental Factors | Value | Total Grids | Collapse Grids | PS | FR | IV | WOE | IOE |
---|---|---|---|---|---|---|---|---|
DEM/m | 180–288 | 493,113 | 396 | 0.2707 | 1.4579 | 0.1637 | 0.5481 | 0.0693 |
288–368 | 687,506 | 439 | 0.3001 | 1.1592 | 0.0642 | 0.2963 | ||
368–450 | 455,073 | 186 | 0.1271 | 0.7420 | −0.1296 | −0.2955 | ||
450–540 | 394,032 | 163 | 0.1114 | 0.7510 | −0.1244 | −0.2824 | ||
540–630 | 275,707 | 84 | 0.0574 | 0.5531 | −0.2572 | −0.6117 | ||
630–733 | 186,930 | 80 | 0.0547 | 0.7769 | −0.1096 | −0.2488 | ||
733–870 | 116,398 | 112 | 0.0766 | 1.7468 | 0.2423 | 0.6055 | ||
>870 | 47,213 | 3 | 0.0021 | 0.1154 | −0.9380 | −2.1712 | ||
Slope/(°) | 0–4 | 371,078 | 20 | 0.0137 | 0.0978 | −1.0095 | −2.4182 | 0.1458 |
4–8 | 585,619 | 61 | 0.0417 | 0.1891 | −0.7233 | −1.7980 | ||
8–12 | 584,671 | 268 | 0.1832 | 0.8322 | −0.0798 | −0.1557 | ||
12–16 | 467,792 | 439 | 0.3001 | 1.7037 | 0.2314 | 0.7531 | ||
16–20 | 312,942 | 326 | 0.2228 | 1.8912 | 0.2767 | 0.8004 | ||
20–24 | 180,222 | 177 | 0.1210 | 1.7830 | 0.2511 | 0.6571 | ||
24–30 | 115,329 | 127 | 0.0868 | 1.9991 | 0.3008 | 0.7520 | ||
30–60 | 38,319 | 45 | 0.0308 | 2.1320 | 0.3288 | 0.7784 | ||
Aspect/(°) | −1 | 72 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0676 |
0–45 | 284,747 | 170 | 0.1162 | 1.0838 | 0.0350 | 0.1230 | ||
45–90 | 303,577 | 229 | 0.1565 | 1.3694 | 0.1365 | 0.3982 | ||
90–135 | 362,235 | 269 | 0.1839 | 1.3482 | 0.1297 | 0.3978 | ||
135–180 | 350,494 | 196 | 0.1340 | 1.0152 | 0.0066 | 0.0582 | ||
180–225 | 312,293 | 100 | 0.0684 | 0.5813 | −0.2356 | −0.5612 | ||
225–270 | 321,380 | 114 | 0.0779 | 0.6440 | −0.1911 | −0.4512 | ||
270–315 | 366,991 | 257 | 0.1757 | 1.2713 | 0.1043 | 0.3276 | ||
315–360 | 354,183 | 128 | 0.0875 | 0.6561 | −0.1830 | −0.4320 | ||
Profile curvature | 0–1.8 | 547,983 | 213 | 0.1456 | 0.7057 | −0.1514 | −0.3538 | 0.0216 |
1.8–3.6 | 719,955 | 448 | 0.3062 | 1.1297 | 0.0530 | 0.2683 | ||
3.6–5.4 | 565,655 | 303 | 0.2071 | 0.9725 | −0.0121 | 0.0361 | ||
5.4–7.3 | 382,795 | 208 | 0.1422 | 0.9865 | −0.0059 | 0.0291 | ||
7.3–9.5 | 240,198 | 147 | 0.1005 | 1.1110 | 0.0457 | 0.1433 | ||
9.5–12.2 | 129,510 | 93 | 0.0636 | 1.3036 | 0.1152 | 0.2950 | ||
12.2–16 | 55,771 | 47 | 0.0321 | 1.5299 | 0.1847 | 0.4428 | ||
16–38 | 14,105 | 4 | 0.0027 | 0.5148 | −0.2883 | −0.6653 | ||
Surface curvature | 0–10 | 437,956 | 453 | 0.3096 | 1.8778 | 0.2736 | 0.8736 | 0.0906 |
10–20 | 602,002 | 468 | 0.3199 | 1.4113 | 0.1496 | 0.5504 | ||
20–30 | 442,943 | 248 | 0.1695 | 1.0164 | 0.0071 | 0.0729 | ||
30–40 | 309,567 | 128 | 0.0875 | 0.7506 | −0.1246 | −0.2839 | ||
40–50 | 227,331 | 64 | 0.0437 | 0.5111 | −0.2915 | −0.6909 | ||
50–60 | 187,321 | 24 | 0.0164 | 0.2326 | −0.6334 | −1.4949 | ||
60–70 | 159,699 | 21 | 0.0144 | 0.2387 | −0.6221 | −1.4631 | ||
>70 | 289,153 | 57 | 0.0390 | 0.3579 | −0.4463 | −1.0706 | ||
Topographic relief/(°) | 0–7 | 481,410 | 59 | 0.0403 | 0.2225 | −0.6527 | −1.6034 | 0.1221 |
