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Abstract: To study the uncertainties of a collapse susceptibility prediction (CSP) under the coupled
conditions of different data-based models and different connection methods between collapses
and environmental factors, An’yuan County in China with 108 collapses is used as the study case,
and 11 environmental factors are acquired by data analysis of Landsat TM 8 and high-resolution
aerial images, using a hydrological and topographical spatial analysis of Digital Elevation Modeling
in ArcGIS 10.2 software. Accordingly, 20 coupled conditions are proposed for CSP with five different
connection methods (Probability Statistics (PSs), Frequency Ratio (FR), Information Value (IV),
Index of Entropy (IOE) and Weight of Evidence (WOE)) and four data-based models (Analytic
Hierarchy Process (AHP), Multiple Linear Regression (MLR), C5.0 Decision Tree (C5.0 DT) and
Random Forest (RF)). Finally, the CSP uncertainties are assessed using the area under receiver
operation curve (AUC), mean value, standard deviation and significance test, respectively. Results
show that: (1) the WOE-based models have the highest AUC accuracy, lowest mean values and
average rank, and a relatively large standard deviation; the mean values and average rank of all
the FR-, IV- and IOE-based models are relatively large with low standard deviations; meanwhile,
the AUC accuracies of FR-, IV- and IOE-based models are consistent but higher than those of the
PS-based model. Hence, the WOE exhibits a greater spatial correlation performance than the other
four methods. (2) Among all the data-based models, the RF model has the highest AUC accuracy,
lowest mean value and mean rank, and a relatively large standard deviation. The CSP performance
of the RF model is followed by the C5.0 DT, MLR and AHP models, respectively. (3) Under the
coupled conditions, the WOE-RF model has the highest AUC accuracy, a relatively low mean value
and average rank, and a high standard deviation. The PS-AHP model is opposite to the WOE-RF
model. (4) In addition, the coupled models show slightly better CSP performances than those of
the single data-based models not considering connect methods. The CSP performance of the other
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models falls somewhere in between. It is concluded that the WOE-RF is the most appropriate coupled
condition for CSP than the other models.

Keywords: collapse susceptibility prediction; uncertainty analysis; nonlinear connection method;
data-based model; random forest; remote sensing; geographic information system

1. Introduction

Typical geological disasters such as collapse, landslide and debris flow are widely distributed all
over the world, threatening a lot of human lives and property, and resulting in increasingly serious
environmental problems [1]. The collapse is a geological phenomenon where the rock and soil mass on
a steep slope suddenly breaks away from the parent body under the action of gravity [2–4]. Collapse
susceptibility prediction (CSP) can efficiently reflect the spatial occurrence probability of collapses in a
certain area. However, the uncertainties of CSP will lead to high risk project construction, seriously
restricting the land use in the collapse prone area. Hence, how to effectively carry out the CSP has
become one of the focuses of the collapse research [5].

Obtaining an accurate CSP is the preliminary work of collapse risk assessments. By analyzing the
correlations between environmental factors and the history collapses inventory, a prediction model can
be established to predict the possible spatial positions of future collapses [4,6]. The CSP consists of four
steps: basic data acquisition, collapse-environmental factors connection method, model training and
testing, and collapse susceptibility mapping (CSM) and CSP performance evaluation, etc. [2,7]. With the
rapid development of spatial data acquisition technologies, the quality of the collapses inventory and
environmental factors have been greatly improved [8]. Among these technologies, remote sensing
(RS) is mainly applied for the acquisition of collapse-related environmental factors [9–11]. Meanwhile,
CSP modeling is performed through the spatial analysis tools in the GIS software [12]. Furthermore,
the types of collapse-related environmental factors in a specific study area can be determined by a review
of related literature and the physical geography and geological conditions of the study area [8,10,13].
This study mainly focuses on the uncertainty characteristics of nonlinear connection methods of
collapse-environmental factors, and the data-based models for CSP. Furthermore, these uncertainty
characteristics are assessed by several statistic methods.

The nonlinear correlation analysis between collapses and basic environmental factors (no trigger
factors) is considered as an important link between collapse susceptibility indexes (CSIs) and
environment factors [14]. Then, these connection values will be directly used as the inputs of data-based
models [15,16]. At present, many methods have been developed to construct correlation, mainly
including weight of evidence (WOE) [17], information value (IV) [17], probability statistics (PSs) [18],
Index of Entropy (IOE) [19] and frequency ratio (FR) [20] methods. However, there is almost no specific
evidence and/or literature evaluation to determine an appropriate connection method. The calculation
processes and results of nonlinear connection methods will bring great uncertainties to the data-based
models for CSP. In general, a rough or less than ideal connection method will lead to information
loss and further reduce the model’s CSP performance; on the contrary, a reasonable and excellent
connection method can contribute to obtaining the optimal input variables of data-based models and
improve the reliability of CSP results. Therefore, it is of great significance to explore the influence
degree of different connection methods on CSP modeling [21].

Meanwhile, many scholars have carried out in-depth analysis on the data-based modeling for CSP
on the Geographic Information System (GIS) platform [22,23]. According to the Bragagnolo et al. [24],
the data-based models mainly include heuristic, mathematical statistics [25] and machine learning
models [26]. Heuristic and mathematical statistical models are widely used [25,27,28], such as the
deterministic factor model [29], discriminant analysis method [30], analytic hierarchy process (AHP) [31]
and multiple linear regression [32]. Machine learning models mainly include logistic regressions [33,34],
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artificial neural networks [7,23,35–38], decision trees (DTs) [39–41], random forests [42], support vector
machines [20,43], ensemble learning [44] and Bayesian algorithms [45–48]. Data-based models exhibit
a more excellent prediction performance in nonlinear modeling of CSP in a large range with only an
input–output sample than that of the heuristic and mathematical statistical models [31,49]. This is
because the machine learning models [15,50–52] can effectively deal with the nonlinear relationship
between collapses and environmental factors, determine model parameters automatically and connect
inputs with CSIs named as output. However, there is no consensus on which type of model is the most
suitable for CSP. Meanwhile, a slight improvement of the CSP performance may also have a significant
impact on the division of the collapse susceptibility levels (CSLs) [53].

Overall, two remarkable uncertainty factors, namely the connection method and data-based
model, are challenges greatly influencing CSP performance [54,55]. In most cases, a specific connection
method and a certain data-based model may have been used without providing any argument and
assessment—the uncertainties of CSP are rarely discussed in depth [56]. In fact, the CSP effect and
feasibility can be further understood through uncertainty analysis of the CSP results under the coupled
conditions of different connection methods and different data-based models [57].

In summary, the uncertainties of the connection methods and data-based models used in CSP
modeling are explored. The An’yuan County in China is used as the study area, five kinds of nonlinear
connection method (probability statistics (PSs), frequency ratio (FR), information value (IV), index of
entropy (IOE) and weight of evidence (WOE)), coupled with four types of data-based models (heuristic
model with analytic hierarchy process (AHP), conventional mathematical statistics model with multiple
linear regression (MLR) and machine learning model with C5.0 decision tree (C5.0) and random forest
(RF)) to form 20 types of different conditions for CSP. Finally, the uncertainty features of the CSIs
under each coupled condition are assessed using several methods, including the accuracy evaluation,
the difference significance analysis and the distribution rules of CSIs.

