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Abstract: Illegal open-pit mining causes environmental harm and undermines sustainable
development. Conventional monitoring approaches such as field research and unmanned aerial
vehicle (UAV) imagery are time-consuming and labor-intensive, making large-scale monitoring
difficult. In comparison, optical remote sensing imagery can cover large areas but is vulnerable to
adverse weather conditions and is not sensitive to vertical ground changes. As open-pit excavation
causes sudden changes in the scattering properties of ground objects along with dramatic vertical
deformation, we evaluated the feasibility of using interferometric synthetic aperture radar (InSAR)
coherence to identify illegal mining activities. Our method extracts the coherence coefficient from
two SAR images taken on different dates, applies thresholding and filtering to extract a decorrelation
map, and then overlays this with legal mining boundaries and optical satellite images to identify
illegal mining activities. For three test cases in southwestern Inner Mongolia, China, 49 legal mining
sites were correctly detected (with an accuracy of 90.74%) as well as six illegal mining sites. Ground
truthing confirmed the presence of ongoing activity at one of these sites. Our study shows that
InSAR coherence is suitable for the identification of mining activities, and our method provides a
new approach for the detection and monitoring of illegal open-pit mining.
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1. Introduction

Mineral resources are an important aspect of economic development, playing an important role in
urbanization, infrastructure construction, and national security [1]. China’s ongoing emphasis
on environment protection and structural reforms on the supply side has led to revised coal
industry policies, resulting in the shutting down of mines with out-of-date production methods [2–4].
However, high demand has led to extensive illegal activities, such as unlicensed mining, operations in
unauthorized areas, and extraction beyond permissible amounts [5,6]. These practices can cause serious
environmental problems while degrading national mineral resource stocks [7]. Unlike underground
mines, surface mines are usually more profitable due to easier and lower-cost exploitation. Open-pit
mines are, therefore, more susceptible to illegal activities, requiring effective monitoring. Conventional
approaches such as field research and monitoring using unmanned aerial vehicles (UAVs) are
time-consuming, labor-intensive, and difficult to apply at a large scale. In comparison, surface change
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detection using optical satellite images can facilitate monitoring on a large scale, yet optical images
are susceptible to adverse weather conditions as well as sun illumination. Additionally, most of
these methods are two-dimensional, making it impossible to detect the vertical changes caused by
open-pit mining. Worse still, to avoid surveillance, many illegal mining activities are undertaken at
night, making them even more difficult to detect remotely. Therefore, we are in urgent need of a new
approach to address such a problem.

Synthetic aperture radar interferometry (InSAR) can enable both high-resolution and large-scale
ground monitoring while, at the same time, is not susceptible to adverse weather conditions or
acquisition time. Consequently, this technique is increasingly preferred by researchers. Initially,
the technique was mainly applied to three-dimensional (3D) surface reconstruction, mapping, and
surface-change detection; later it was broadened to differential InSAR (DInSAR) for motion-based
studies of seismic deformation, volcanic motion, glacial drift, urban deformation, landslides, and
mining-induced deformation [8–13]. So far, several studies utilizing DInSAR in the monitoring of
illegal mining have been conducted. For example, [14] designed an underground mining detection
system based on DInSAR and [5] integrated both DInSAR and geographical information system
(GIS) technology to identify illegal underground mining. However, these studies are specifically
targeting underground mining detection as this kind of excavation usually results in gradual surface
subsidence, this is easy to detect. For open-pit mines, excavation can easily shift the reflectivity of
ground features and cause extensive deformation, resulting in a discontinuous phase of radar echoes,
which is termed as decorrelation [15,16]. It acts as a kind of noise and makes DInSAR unsuitable
for such an application. To avoid decorrelation, [17] used 18 images from the TerraSAR-X satellite
to perform a whole time-series process, which required a significant amount of time and calculation
effort as well as financial cost. Offset-tracking techniques [18–20] can also be applied to such scenarios,
although these are also resource-intensive.

The coherence of repeat-pass SAR images describes the degree of correlation between
acquisitions [21]. This evaluates the quality of local interferometric fringes and provides scattering
information for ground objects. The generation of coherence map is much easier comparing to InSAR
results, thus, this metric has been proved to be efficient as well as versatile and can be applied to
many fields including water body recognition [22–25], disaster monitoring and relief [26–29], forest
biomass extraction [30–33], target detection, and archeological protection [21,34–37]. As for mining
applications, [38] used coherence maps to identify underground mining-induced surface collapse. [39]
mentioned identifying possible illegal mining sites while performing archeological reservations on raw
coherence maps, and [40] introduced the coherence map to distinguish abandoned or closed opencast
mines from active ones. Therefore, there still lacks a systematic and more focused means for rapid and
effective identification of illegal open-pit mining activities.