7–13 | 701,131 | 225 | 0.1538 | 0.5826 | −0.2346 | −0.5864 | ||
13–18 | 514,006 | 401 | 0.2741 | 1.4163 | 0.1512 | 0.5172 | ||
18–24 | 440,864 | 355 | 0.2427 | 1.4619 | 0.1649 | 0.5294 | ||
24–30 | 261,859 | 241 | 0.1647 | 1.6708 | 0.2229 | 0.6194 | ||
30–38 | 162,774 | 133 | 0.0909 | 1.4834 | 0.1712 | 0.4444 | ||
38–48 | 70,703 | 49 | 0.0335 | 1.2582 | 0.0997 | 0.2443 | ||
48–87 | 23,225 | 0 | 0.0000 | 0.0000 | 0.0000 | −0.0064 | ||
Lithology | Magmatic rocks | 1,110,912 | 330 | 0.2256 | 0.5393 | −0.2682 | −0.7244 | 0.2058 |
Clastic rocks | 687,217 | 491 | 0.3356 | 1.2971 | 0.1130 | 0.4610 | ||
Carbonate rocks | 3094 | 0 | 0.0000 | 0.0001 | 0.0000 | −0.0008 | ||
Metamorphic rocks | 854,749 | 642 | 0.4388 | 1.3636 | 0.1347 | 0.6218 | ||
Distance to the rivers/m | 0–300 | 492,432 | 507 | 0.3465 | 1.8691 | 0.2716 | 0.9069 | 0.0678 |
300–600 | 445,574 | 280 | 0.1914 | 1.1408 | 0.0572 | 0.2143 | ||
600–1200 | 764,250 | 325 | 0.2221 | 0.7720 | −0.1124 | −0.2422 | ||
1200–2000 | 953,716 | 351 | 0.2399 | 0.6681 | −0.1751 | −0.4314 | ||
MNDWI | 0–0.137 | 156,772 | 74 | 0.0506 | 0.8569 | −0.0671 | −0.1464 | 0.0064 |
0.137–0.278 | 279,294 | 142 | 0.0971 | 0.9230 | −0.0348 | −0.0575 | ||
0.278–0.392 | 393,799 | 232 | 0.1586 | 1.0695 | 0.0292 | 0.1260 | ||
0.392–0.498 | 462,074 | 309 | 0.2112 | 1.2140 | 0.0842 | 0.2962 | ||
0.498–0.604 | 456,527 | 252 | 0.1722 | 1.0021 | 0.0009 | 0.0578 | ||
0.604–0.718 | 417,431 | 250 | 0.1709 | 1.0873 | 0.0363 | 0.1499 | ||
0.718–0.847 | 315,966 | 137 | 0.0936 | 0.7872 | −0.1039 | −0.2315 | ||
0.847–1 | 174,109 | 67 | 0.0458 | 0.6986 | −0.1558 | −0.3608 | ||
NDBI | 0–0.31 | 387,348 | 148 | 0.1012 | 0.6936 | −0.1589 | −0.3713 | 0.0286 |
0.31–0.40 | 703,249 | 319 | 0.2180 | 0.8235 | −0.0843 | −0.1620 | ||
0.40–0.49 | 679,386 | 397 | 0.2714 | 1.0608 | 0.0257 | 0.1701 | ||
0.49–0.6 | 446,322 | 368 | 0.2515 | 1.4969 | 0.1752 | 0.5632 | ||
0.6–0.71 | 206,242 | 148 | 0.1012 | 1.3028 | 0.1149 | 0.3133 | ||
0.71–0.82 | 115,551 | 46 | 0.0314 | 0.7227 | −0.1410 | −0.3251 | ||
0.82–1 | 87,906 | 29 | 0.0198 | 0.5989 | −0.2226 | −0.5172 | ||
>1 | 29,968 | 8 | 0.0055 | 0.4846 | −0.3146 | −0.7274 | ||
NDVI | 0–0.34 | 13,538 | 1 | 0.0007 | 0.1341 | −0.8726 | −2.0127 | 0.0457 |
0.34–0.46 | 58,637 | 15 | 0.0103 | 0.4644 | −0.3331 | −0.7732 | ||
0.46–0.54 | 135,522 | 66 | 0.0451 | 0.8841 | −0.0535 | −0.1148 | ||
0.54–0.60 | 267,148 | 175 | 0.1196 | 1.1892 | 0.0753 | 0.2249 | ||
0.60–0.66 | 551,733 | 364 | 0.2488 | 1.1977 | 0.0784 | 0.3031 | ||
0.66–0.72 | 730,675 | 380 | 0.2597 | 0.9441 | −0.0250 | 0.0203 | ||
0.72–0.78 | 577,435 | 350 | 0.2392 | 1.1004 | 0.0415 | 0.1973 | ||
0.78–1 | 321,284 | 112 | 0.0766 | 0.6329 | −0.1987 | −0.4701 |
Environmental Factors | PS-MLR | FR-MLR | IV-MLR | IOE-MLR | WOE-MLR | |||||
---|---|---|---|---|---|---|---|---|---|---|
B | VIF | B | VIF | B | VIF | B | VIF | B | VIF | |
DEM | 0.335 | 1.228 | 0.224 | 1.159 | 0.441 | 1.184 | 3.232 | 1.159 | 0.212 | 1.238 |