2. Materials

2.1. Introduction of An’yuan County

An’yuan County is located in the lower reaches of the Ganjiang River in Jiangxi Province,
China, with a longitude of 115◦9′52” E–115◦37′13” E and a latitude of 24◦52′18” N–25◦36′52” N.
The approximately 2374.59 km2 study area is characterized by hills and mountainous topography,
with elevations of 180–1150 m. This district has a subtropical monsoon climate with an average
temperature of 18.7 ◦C and an average rainfall of 1640 mm/year. The lithology is dominated by
magmatic rocks, followed by metamorphic rocks and clastic rocks, and carbonate rocks are the least
distributed. In this area, collapses are triggered by plum rains, stream erosion, engineering geological
activities, or combination triggers [58]. Plum rains result from the fact that, during June each year,
cold air from the north meets warm air from the south, creating a rainy season. Most of the collapses
occurred in the slope residual material and the Quaternary sediments.

2.2. Collapse Inventory and Environmental Factors

According to the collapse inventory data provided by the An’yuan Land Resources Bureau
of Jiangxi Province, as of 2014, a total of 108 collapses had occurred in the study area (Figure 1).
The position, areas and boundary information of these recorded collapses are mapped out by the
Global Position System technology in the field survey process. These collapses are dominated by
moderate and small collapses over an average area of 6000 m2 (Figure 2c). From the perspective of
space, the distribution of collapses is mainly affected by the topographical features, types of rock and
soil mass, distance to rivers and land cover types, etc. From the collapse evolution characteristics in
An’yuan County and the related literature, 11 environmental factors were acquired and chosen from
the data sources based on a geological map, remote sensing image and GIS platform, and the main
data sources are listed in Table 1 [59]. Both the collapse inventory and the environmental factors were
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mapped with 30 m resolution grid units. Examples of collapses in the An’yuan County are shown in
Figure 2.

In this study, the environmental factors used for CSP are classified as follows: (1) topographic and
geomorphic factors, including digital elevation model (DEM), slope, aspect, profile curvature, plane
curvature and topographic relief; (2) land cover factors consist of the normalized differential vegetation
index (NDVI) and normalized difference built-up index (NDBI); (3) hydrological factors with distance to
rivers and modified normalized difference water index (MNDWI); (4) geological factors with lithology;
lithology is the material basis of collapse development, which affects the permeability of rock and soil
and shear strength of the slope. The lithology of the study area is magmatic rock, metamorphic rock,
clastic rock and carbonate. The collapse-related environmental factors are acquired through RS and the
GIS platform. The RS data include the DEM, Landsat TM 8 image and high-resolution images, and the
GIS spatial analysis was performed in the ArcGIS 10.2 software.

Table 1. Data sources for collapse susceptibility prediction.

Data Type Spatial Resolution Time Data Use

DEM 30 m Topographic factors

Landsat 8 TM Multispectral 30 m 2013-10-15 NDVI, MNDWI, NDBI

Geological map 1:100,000 Lithology

Figure 1. Geographical location of collapses: China (a), Jiangxi Province (b), An’yuan County (c).
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Figure 2. Photos of typical collapses in the study area: soil collapse (a), soil collapse (b), mixture
collapse of soil and rocks (c), rock collapse (d).

2.2.1. Acquisition of Topographic and Hydrological Factors

The topographic and geomorphic factors for CSP were calculated and mapped through the
three-dimensional analysis tool and data management tool in ArcGIS 10.2 software [40,60]. DEM is an
important environmental factor for collapse evolution and a data source for other topographic elements.
The whole study area ranges from 180 to 1151 m and was divided into 8 categories with equal intervals
of 180–288 m, 288–368 m, 368–450 m, 450–540 m, 540–630 m, 630–733 m, 733–870 m and 870–1151 m.
DEM can only reflect the changes of elevation values in larger regions, but it cannot reflect the ups and
downs of terrain in smaller regions. To solve this problem, topographic relief is introduced to measure
the relative changes of elevation values in smaller regions. The topographic relief was calculated
through the statistical test and the maximum height difference method in a certain area in the ArcGIS
10.2 software. Slope has a direct relationship with the occurrence of collapse [61]. Only when the slope
is attached to the slope can collapse occur, and the probability of collapse is different with different
slopes. In this study, the slope angle values were reclassified into 8 categories with equal intervals of
0◦–4◦, 4◦–8◦, 8◦–12◦, 12◦–16◦, 16◦–20◦, 16◦–24◦, 24◦–30◦ and 30◦–90◦. Aspect determines the scale of
collapse formation under external factors such as rainfall, solar radiation and vegetation cover. Hence,
the effects of aspect on collapse occurrence should not be neglected. Ultimately, nine groups of aspect
are identified in this study area. Profile curvature and plan curvature are also extracted from DEM
data. They affect the rate of collapse and weathering degree of rock mass on the slope. In this paper,
profile curvature and plan curvature are divided into eight categories.

In addition, the river networks of An’yuan County are extracted by the hydrological analysis
toolbox made up of fill, flow direction and flow accumulation tools, to reflect the effects of hydrological
factors on landslide occurrences [62–64]. In the first step, the depressurization treatment of the DEM
data with 30 m resolution was performed by the fill tool. In the second step, the flow direction tool was
applied to determine the water flow direction of the filled DEM. In the third step, the flow accumulation
tool was applied to determine the flow accumulation based on the water flow direction and DEM data.
Finally, the river networks of the study area could be calculated and mapped by determining the flow
accumulation of all grid units above a certain threshold.
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2.2.2. Acquisition of NDVI, NDBI and MNDWI Factors

The NDVI, NDBI and MNDWI factors have important influences on the probability of landslide
occurrence though affecting the shear strength of slope soils and controlling the surface and underground
water migrations of the slope body [10,65,66]. These three significant remote sensing indexes were
extracted from the above Landsat TM 8 image. The NDVI can be used to reflect the regional vegetation
growth and coverage ratios (Equation (1)). The NDBI can be used to show the percentage of buildings
on the ground surface of the study area (Equation (2)). Additionally, the MNDWI can reflect the
surface hydrology and soil moisture information (Equation (3)). In these equations, the P (Red), P (NIR),
P (Green) and P (MIR) are the measurements of the visible red band, near infrared band, green band
and middle infrared band in the above Landsat 8 TM image, respectively.