In this study, we sought to turn the problem of decorrelation into an advantage; as the sudden
changes in reflectivity features caused by open-pit mining lead to DInSAR decorrelation, this can
become an indicator of mining activity. Thus, we put forward a fine process for identification of
illegal excavations, we used SAR data to form coherence maps, after geocoding was performed using
digital elevation models, the coherence map of each study area was obtained. We then introduced an
adaptive thresholding and filtering method to extract decorrelation areas. By overlaying these analyses
with mining right distribution maps, the location of potential legal and illegal mining activities could
be detected. In addition, as several factors other than mining activity can also cause decorrelation,
optical images were used to ground-truth our analysis outputs and eliminate non-mining-induced
decorrelation to finally identify legal and illegal mining activities (Figure 1). We also evaluated our
results using mining survey data, comparative experiments, and field research.
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Figure 1. Workflow for interferometric synthetic aperture radar (InSAR) coherence identification of
illegal open-pit mining activity.

2. Materials and Methods

2.1. Study Area

The Chinese region of Ordos City in southwestern Inner Mongolia covers 87,000 km2, up to
70% of which overlays coal deposits with proven reserves of 150.1 billion t, which accounts for 1/6
of national coal reserves [41,42]. By the end of 2014, there were 332 mine sets in this area, including
139 open-pit mines [43], providing an ideal area to conduct this study. Three study areas with
different ground features were chosen to apply our identification scheme to evaluate the feasibility of
illegal mining identification using InSAR coherence under different ground conditions. Study area A
(39.767◦N~40.051◦N; 109.835◦E~110.156◦E) is mainly an urban region with intense human activity,
study area B (39.283◦N~39.669◦N; 110.488◦E~110.855◦E) is dominated by mountainous terrain, and
study area C (39.472◦N~39.925 ◦N; 110.106◦E~110.486◦E) is also mountainous with fluvial influences
(Figure 2). Study area B and C exhibit little human activity but large vegetation coverage, but our
experiment was conducted in winter and the optical images showed little vegetation existence due
to defoliation.
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Figure 2. Data coverage and the location of the study areas. Red, blue and yellow rectangles represent
the coverage of study areas, synthetic aperture radar (SAR), and optical data, respectively.

2.2. Input Data

We acquired four SAR images from the European Space Agency’s (ESA) Sentinel-1 Interferometric
Wide (IW) swath platform, which has a wide coverage area, appropriate resolution, and a revisit
interval of 12 d [44]. Such a short revisit window is good for change detection as it can minimize the
impact of other decorrelation sources. The four SAR images formed two pairs (2017-11-07–2017-11-19,
2017-11-14–2017-11-26) for coherence extraction. In addition, we acquired four optical images from
the ESA’s Sentinel-2 platform. Of the 13 bands available, the red, green, and blue bands at a 10-m
resolution were most suitable for ground object identification [45]. Cloud coverage in the optical
images was less than 5%, making the effects of such interference minimal. To avoid errors caused by
differences in the acquisition date between the datasets, the selected optical images were obtained
during SAR acquisitions on 20 November 2017 (Table 1). Besides, NASA’s Shuttle Radar Topography
Mission (SRTM), the digital elevation model (DEM) was used for SAR data geocoding [46]. The mining
rights distribution map for 2017 was obtained from Henan Institute of Geological Survey, China.

Table 1. SAR and multispectral imagery used in this study.

Platform Orbit * Acquisition Date Pass Direction Production Type Purpose

Sentinel-1A 19158 07-11-2017 Ascending SLC
Coherence
extraction

Sentinel-1A 19260 14-11-2017 Ascending SLC
Sentinel-1A 19333 19-11-2017 Ascending SLC
Sentinel-1A 19435 26-11-2017 Ascending SLC
Sentinel-2A 12599(49TDE) 20-11-2017 Descending MSIL1C

Reference
image

Sentinel-2A 12599(49SDD) 20-11-2017 Descending MSIL1C
Sentinel-2A 12599(49TEE) 20-11-2017 Descending MSIL1C
Sentinel-2A 12599(49SED) 20-11-2017 Descending MSIL1C

* The tile identifier for each optical image is shown in parentheses
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2.3. Coherence and Decorrelation