Slope | 0.992 | 1.764 | 0.246 | 2.374 | 0.446 | 2.907 | 1.689 | 1.384 | 0.059 | 1.890 |
Aspect | 1.295 | 1.051 | 0.147 | 1.051 | 0.308 | 1.055 | 2.182 | 1.050 | 0.108 | 1.046 |
Profile curvature | 0.030 | 1.041 | 0.099 | 1.066 | 0.143 | 1.075 | 4.601 | 1.060 | 0.083 | 1.038 |
Surface curvature | 0.897 | 1.114 | 0.086 | 1.341 | 0.161 | 1.393 | 0.951 | 1.330 | 0.068 | 1.286 |
Topographic relief | 0.161 | 1.706 | 0.050 | 2.130 | 0.000 | 2.568 | 0.406 | 2.102 | 0.246 | 1.901 |
Lithology | 0.803 | 1.141 | 0.223 | 1.070 | 0.424 | 1.088 | 1.081 | 1.070 | 0.115 | 1.106 |
Distance to rivers | 0.950 | 1.069 | 0.124 | 1.059 | 0.340 | 1.077 | 1.828 | 1.056 | 0.114 | 1.101 |
NDVI | 0.044 | 1.678 | 0.188 | 1.315 | 0.240 | 1.350 | 4.12 | 1.323 | 0.040 | 1.353 |
NDBI | 0.307 | 1.672 | 0.170 | 1.304 | 0.412 | 1.349 | 5.931 | 1.301 | 0.173 | 1.053 |
MNDWI | 0.445 | 1.026 | 0.308 | 1.053 | 0.672 | 1.046 | 0.168 | 1.034 | 0.185 | 1.042 |
Constant | −0.771 | −1.523 | 0.519 | −1.523 | 0.427 | |||||
0.455 | 0.555 | 0.556 | 0.554 | 0.606 |
Coupled Models | AUC Values | ||||
---|---|---|---|---|---|
RF | C5.0 | MLR | AHP | Mean Value | |
PS | 0.923 | 0.910 | 0.760 | 0.740 | 0.833 |
FR | 0.927 | 0.908 | 0.825 | 0.805 | 0.866 |
IV | 0.930 | 0.844 | 0.828 | 0.809 | 0.852 |
IOE | 0.930 | 0.896 | 0.827 | 0.790 | 0.860 |
WOE | 0.959 | 0.934 | 0.859 | 0.826 | 0.895 |
Coupled Models | RF | C5.0 | MLR | AHP | ||||
---|---|---|---|---|---|---|---|---|
Mean Value | SD | Mean Value | SD | Mean Value | SD | Mean Value | SD | |
PS | 0.395 | 0.246 | 0.259 | 0.345 | 0.540 | 0.141 | 0.548 | 0.143 |
FR | 0.273 | 0.224 | 0.267 | 0.339 | 0.513 | 0.130 | 0.606 | 0.134 |
IV | 0.290 | 0.219 | 0.313 | 0.263 | 0.596 | 0.132 | 0.609 | 0.192 |
IOE | 0.269 | 0.227 | 0.383 | 0.300 | 0.513 | 0.130 | 0.594 | 0.192 |
WOE | 0.223 | 0.236 | 0.229 | 0.340 | 0.321 | 0.254 | 0.517 | 0.171 |
Coupled Models | Mean Rank | |||
---|---|---|---|---|
RF | C5.0 | MLR | AHP | |
PS | 9.28 | 7.12 | 13.15 | 13.74 |
FR | 6.34 | 7.36 | 11.61 | 12.02 |
IV | 6.85 | 7.41 | 12.91 | 13.49 |
IOE | 6.06 | 9.08 | 11.68 | 12.00 |
WOE | 4.82 | 5.30 | 8.52 | 9.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Fan, X.; Huang, F.; Chen, W.; Hong, H.; Huang, J.; Guo, Z. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sens. 2020, 12, 4134. https://doi.org/10.3390/rs12244134
Li W, Fan X, Huang F, Chen W, Hong H, Huang J, Guo Z. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing. 2020; 12(24):4134. https://doi.org/10.3390/rs12244134
Chicago/Turabian StyleLi, Wenbin, Xuanmei Fan, Faming Huang, Wei Chen, Haoyuan Hong, Jinsong Huang, and Zizheng Guo. 2020. "Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors" Remote Sensing 12, no. 24: 4134. https://doi.org/10.3390/rs12244134
APA StyleLi, W., Fan, X., Huang, F., Chen, W., Hong, H., Huang, J., & Guo, Z. (2020). Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 12(24), 4134. https://doi.org/10.3390/rs12244134