NDVI =
P(NIR) − P(Red)
P(NIR) + P(Red)

(1)

MNDWI =
P(Green) − P(MIR)
P(Green) + P(MIR)

(2)

NDBI =
P(MIR) − P(NIR)
P(MIR) + P(NIR)

(3)

3. Methodologies

3.1. Uncertainties of CSP: Connection Methods and Data-Based Models

The CSP accuracy is significantly dependent on the quality of input variables; therefore, it is
important to select the collection methods of collapses inventory and environmental factors to obtain
the input variables. In addition, the coupled models between collection methods and data-based
models can also create many uncertainties. By analyzing the performance rules and influence degrees of
the above two kinds of uncertainty factors on the prediction of CSIs, the influences of these uncertainty
factors can be better reduced. For example, the literature shows that some researchers have recently
used WOE or FR for collapse susceptibility modeling without any proper explanations [2,56]. In this
study, based on the five nonlinear connection methods of PSs, FR, IV, IOE and WOE, the AHP, MLR,
C5.0 and RF models were selected to establish 20 kinds of different coupled models for the CSP.
The specific research steps are as follows (Figure 3):

(1) The data sources of collapse inventory and related environmental factors in the study area were
obtained to construct the spatial datasets for CSP modeling;

(2) A total of 20 different modeling conditions are proposed for CSP on the basis of the above five
different connection methods and four different kinds of data-based models;

(3) In the modeling processes, the CSP model was utilized, the CSM was drawn and the uncertainty
analysis of the CSI was carried out under each coupled model condition;

(4) The area under the ROC curve (AUC) [67] was used to evaluate the accuracy of the CSP results;
(5) At the significance level of 0.05, the Friedman two-factor ANOVA analysis and test method

were used to analyze the difference significance of the CSI distribution under each coupled
model condition;

(6) Numerical distribution characteristics of CSIs predicted by five correlation methods and four
data-based models were analyzed from the perspective of mean values and standard deviation;

(7) The optimal correlation method and data-based model coupled model condition was obtained
through comparison analysis, so as to provide theoretical guidance for the CSP.
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3.2. Collapse-Environmental Factors Connection Method

3.2.1. Probability Statistics

In general, the PSs method can be defined as the ratio of the area where collapses have occurred
to the total collapse area for a given attribute interval of an environmental factor [18]. A greater
value of PSi j means a higher correlation between the collapse and the related factor. The formula
for calculating the collapse area ratio of each second-order factor is shown in Equation (4)—SZ

ij is the
historical collapse area in the jth state of the ith environmental factor, and λi is the number of states
under the ith class factor.

PSi j =
SZ

ij∑λi
j=1 SZ

ij

(4)

3.2.2. Frequency Ratio

The FR method can be defined as the ratio of the area where collapses occurred in the total study
area for a given attribute of an environmental factor, as show in Equation (5). N j is the number of
collapse grid units that occurred in the attribute interval of an environmental factor; N is the total
number of collapse grid units in the study area; S j is the number of grid units of the attribute interval in
an environment factor; S represents the total number of grids in the study area. FR reveals the relative
influence degree of each attribute interval of an environmental factor on the collapse occurrence [68].
A FR value greater than 1 indicates a higher correlation between collapse and environmental factors,
otherwise the opposite is true.

FR =
N j/N
S j/S

(5)
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3.2.3. Information Value

The collapse disasters are affected by multifactors. Under different geological environments,
the degree and nature of the environmental factors that contribute to the collapse are different. The IV
method was used to express the optimal combination of environmental factors under a certain
geological environment, including the number and basic state of the environmental factors [31]. For a
specific grid unit, the IV was used to consider the quantity and quality of all information acquired in a
given area related to the collapse. In the specific calculation process, the total probability was usually
estimated by using sample frequency for the calculation convenience. Hence, the formula of IV can be
converted into Equation (6).

IV = ln
N j/N
S j/S

(6)

where IV is the information value of collapse occurrence when the environmental factor is in the
state of j, N j expresses the number of collapse grid units in the attribute interval of an environmental
factor, N is the total number of collapse grid units in the study area, S j denotes the number of grid
units in the attribute interval of an environment factor and S denotes the total number of grid units
in the study area. When the value of IV is positive, the environmental factor in state j can provide
the information of collapse occurrence. The greater the value of IV, the higher the probability of
collapse occurrence. Otherwise, the opposite is true. In addition, when the value of IV is 0 or close to 0,
the environmental factor has almost no contribution to the collapse occurrence and can be removed
from the CSP modeling processes.

3.2.4. Index of Entropy

The IOE method was used to represent the degree of uncertainty of an environmental factor [69].
In the prediction of collapse susceptibility, IOE was used to express the influence degree of different
environmental factors on the evolution of collapse disasters. Firstly, the probability density

(
Pi j

)
was

calculated based on the frequency ratio analysis, as show in Equation (7). Pi j is the FR value of each
environmental factor, S j denotes the number of categories and i and j represent the serial number and
the class of the environmental factor, respectively.

(
Pi j

)
=

Pi j∑S j

j=1 Pi j

(7)

Secondly, the probability density
(
Pi j

)
was substituted into Equation (8) to obtain the entropy

value H j of each parameter; the information coefficient I j was calculated as Equation (9).

H j = −

S j∑
j=1

(
Pi j

)
log2

(
Pi j

)
, j = 1, 2, · · · , n (8)

I j =
log2S j −H j

log2S j
, I = (0, 1), j = 1, 2, · · · , n (9)

Finally, by coupling the information coefficient I j with the collapse occurrence probability, the
final weight value W j of the parameter was calculated.

W j =
I j

S j

S j∑
j=1

Pi j (10)
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3.2.5. Weight of Evidence

The WOE is a quantitative method to predict the probability of an event based on Bayes’ theorem.
For the collapse prediction, the spatial correlation between collapse and environmental factors was
analyzed to obtain the distribution of various environmental factors at the collapse point. A pair of
weights, W+ and W−, for any environment factor was calculated:

W+ = ln

 B/
(
B + B

)
D/

(
D + D

)  (11)

W− = ln

 B/
(
B + B

)
D/

(
D + D

)  (12)

where W+ and W− are the weight values of the existence and nonexistence region of environmental
factors, respectively; B and B are the number of the collapse grid units present on the existent
and nonexistent regions of environmental factors, respectively; D and D are the number of the
noncollapse units present on the existent and nonexistent regions of environmental factors, respectively.
The difference between these weights (W+

−W−), known as the relative coefficient, C, represents a
useful measure of the correlation between the evidence layer and the collapse events. For a positive
correlation, the value of C is positive, whereas for a negative correlation the value is negative; a weight
of 0 is irrelevant. When data were missing, the weight was also considered to be 0.

3.3. Data-Based Models

3.3.1. Analytic Hierarchy Process

The AHP, a kind of decision-making method combining qualitative and quantitative analyses,
was mainly used to quantify and model the selected environmental factors [70]. The AHP was
established based on the internal dominant relationship among various environmental factors. Then,
the weight values (ranging between 1 and 9) of environmental factors were determined by comparing
environmental factors. The consistency ratio (CR) was defined based on Equation (13) to check the
consistent features of the comparison matrix A composed of these weight values.