The coherence coefficient (γ), a quantitative representation of coherence, is expressed as

γ =

∣∣∣∣∑m
i=1

∑n
j=1 M(i, j)S∗(i, j)

∣∣∣∣√∑m
i=1

∑n
j=1

∣∣∣∣M(i, j)
∣∣∣∣2 ∑m

i=1
∑n

j=1

∣∣∣∣S(i, j)
∣∣∣∣2 , (1)

where M and S are SAR acquisitions, * indicates the complex conjugate, m and n are the window sizes
of the local window, and (i, j) are the pixel coordinates. The value of γ ranges from 0 (decorrelated) to 1
(fully correlated).

Coherence is affected by many factors and can be generalized as follows [16]:

γ = γthermal.γdoppler.γprocessing.γtemporal.γgeom.γvol, (2)

where γthermal is thermal noise decorrelation, γdoppler is Doppler centroid decorrelation, γprocessing is
data processing decorrelation, mainly because of image misregistration, these three factors affect
the entire scene of data, making little difference to the local decorrelation [47]. γtemporal is temporal
decorrelation, γgeom is geometric decorrelation, γvol is the volumetric scattering decorrelation, these
three factors matter in our study. Temporal decorrelation is caused by surface changes between SAR
acquisitions [48,49]. In this study, the excavation of open-pit mines changes the reflection characteristics
of ground objects over a short time period, thereby introducing decorrelation. Geometric decorrelation
is caused by changes in the looking angle of the sensor, causing the acquisition of non-overlapping
bands of the ground wavenumber spectra [50]. Volumetric decorrelation is usually caused by volume
scattering due to vegetation coverage. These two factors also need to be eliminated while identifying
excavation. Therefore, we introduced an optical image in our study for ground truth checking to
address such a problem.

2.4. Decorrelation Extraction

The two sets of SAR data were preprocessed with a 5 × 1 multi-looking scale and coherence
determined with a 3 × 3 window. After geocoding using a Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM), we obtained a coherence map for the study region from which the
study areas were extracted (Table 2). Open-pit excavation brings the coherence coefficient of these areas
significantly lower than in the surroundings, identifiable as a darker color as shown in the coherence
maps in Table 2. Based on this, Otsu’s automatic thresholding algorithm was applied to identify the
decorrelation areas [51]. As a classic image segmentation threshold method, this technique analyzes
the maximum inter-class variance of the difference between an image target and the image background
and obtains the optimal threshold. Since this ignores the influences of non-gray values, it is a simple
yet efficient tool that is widely used in digital image processing fields. For images with a single-peaked
histogram, such as the coherence map in this case (“Histogram” in Table 2), Otsu algorism shows a
better thresholding performance.

In each case, the segmentation threshold for an image target and background is set to T, and the
variance between these classes is denoted by g(T), thus

g(T) = ω0ω1(µ0 − µ1)
2, (3)

where ω0 is the proportion of pixels in the target with an average gray value of µ0, and ω1 is the
proportion of background pixels with an average gray value of µ1. The traversal method is then used
to maximize the inter-class variance, g(T), to derive the optimal threshold T. Since the decorrelation
areas occupied a relatively small portion of the coherence map, here, T was assigned with an impact
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factor of 0.6 to obtain the decorrelated areas. These areas were set as white in the resulting maps to
improve the identification in the subsequent overlays (“thresholding” in Table 2).

Due to the large coverage of each threshold map, using a smaller sized median filter window
cannot eliminate noise properly, too large sized window will erase some of the decorrelation areas.
After a few tryouts, a median window (25 × 25) brought reasonable results and were used to remove
noise speckles while still retaining the decorrelated areas (“median filtering” in Table 2).

Table 2. Refining process for coherence maps of the study areas.

Study Area A B C

Coherence map

Histogram

Threshold-ing

Median filtering

2.5. Illegal Mining Identification

Once decorrelation maps had been extracted, they were overlaid with the mining rights distribution
map to discriminate legal and illegal excavations. However, the mining rights map describes permitted
mining areas stipulated by law rather than actual excavation areas. Therefore, we needed to distinguish
open-pit mining-induced decorrelation from other factors from optical imagery. Here, Sentinel-2A
optical images were introduced and subjected to atmospheric correction, resampling, and band
re-composure, which were then used for ground-truthing. Here automated classification methods can
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be adopted including supervised/unsupervised classification, support vector machines (SVMs), deep
learning, and computer vision algorithms. However, the classification accuracy of these approaches is
never perfect. Thus, to avoid introducing further error, and given the decorrelation areas were not too
numerous, we identified the decorrelation areas manually on the optical images.