CR =
CI
RI

(13)

where CI denotes the index of consistency obtained through Equation (14), RI suggests the random
index for the comparison matrix A, n is the order in matric A, ω denotes the eigenvector corresponding
to the maximum eigenvalue λmax of the matrix A and Fi denotes the ith environmental factor. When the
value of CR is less than 0.1, the comparison matric A is satisfactory and consistent. Then, CSIs were
calculated as Equation (15), where ωi indicates the weight of the environmental factor Fi:

CI =
λmax

n− 1
(14)

CSIAHP =
∑

ωiFi (15)

3.3.2. Multiple Linear Regression

The MLR is often used to explore the correlations between multiple dependent variables and
an independent variable. The value yi of the dependent variable was defined as Equation (16),
where x1i, x2i, · · · , xki denotes the independent variable, b0, b1, · · · , bk denotes the regression coefficient
and εi represents the error. The maximum likelihood value of parameters was calculated based on the
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least square method; then, necessary statistical tests were carried out to judge the goodness of fit R2 of
the model. The higher the value of R2 is, the better the fitting degree is.

yi = b0 + b1x1i + · · ·+ bkxki + εi (16)

3.3.3. C5.0 Decision Tree

C5.0 uses the boosting method to improve the implementation efficiency and classification
accuracy of the decision tree algorithm [71,72]. The C5.0 model can be constructed as four main
steps [73]: (i) selecting the nodes of the optimal root segmentation tree using the training dataset and
threshold with the highest gain ratio; (ii) finding the child nodes from two branch nodes produced
by the tree structure; (iii) creating additional tree nodes that grow further with certain mathematical
criteria, and in this process, children nodes that do not contribute to the model are eliminated; (iv) this
process is continuous and repeated until all instances in the training dataset are assigned gain ratio
values for leaf nodes or no remaining variables can be divided. After the initial decision tree was
established, the model was verified by the testing dataset.

In summary, C5.0 construction consists of tree splitting, growth, pruning of child nodes, growth
promotion and model closure. Compared with other artificial neural networks, this model is easier to
be understood because it can clearly explain the processes of tree growth and removal [74].

3.3.4. Random Forest

The RF model is an integrated classification model composed of multiple classification trees
and regression trees. The bagging technique (Bootstrap aggregation) was used to randomly select
samples from the training dataset for classification and regression tree construction. Then, the optimal
classification results were selected in the random subset of environmental factors with a given feature.
The error of the model was evaluated by using a bag sample. The random forest integrates the results
of all classification and regression trees, effectively avoiding the discontinuity of the predictive value of
the decision tree and the sensitivity to the training dataset, so as to make the predictive value smoother,
to prevent the overfitting of the model and to increase its stability [75].

3.4. Uncertainty Analysis of Results

3.4.1. ROC Curves and AUC Analysis

The ROC was used to evaluate the overall performance of the prediction model based on the
quantitative indicators [76,77]. The ROC curve was calculated as follows: First, the values of CSIs were
calculated, and various collapse samples in the testing dataset were sorted. Then, different truncation
points were selected in this order. Next, whether each landslide sample was positive was determined.
Finally, the “true positive rate” and “false positive rate” of the current classifier were calculated each
time as the vertical and horizontal axis of the ROC curve [78]. To further quantify the classification
performance of different models, the AUC (Area under ROC) was used as the specific evaluation index.

3.4.2. Statistical Law Analysis of CSI

The mean value and standard deviation (SD) were used to reflect the average level and dispersion
degree of the CSIs distribution, respectively, and further to reveal the classification effects of different
data-based models. The mean value and SD were adopted to reveal the predictive performance of
the collapse susceptibility modeling under the coupled conditions of the connection method and the
data-based model by analyzing the numerical distribution characteristics of the CSIs on the whole.
By comparison and analysis, the optimal coupled condition could be obtained. The mean value and
SD have a certain objectivity and provide theoretical guidance for the study of CSP.

Friedman two-factor ANOVA analysis and test by rank method were used to compare the
significant differences between different CSP models. The Friedman test was used to test for significant
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differences between a set of models; the null hypothesis states the equality between the median
values of two groups. Hence, if the probability of a hypothesis at the significant level of α = 0.05
(or 5%) was true, then the null hypothesis was rejected and vice versa [79]. To assess the significant
differences between two models, the signed-rank test was used. Based on this test, the performances
of these models were ranked. The higher the average rank is, the better the model performance is.
The significance difference level and average rank were used to further analyze the uncertainties of
connection method and data-based model to obtain the CSP model with a high reliability and accuracy.

4. Results

4.1. Collapse-Related Environmental Factor and Connection Results

The collapse inventory and environmental factors in the study area were obtained as shown in
Table 2, through in-depth analysis of various factors affecting the evolution of collapses. The data types
of continuous environmental factors were divided into eight attribute levels using the natural break
point method [80,81], and the aspect of the flat ground was separately divided into one class and set to
−1, while discrete types such as lithology and distance to rivers were classified into four classes.

(1) Relationships between collapses and topography.
The study area is located in the mountain boundary zone, mainly composed of low mountains

and hills, with large topographic relief [82,83]. The elevation, slope, aspect, plane curvature, profile
curvature and topographic relief were extracted from DEM as topographic and geomorphic factors,
as shown in Figure 4. Taking slope as an example, the slopes in the study area were divided into eight
attribute intervals, as shown in Figure 4b. The PSs regarding the occurrence of collapses were normally
distributed when slopes ranged from 0◦ to 58.3◦ with a peak value of 16◦. The FR values greater than
1 in the slope were greater than 16◦, which is connected with the frequency of spatial classification,
showing the strong spatial correlations between occurrence of collapses and the slope (Figure 5).

More specifically, according to the statistics in Table 2, within the slope range of 16◦–20◦, the values
of PS and FR are 0.3 and 1.7, respectively; the IV and WOE show strong and positive correlations
with collapse occurrence; the IOE shows that the weight of slope is 0.1458, second only to lithology.
The results of these connection method suggest that, the slope has a very important role on the collapse
occurrence, and further suggest that all the connection methods can reflect the effect of environmental
factors on collapse susceptibility on the whole [84].

(2) Relationships between collapse and hydrological factors.
The collapse is largely affected by the distance to the river and the stream. Due to the erosion of

the river, the stability of the slope rock and soil mass deteriorates with the increase in soil moisture
content [85,86]. According to statistical calculation, the area with a distance of less than 300 m to the
river system has the highest concentration of collapses (35%). MNDWI is commonly used to reflect
water information at the surface; the value of MNDWI in the region ranges from 0 to 1, and most of the
collapses occur between 0.392 and 0.498 with the maximum FR (1.214) (Table 2). The distance to the
river and MNDWI (Figure 4g,h) were used to characterize the influence of hydrological environment
on collapse evolution [87,88].

(3) Relationships between collapse and land cover factors.
The NDBI and NDVI were selected as land cover factors to reflect the influence of building

distribution and natural vegetation on collapse evolution (Figure 6a,b). It can be seen from Table 2,
when the NDBI values range between 0.49 and 0.6, that the calculation results of these collection
methods of PS, FR, IV and WOE are all at their maximum values, which are 0.2515, 1.4969, 0.1752
and 0.7543, respectively. NDVI was used to quantitatively estimate vegetation growth and coverage.
When the NDVI is smaller than 0.39, the area is prone to collapse occurrence.
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Table 2. Environment factors and calculation results of all connection methods.

Environmental
Factors Value Total

Grids
Collapse

Grids PS FR IV WOE IOE

DEM/m

180–288 493,113 396 0.2707 1.4579 0.1637 0.5481

0.0693

288–368 687,506 439 0.3001 1.1592 0.0642 0.2963
368–450 455,073 186 0.1271 0.7420 −0.1296 −0.2955
450–540 394,032 163 0.1114 0.7510 −0.1244 −0.2824
540–630 275,707 84 0.0574 0.5531 −0.2572 −0.6117
630–733 186,930 80 0.0547 0.7769 −0.1096 −0.2488
733–870 116,398 112 0.0766 1.7468 0.2423 0.6055

>870 47,213 3 0.0021 0.1154 −0.9380 −2.1712

Slope/(◦)

0–4 371,078 20 0.0137 0.0978 −1.0095 −2.4182

0.1458

4–8 585,619 61 0.0417 0.1891 −0.7233 −1.7980
8–12 584,671 268 0.1832 0.8322 −0.0798 −0.1557

12–16 467,792 439 0.3001 1.7037 0.2314 0.7531
16–20 312,942 326 0.2228 1.8912 0.2767 0.8004
20–24 180,222 177 0.1210 1.7830 0.2511 0.6571
24–30 115,329 127 0.0868 1.9991 0.3008 0.7520
30–60 38,319 45 0.0308 2.1320 0.3288 0.7784

Aspect/(◦)

−1 72 0 0.0000 0.0000 0.0000 0.0000

0.0676

0–45 284,747 170 0.1162 1.0838 0.0350 0.1230
45–90 303,577 229 0.1565 1.3694 0.1365 0.3982
90–135 362,235 269 0.1839 1.3482 0.1297 0.3978

135–180 350,494 196 0.1340 1.0152 0.0066 0.0582
180–225 312,293 100 0.0684 0.5813 −0.2356 −0.5612
225–270 321,380 114 0.0779 0.6440 −0.1911 −0.4512
270–315 366,991 257 0.1757 1.2713 0.1043 0.3276
315–360 354,183 128 0.0875 0.6561 −0.1830 −0.4320

Profile curvature

0–1.8 547,983 213 0.1456 0.7057 −0.1514 −0.3538

0.0216

1.8–3.6 719,955 448 0.3062 1.1297 0.0530 0.2683
3.6–5.4 565,655 303 0.2071 0.9725 −0.0121 0.0361
5.4–7.3 382,795 208 0.1422 0.9865 −0.0059 0.0291
7.3–9.5 240,198 147 0.1005 1.1110 0.0457 0.1433

9.5–12.2 129,510 93 0.0636 1.3036 0.1152 0.2950
12.2–16 55,771 47 0.0321 1.5299 0.1847 0.4428
16–38 14,105 4 0.0027 0.5148 −0.2883 −0.6653

Surface
curvature

0–10 437,956 453 0.3096 1.8778 0.2736 0.8736

0.0906

10–20 602,002 468 0.3199 1.4113 0.1496 0.5504
20–30 442,943 248 0.1695 1.0164 0.0071 0.0729
30–40 309,567 128 0.0875 0.7506 −0.1246 −0.2839
40–50 227,331 64 0.0437 0.5111 −0.2915 −0.6909
50–60 187,321 24 0.0164 0.2326 −0.6334 −1.4949
60–70 159,699 21 0.0144 0.2387 −0.6221 −1.4631
>70 289,153 57 0.0390 0.3579 −0.4463 −1.0706

Topographic
relief/(◦)

0–7 481,410 59 0.0403 0.2225 −0.6527 −1.6034

0.1221

7–13 701,131 225 0.1538 0.5826 −0.2346 −0.5864
13–18 514,006 401 0.2741 1.4163 0.1512 0.5172
18–24 440,864 355 0.2427 1.4619 0.1649 0.5294
24–30 261,859 241 0.1647 1.6708 0.2229 0.6194
30–38 162,774 133 0.0909 1.4834 0.1712 0.4444
38–48 70,703 49 0.0335 1.2582 0.0997 0.2443
48–87 23,225 0 0.0000 0.0000 0.0000 −0.0064

Lithology

Magmatic rocks 1,110,912 330 0.2256 0.5393 −0.2682 −0.7244

0.2058
Clastic rocks 687,217 491 0.3356 1.2971 0.1130 0.4610

Carbonate rocks 3094 0 0.0000 0.0001 0.0000 −0.0008
Metamorphic rocks 854,749 642 0.4388 1.3636 0.1347 0.6218

Distance to the
rivers/m

0–300 492,432 507 0.3465 1.8691 0.2716 0.9069

0.0678
300–600 445,574 280 0.1914 1.1408 0.0572 0.2143
600–1200 764,250 325 0.2221 0.7720 −0.1124 −0.2422

1200–2000 953,716 351 0.2399 0.6681 −0.1751 −0.4314
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Table 2. Cont.

Environmental
Factors Value Total

Grids
Collapse

Grids PS FR IV WOE IOE

MNDWI

0–0.137 156,772 74 0.0506 0.8569 −0.0671 −0.1464

0.0064

0.137–0.278 279,294 142 0.0971 0.9230 −0.0348 −0.0575
0.278–0.392 393,799 232 0.1586 1.0695 0.0292 0.1260
0.392–0.498 462,074 309 0.2112 1.2140 0.0842 0.2962
0.498–0.604 456,527 252 0.1722 1.0021 0.0009 0.0578
0.604–0.718 417,431 250 0.1709 1.0873 0.0363 0.1499
0.718–0.847 315,966 137 0.0936 0.7872 −0.1039 −0.2315

0.847–1 174,109 67 0.0458 0.6986 −0.1558 −0.3608

NDBI

0–0.31 387,348 148 0.1012 0.6936 −0.1589 −0.3713

0.0286

0.31–0.40 703,249 319 0.2180 0.8235 −0.0843 −0.1620
0.40–0.49 679,386 397 0.2714 1.0608 0.0257 0.1701
0.49–0.6 446,322 368 0.2515 1.4969 0.1752 0.5632
0.6–0.71 206,242 148 0.1012 1.3028 0.1149 0.3133

0.71–0.82 115,551 46 0.0314 0.7227 −0.1410 −0.3251
0.82–1 87,906 29 0.0198 0.5989 −0.2226 −0.5172

>1 29,968 8 0.0055 0.4846 −0.3146 −0.7274

NDVI

0–0.34 13,538 1 0.0007 0.1341 −0.8726 −2.0127

0.0457

0.34–0.46 58,637 15 0.0103 0.4644 −0.3331 −0.7732
0.46–0.54 135,522 66 0.0451 0.8841 −0.0535 −0.1148
0.54–0.60 267,148 175 0.1196 1.1892 0.0753 0.2249
0.60–0.66 551,733 364 0.2488 1.1977 0.0784 0.3031
0.66–0.72 730,675 380 0.2597 0.9441 −0.0250 0.0203
0.72–0.78 577,435 350 0.2392 1.1004 0.0415 0.1973

0.78–1 321,284 112 0.0766 0.6329 −0.1987 −0.4701

1 

 

 

Figure 4. Topographical factors: (a) Digital Elevation Model (DEM), (b) Slope, (c) Aspect, (d) Plan
curvature, (e) Profile curvature, (f) Topographic relief, (g) Distance to rivers and (h) modified normalized
difference water index (MNDWI).
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(4) Relationships between collapse and lithology.
The lithology of An’yuan County is reflected by the types of rock and soil in this study. The types

of rock and soil represent the material basis of collapse and greatly affect the collapse evolution.
The values of PS and FR under the metamorphic rock are, respectively, up to 0.4388 and 1.3636,
and those under the clastic rock are, respectively, 0.3356 and 1.2971. In addition, under the condition
of both metamorphic and clastic rock types, the connection methods of IV and WOE have positive
correlations with collapse occurrence, and the IOE suggests that the factor of lithology has the highest
weight value of 0.2058 (Table 2). The other types of rock and soil are less distributed in this region.
In short, the occurrence of collapse is relatively high in the areas with metamorphic and clastic rock
types, and is relatively low in the areas with magmatic rock. In addition, very few carbonate rocks are
distributed in this region, and as a result, the rule of collapse occurrence in this region is not clear.