We processed Sentinel 2 optical images by radiometric calibration and atmospheric correction,
selected the red, blue, and green bands to form a 10 m resolution map of the study areas, and then
overlaid this with the decorrelation maps (30% transparency) and the mining rights distribution map
to identify both legal and illegal open-pit mine excavations. The discrimination process is shown
schematically in Figure 3. For the identification of illegal mining sites, the decorrelation map, optical
image, and mining rights distribution map were all necessary; the decorrelation maps were used to
identify ground changes, the optical images were used for ground-truthing, and the mining rights
distribution maps were used to determine whether the identified excavations are legal or illegal.
Any decorrelated areas corresponding to open-pit mines in the optical images must have experienced
excavation between the two SAR acquisitions. Any such areas that did not correlate with legal mining
rights were subsequently classified as illegal mining sites.

Figure 3. Workflow for identifying illegal mining using overlaid maps.

3. Results and Discussion

Figure 4 shows the optical maps overlaid with the decorrelation maps (with 30% transparency)
and the mining rights distribution map, using different colors to represent different mineral deposits.
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Figure 4. Overlay maps of decorrelation, mining rights, and optical imagery.

As we only obtained the mining right distribution map for Ordos, other cities were not taken into
consideration in this study, even where decorrelation occurred. Using the mining rights distribution,
we found that, in general, the size of open-pit coal mines was larger than other kinds of mines. All the
study areas were dominated by open-pit coal mines, with a few other types of mine scattering around
them. Most of the decorrelation that occurred in study area A and B lay inside the mining right
boundaries and were correlated with visible open-pit mines. With a river running through study area
C and given the absorption of radar echoes by water, a large area of linear decorrelation was found
here. After acquiring the overlay map, we manually check the optical mapping of each corresponding
decorrelated area to produce an illegal mining identification map (Figure 5). To verify the results, we
used the mining survey data for Ordos (acquired from Henan Institute of Geological Survey, China),
which indicated the actual areas of excavation in November (shown in Figure 5 with red boundaries).
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Figure 5. Illegal mining areas identification map for the three study areas overlaid with mining survey
data indicating actual areas of excavation.

Across all the study areas, our method identified 81 decorrelation areas. Based on visual inspection,
60 of these were open-pit mines with 54 laying inside the mining rights boundaries and were, thus,
identified as legal mining areas. The remaining six areas were not located inside the legal boundaries
and were, therefore, defined as illegal mining sites. In addition, 21 decorrelation areas were not
classified as open-pit mines, being water bodies, vegetation, or topographically low areas. To verify the
results further, we considered the mining survey data to represent the actual areas of excavation (red
circles in Figure 5). As the resolution of SAR data is not high, decorrelation areas, and the confirmed
excavation site boundaries do not fit perfectly. Given our study is to define whether the excavation is
illegal or not, so if decorrelation appears in the confirmed mining areas, we assume this site is well
verified. In this way, a total of 49 of the identified legal mining sites corresponded to actual excavation
sites on the survey map, representing an identification accuracy of 90.74%. However, our method
identified five excavation areas that did not appear on the survey data. Eight sites were miss identified.
Detailed statistics for each study area are shown in Table 3.
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Table 3. Identification results and verification statistics for mining sites in the three study areas.

Study
Area

Identification Results Corresponding to Mining Survey Accuracy
* (%)

Commission
Error ** (%)

Omission
Error *** (%)Legal Illegal Non-mining On-Site Off-Site Miss

A 17 0 6 14 3 1 82.35 17.65 6.67
B 26 3 5 26 0 2 100 0 7.14
C 11 3 10 9 2 5 81.82 18.18 35.71

Total 54 6 21 49 5 8 90.74 9.26 14.04

* Accuracy = On-site/Legal; ** Commission error = Off-site/Legal; *** Omission error = Miss/(On-site + Miss).

The identification accuracy of each study area was higher than 80%; however, the miss rate in
study area C was not negligible at 35.71%. This was because of four small-scale existing actual mining
sites sited along the river. Such small-scale excavation was not easily detected using the 20-m resolution
SAR images and, even if detected, would have likely been filtered out by the median filter method.
Higher-resolution SAR data would be needed to address this problem. In addition, these small-sized
sites were other kinds of open-pit mines (i.e., not coal mines). Thus, when only considering coal mining
as the predefined target mine type, the miss rate for study area C was 10%, and the overall miss rate
across all three sites is reduced to just 7.55%. With respect to the illegal mining sites we identified, five
out of the six sites were located adjacent to known mining rights boundaries (three in middle left part
of study area B and two in the lower left part of study area C). These illegal mining sites reflect the
common occurrence of mining beyond authorized areas, with only one of the illegal sites being located
far from the existing mining rights boundaries.