4.2. Preparation of Spatial Dataset

The whole study area was divided into 2,655,972 grid units under the grid resolution of 30 m× 30 m.
All of the 11 environment factors were reassigned by the calculation results of the five collection
methods, then these reassigned environment factors were used as input variables of CSP models.
At the same time, a total of 108 recorded collapse polygons were divided into 1463 collapse grid units,
which were assigned to 1, while the same number of randomly selected noncollapse grid units were
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assigned to 0. These collapse and noncollapse grid units were randomly divided into model training
sets and testing sets by a proportion of 70%/30%. Finally, all the grid units with connection values in
the study area were put into the four models, respectively, to calculate the CSIs, which were divided
into five levels: very high (10%), high (20%), m rate (20%), low (20%) and very low (30%).

4.3. Results of CSP Modeling in An’yuan County

4.3.1. CSP Using Heuristic Model: Analytic Hierarchy Process

Based on the calculation of the judgment matrix, the relevant parameters of the AHP model are:
CI of 0.1055, RI of 1.54 and CR of 0.068, indicating that the provided pairwise comparison matrix has a
reasonable level of consistency. Hence, the calculated weights of the environmental factors are reliable.
The final weights of the 11 environmental factors obtained after normalization treatment are as follows:
DEM (0.1101), slope (0.2504), aspect (0.0592), profile curvature (0.0413), surface curvature (0.0924),
topographic relief (0.0504), lithology (0.1412), distance to the rivers (0.0896), NDVI (0.0521), NDBI
(0.0693) and MNDWI (0.0481). The results show that slope and lithology contribute the most to the
collapse evolution in the study area. The weight values of environmental factors and model input
variables are imported into Equation (15) to calculate the CSIs of the study area. The model input
variables obtained under different connect methods are different from each other, which results in the
difference of the CSIs calculated by the AHP model.

4.3.2. CSP Using Conventional Mathematical Statistics Model: Multiple Linear Regression

The connection values of the 11 environmental factors calculated by the five connection methods
were normalized and then taken as inputs to the MLR model. The collinearity diagnosis and significance
test in the MLR were carried out to determine the suitable inputs. The results show that the variance
inflation factor (VIF) of the 11 selected environmental factors was all less than 3, with a weak correlation
and a significance of less than 0.05. All the environmental factors were statistically significant [89].
MLR modeling was carried out for collapse and noncollapse samples, and the regression coefficient
of each environmental factor and the goodness of fit of the MLR model were calculated under five
connection methods. The larger the regression coefficient is, the higher the contribution of the
corresponding environmental factors to collapse development is. The greater the goodness of fit,
the better the fitting effect. Among them, the goodness of fit is 0.606 at most, which is significantly
higher than that of other connection methods. The regression coefficient and VIF values of MLR
models under different connection methods are shown in Table 3. The CSIs of the whole study area
can be predicted by importing the connection values of each grid cell into the trained MLR model.

Table 3. Multiple linear regression coefficients (B) and constant terms.

Environmental
Factors

PS-MLR FR-MLR IV-MLR IOE-MLR WOE-MLR

B VIF B VIF B VIF B VIF B VIF

DEM 0.335 1.228 0.224 1.159 0.441 1.184 3.232 1.159 0.212 1.238
Slope 0.992 1.764 0.246 2.374 0.446 2.907 1.689 1.384 0.059 1.890

Aspect 1.295 1.051 0.147 1.051 0.308 1.055 2.182 1.050 0.108 1.046
Profile curvature 0.030 1.041 0.099 1.066 0.143 1.075 4.601 1.060 0.083 1.038
Surface curvature 0.897 1.114 0.086 1.341 0.161 1.393 0.951 1.330 0.068 1.286
Topographic relief 0.161 1.706 0.050 2.130 0.000 2.568 0.406 2.102 0.246 1.901

Lithology 0.803 1.141 0.223 1.070 0.424 1.088 1.081 1.070 0.115 1.106
Distance to rivers 0.950 1.069 0.124 1.059 0.340 1.077 1.828 1.056 0.114 1.101

NDVI 0.044 1.678 0.188 1.315 0.240 1.350 4.12 1.323 0.040 1.353
NDBI 0.307 1.672 0.170 1.304 0.412 1.349 5.931 1.301 0.173 1.053

MNDWI 0.445 1.026 0.308 1.053 0.672 1.046 0.168 1.034 0.185 1.042
Constant −0.771 −1.523 0.519 −1.523 0.427

R2 0.455 0.555 0.556 0.554 0.606
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4.3.3. CSP Using Machine Learning: C5.0 DT and RF

This paper uses the C5.0 software package in R Studio to build the C5.0 decision tree model.
The parameters of C5.0 model were obtained through cross-validation: the minimum sample size of
leaf nodes is 2; the maximum number of iterations of convergence is 100. Pruning was performed
using a bottom-up method and the severity of the pruning was 75%. The Boosting iteration number in
the C5.0 model was set to 10 and the confidence factor to 25. Other parameters were set as the default.
Similarly, the RF model was also built in R Studio. The random forest function was used to calculate
the out-of-pocket errors of different random forests. Generally speaking, the smaller the out-of-pocket
error is, the higher the model prediction accuracy is. The optimal number of random features is 4,
and the number of random forest decision trees is 500. Finally, the C5.0 DT and RF models were trained
and tested based on the collapse and noncollapse samples and the model input variables calculated
by the five connection methods. Then, the CSIs of the whole study area were predicted, respectively,
by the trained C5.0 DT and RF models. The R software used in this paper is from R Cran.

4.4. Creating Collapse Susceptibility Maps

The CSP was carried out in two steps under 20 coupled conditions. Firstly, the CSIs predicted
under each coupled condition were imported into ArcGIS 10.3 software. Then, the CSMs of the study
area were all divided into five levels as: very high (10%), high (20%), moderate (20%), low (20%)
and very low (30%). The CSMs under several typical coupled conditions are shown. The CSMs of
WOE-based models are shown in Figure 7 and the CSMs under the coupled condition of five collection
methods and RF model are shown in Figure 8. As shown in Figure 7, most areas of An’yuan County
are in low and very low levels, and the proportions of high and very high levels predicted by AHP and
MLR models are higher than those of low and very low levels. The results of AHP and MLR models
show that slope and lithology are the two most important environmental factors. Most of the collapses
were located in the mountainous and hilly areas with relatively steep slopes and moderate elevation,
which is consistent with the field survey results. As shown in Figure 8, under the same data-based
model, the CSLs obtained by the five connection methods were significantly different. Meanwhile,
the areas of low and very low levels obtained by the five different connection methods were also
very different.
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5. Uncertainty Analysis

5.1. Accuracy Analysis of ROC

The ROC statistical method was used to evaluate the prediction accuracies of samples in the
testing set. In order to further quantify the CSP performance of different models, the AUC value was
used as a specific evaluation index. The larger the AUC value is, the better the CSP performance of the
model is. The ROC curves under all the coupled conditions are shown in Figure 9. The WOE-RF model
has the highest prediction accuracy with an AUC value of 0.959. Furthermore, WOE shows the best
predictive accuracy compared with other connection methods in the same data-based model, and the
results of IOE, IV and FR are relatively consistent, followed by the PS-based model as shown in Table 4.
Meanwhile, it is proved that the RF model has better prediction accuracy than the other data-based
models in the CSP under all the connect methods. Furthermore, compared with traditional MLR and
heuristic models, the AUC of the machine learning model was improved by about 0.1 (Figure 9).
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(a) AHP, (b) MLR, (c) C5.0 and (d) RF models.

Table 4. Area under the ROC curve (AUC) values of different connection methods under different
data-based models.

Coupled Models
AUC Values

RF C5.0 MLR AHP Mean Value

PS 0.923 0.910 0.760 0.740 0.833
FR 0.927 0.908 0.825 0.805 0.866
IV 0.930 0.844 0.828 0.809 0.852

IOE 0.930 0.896 0.827 0.790 0.860
WOE 0.959 0.934 0.859 0.826 0.895

5.2. Distribution Rule of Collapse Susceptibility Index

The mean value and SD were used to reflect the average level and dispersion degree of CSI
distribution, respectively, and then the uncertainties of CSIs under coupled conditions were analyzed.
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(1) The distribution rules of the CSIs calculated by the WOE-based models are discussed as
shown in Table 5 and Figure 10; meanwhile, the distribution rules of the CSIs under the other coupled
models are similar to those of WOE-based models. The CSIs of the WOE-based models are ranked
by the mean value as follows: Mean (WOE-AHP) > Mean (WOE-MLR) > Mean (WOE-C5.0) > Mean
(WOE-RF). Among them, the CSIs of WOE-AHP and WOE-MLR models are normally distributed
and mostly concentrate in the moderate levels, indicating that the CSIs predicted by WOE-AHP and
WOE-MLR models are generally large. Combined with the AUC values of these coupled models,
it can be seen that the abilities of the AHP and MLR models to identify collapse susceptibility are low.
Moreover, the CSIs of RF and C5.0 models have similar distribution rules, which are concentrated in
the very low and low levels, and gradually decrease in the other levels. In addition, the dispersion
degree of these four models is exactly opposite to its mean value as follows: SD (WOE-RF) > SD
(WOE-C5.0) > SD (WOE-MLR) > SD (WOE-AHP). The results show that RF and C5.0 models have a
good differentiation degree for the CSIs of the region, and can well reflect the differences of the CSIs
in different grid units. Moreover, fewer high CSIs were used to reflect as much known collapses as
possible, which indirectly indicates that advanced machine learning models can predict the collapse
susceptibility more effectively.

(2) Taking RF model as an example, the distribution rules of the CSIs predicted by different
collection methods was analyzed, as shown in Table 5 and Figure 11. The mean value ranking of the
CSIs of different connection methods is: Mean (WOE-RF) > Mean (IOE-RF) > Mean (FR-RF) > Mean
(IV-RF) > Mean (PS-RF). The ranking of the SD is: SD (PS-RF) > SD (WOE-RF) > SD (IOE-RF) > SD
(FR-RF) > SD (IV-RF). From the above comparisons, it can be seen that the mean value of the CSIs of
the WOE connection method is the lowest, with a large SD. The CSIs results of IOE-, FR- and IV-based
machine learning models are consistent, while the PS-based machine learning models exhibit the worst
CSP performances with the highest means and the lowest SDs. Under all kinds of connect methods,
the CSIs of C5.0, MLR and AHP all show almost the same CSP rules as the RF model.
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Table 5. Mean and standard deviation of different connection methods under different
data-based models.

Coupled
Models

RF C5.0 MLR AHP

Mean Value SD Mean Value SD Mean Value SD Mean Value SD

PS 0.395 0.246 0.259 0.345 0.540 0.141 0.548 0.143
FR 0.273 0.224 0.267 0.339 0.513 0.130 0.606 0.134
IV 0.290 0.219 0.313 0.263 0.596 0.132 0.609 0.192

IOE 0.269 0.227 0.383 0.300 0.513 0.130 0.594 0.192
WOE 0.223 0.236 0.229 0.340 0.321 0.254 0.517 0.171

5.3. Difference Significance Analysis of the CPS Results

The significant difference level and mean rank were used to further analyze the uncertainties of the
CSP models coupled with the collection methods and data-based models. Specifically, the Friedman
two-factor ANOVA analysis and test method by rank were used to test the difference significance
of the CSIs predicted under the conditions of any two groups of different connection methods and
data-based models. If the significance of the test results is less than 0.05, the CSIs of the two groups
is significantly different, and the null hypothesis is rejected (there is no difference between the CSIs
in the groups). Through the significance test of paired factors, the probability values of a hypothesis
(p-values) were found to all be less than 0.05, with significant differences. Therefore, it was necessary
to cross-verify the connection methods and the data-based models.

At the same time, this test was also used to calculate the mean ranks of CSIs predicted by the
models coupled with the collection method and the data-based model, and to rank the performance
of the coupled CSP models. If the average rank is smaller, the model performance will be better.
The comparison results of any pair of models in the group are shown in Table 6. WOE-RF has a
mean rank of 4.82, ranking the highest, followed by the WOE-C5.0 (5.30), and other WOE-based
models. The CSP performances of the FR-based, IV-based and IOE-based machine learning models
are consistent, while the PS-AHP model ranks as the worst. The significance difference level and the
mean rank indicate the uncertainty features of the coupled collection methods and data-based models.
Avoiding these uncertainties is important for obtaining reliable and stable CSP results.
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Table 6. Mean rank of different connection methods under different data-based models.

Coupled Models
Mean Rank

RF C5.0 MLR AHP

PS 9.28 7.12 13.15 13.74
FR 6.34 7.36 11.61 12.02
IV 6.85 7.41 12.91 13.49

IOE 6.06 9.08 11.68 12.00
WOE 4.82 5.30 8.52 9.44

6. Discussion

6.1. CSP Modeling under Different Collection Methods

The impact degrees of each attribute interval of the environmental factors on the collapse
susceptibility were quantitatively calculated by connection methods, which were used as the input
variables of the data-based models to predict the spatial probability of collapse occurrence. In the
classification processes of attribute intervals of environmental factors under different connection
methods, the WOE can more effectively reflect the effects of spatial information on collapse than the
other four connection methods and has a better prediction accuracy. Compared with IV and IOE
methods, FR is more intuitive, which can guarantee the prediction accuracy and effectively avoid
too complicated statistical calculations. The PS method reflects the contribution rate of collapse to
the attribute interval, but fails to fully reflect the spatial correlations between collapses and attribute
intervals of environmental factors. The more fully the correlation expression of spatial information
between environmental factors and collapse, the greater the degree of differentiation of the CSIs,
and the better the effect of CSP modeling. Furthermore, for the five nonlinear connection methods of
PS, FR, IV, IOE and WOE, the mean values of the CSIs calculated by the coupled the data-based models
decrease gradually, while the corresponding SD values increase gradually; meanwhile, the change
trend of mean ranks of CSIs calculated by the coupled the data-based models are the same as the
rules of mean values, and it can be seen that the modeling performance of the five collection methods
become better and better when using PS, FR, IV and IOE to WOE methods.

6.2. CSP Modeling under Different Data-Based Models

Under the coupled conditions of the same connection method and different data-based models,
the prediction accuracies of all coupled models show a consistent rule: AUCRF > AUC C5.0 > AUC MLR

> AUC AHP, which shows that the prediction accuracies of machine learning models are higher than
that of a conventional regression model and heuristic model. Analysis of the characteristics of CSIs:
the CSIs predicted by the RF model are exponentially distributed (Figure 11), and the mean value of
CSIs are in the transition zone between very low and low levels; the CSIs predicted by the C5.0 model
are relatively discrete and these mean values are only higher than RF; however, the CSIs predicted by
MLR and AHP tend to be normally distributed, with large mean values and in the moderate level,
as shown in Figure 10. Compared with a conventional heuristic model and linear regression model,
the CSIs predicted by machine learning models are more centralized in terms of distribution in very
low and low levels. Meanwhile, the machine learning models are more accurate in predicting very
high and high levels, and most historical collapse events fall in these levels. In addition, the SD values
of the CSIs predicted by the MLR and AHP are smaller than those predicted by the machine learning
models, which indicates that the CSIs obtained by MLR and AHP are not differentiated enough and the
prediction accuracy is poor. As a whole, the AHP, MLR, C5.0 and RF models exhibit better prediction
performances in turn from the characteristics of CSIs and prediction accuracy, as shown in Section 6.4.
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6.3. CSP Modeling under Coupled Conditions of Connection Methods and Data-Based Models

From the perspective of the coupled models, the CSP accuracy of the WOE-RF model is the
best, while that of the PS-AHP model is the worst. In addition, the PS-RF model can also achieve
good CSP accuracy (AUC = 0.923). Compared with heuristic models and linear statistical models,
machine learning models have stronger robustness in noise environments, can fully and efficiently
mine incomplete information and the training and testing effects of CSP modeling are excellent [90].
Furthermore, the RF model is more stable and has more advantages than the C5.0 DT model. Heuristics
and statistical models rely on the collection methods, and the more obvious the statistical rule of
collection methods, the better the prediction accuracy [6].

RF is a supervised integrated learning algorithm based on a decision tree, which is more accurate
than individual algorithms such as C5.0 and MLR. Due to out-of-pocket data, unbiased estimation
of true error is obtained in the process of model generation without loss of training data. With the
introduction of sample and characteristic randomness, RF has certain anti-noise and anti-overfitting
ability in the testing process. As a combination of multiple classification trees, RF can process nonlinear
data and high-dimensional data without making a feature selection. Meanwhile, RF can process both
discrete and continuous data with strong adaptability to datasets, so it is suitable to be used as a
nonlinear classification model.

Friedman analysis and test method were used to verify the difference of CSP performance of
coupled models. The CSIs predicted by of WOE-based models are significantly different from those
predicted by the coupled of other connection methods and the data-based models. Compared with
the other data-based coupled models, the CSP performance of the RF model coupled with the five
collection methods has a significant difference. Moreover, the WOE-RF model exhibits the best CSP
performance, with the lowest mean rank and the best predicted accuracy. The results of this study can
guide the selection of the best combination of collapse connection methods and data-based models
in other research areas. Although these results are obtained in the areas with mountainous and hilly
terrains, they can be generalized to other regions as a guideline or alternative method for selecting the
best combination.

6.4. CSP Modeling under Single Data-Based Models with No Connect Methods

This paper also conducts CSP modeling based on the original continuous environment factors
data without the connection method. That is to say, the original continuous environment factors data
were directly used as input variables of the four types of data-based models. Then, these models
were trained and tested based on the appropriate parameters similar to the above model, respectively.
The prediction accuracy of these single data-based models with no connect methods were slightly
lower than those of the coupling model using the connection method (Figures 12 and 13). In addition,
the distribution rule of the collapse susceptibility maps created by the coupling models and single
models were similar as a whole. In order to improve the modeling efficiency of CSP, a single machine
learning model can be used directly. However, in order to better reflect the spatial correlations between
the collapse distribution and basic environmental factors or to analyze the influence rules of each
subinterval of environmental factors on the evolution of collapses, the coupling models considering
the connection method need to be adopted.
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7. Conclusions

Some uncertainty problems in CSP modeling, such as nonlinear correlation methods coupled
with data-based models to obtain the optimal coupled conditions, are very important for predicting
the accurate and reliable CSMs. This paper discusses these uncertainties in depth and comes to the
following conclusions:

(1) Compared with the other four connection methods, WOE better reflects the nonlinear correlation
between collapse and related environmental factors and has a better spatial information
discrimination ability regarding environmental factors. Compared with the CSP modeling
based on the FR, IV and IOE, the CSP accuracies of the WOE-based models are the highest,
with the lowest mean values, average ranks and larger SDs. Meanwhile, the CSP accuracies of
the three types of the FR, IV and IOE connection methods tend to be consistent, and their CSP
performances are not as good as those of the WOE-based models. In addition, the prediction
results of PS-based models are poor.

(2) Compared with other kinds of data-based models, the RF model has the highest CSP accuracy,
with the lowest mean value and mean rank of the CSIs and a larger SD, followed by the C5.0,
MLR and AHP models. It can be seen that the advanced machine learning models can effectively
improve the CSP accuracy, and the collapse susceptibility identification ability is significant.



Remote Sens. 2020, 12, 4134 24 of 28

(3) Under the coupled conditions of different collection methods and data-based models, the CSP
accuracy of the WOE-RF model is the highest with the lowest mean value and mean rank.
The predicted CSIs of WOE-RF model is more in line with the actual characteristics of collapse
probability distribution than the other coupled models. On the contrary, the PS-AHP model has
the lowest prediction accuracy with a larger mean value and mean rank and smaller SD value.

(4) In general, the CSP performance of single data-based models not considering connect methods
was slightly worse than those of the connection method-based models. The comparison results
further demonstrate the importance of spatial correlation analysis of environmental factors for
CSP modeling.

(5) Although this study mainly analyzes the uncertainty rules of CSP modeling under the conditions
of different data-based models and connections between collapses and environmental factors,
the conclusions of this study also have some reference values for other kinds of geological
disasters’ (landslide, debris flow, etc.) susceptibility predictions. This is because the evolution
processes of these geological disasters are closely related to various environmental factors in the
spatial perspective.
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