It was clear from our analysis that mining activities during the monitoring period focused on
open-pit coal mining rather than other types of mining. There are two main reasons for this, namely
weather conditions and the relationship between supply and demand. Ordos lies in a high-latitude
and high-altitude region with an average temperature in November below 0 ◦C and strong winds.
Such unfavorable weather conditions usually prevent most excavations. However, coal has accounted
for approximately 70% of China’s energy consumption for several years [52], leading to a significant
increase in demand. In addition, in November, China’s regional central heating begins and continues
for the following four months, and 90% of the energy consumed by regional central heating comes
from coal [53]. Therefore, in the case of most open-pit coal mines, during winter, excavation continues
to meet the needs of energy supply.

To rule out the possibility that decorrelation extracted using our method was caused by the ground
features of open-pit mines themselves rather than excavation, a comparative test case was designed
and carried out for study area B. For this, two further SAR images (with the same time interval as
in the 2017 analysis) were obtained for 2018 (Table 4) and analyzed using the same techniques for
comparison (Table 5).

16 February 2018, was a Chinese traditional Spring Festival, marking the beginning of the Spring
Festival vacation that lasts 7–15 days for most industries when mining activities had mostly ceased.
As shown in Table 5, the coherence map during this period showed a higher overall coherence
coefficient. Most of the low coherence regions (dark regions) in the previous analysis showed good
coherence in the comparative test. By comparing the decorrelation maps, the results were more distinct;
only four decorrelation areas were extracted during the Spring Festival and two of them, laying in the
upper right areas, were caused by topographical factors and were consistent with the previous analysis.
This left two other decorrelation areas that are attributed to excavation. From the comparative test,
we could determine that when the excavation of most of the open-pit mines was suspended (due to
the Spring Festival), the ground features of open-pit mines did not produce decorrelation. Thus, the
possibility of the ground features of open-pit mines causing decorrelation was eliminated.
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Table 4. Summary of datasets used for comparative testing.

Platform Orbit Acquisition Date Pass Direction Production Type

Sentinel-1A 20558 11-02-2018 Ascending SLC
Sentinel-1A 20733 23-02-2018 Ascending SLC

Table 5. Comparison result.

Data Source Coherence Map Decorrelation Map

07-11-2017–19-11-2017

11-02-2018–23-02-2018

To verify the identified illegal mining sites, a UAV-equipped field research team visited the three
detected illegal mining sites in study area B and collected ground-based and aerial imagery soon after
the remote sensing analysis. However, ongoing illegal mining was detected in only one of the sites.
Here, several digging excavators and moving trucks fully loaded with coal were recorded (Figure 6a–d).
Figure 6e,f also showed UAV images of coal piles, excavation tracks, and various other equipment
demonstrating the existence of the ongoing illegal mining activity.

Although our field research only confirmed illegal mining at one of the three potential sites in
study area B, this does not necessarily indicate that our approach is deficient or that illegal mining is not
active at the other sites. All three areas must have experienced some ground deformation during the
monitoring period, which led to the decorrelation. Indeed, most illegal mining is conducted secretively.
It is, therefore, possible that illegal mining is occurring at these sites but that this was not detected in the
field. Due to satellite revisit intervals, it is not yet possible to achieve real-time monitoring. For illegal
mining, such activity must be detected as soon as possible to minimize its damage. The smallest data
acquisition time-window possible would, therefore, be favorable (12 days for Sentinel-1), and shorter
SAR intervals could be applied. Alternatively, different SAR datasets for the same areas could be used
to fill the time gaps, although this introduces data compatibility issues and requires further study.



Remote Sens. 2020, 12, 367 12 of 15

Figure 6. Field photos of possible illegal mining activity in study area B: (a–d) ground-based video
frames of excavators and moving trucks; (e–f) unmanned aerial vehicle (UAV) images of coal piles and
other mining equipment.

4. Conclusions

Although decorrelation is often a barrier to DInSAR application, we used this as an advantage
for identifying active excavations related to open-pit mining. Using the coherence of just two SAR
images avoids complicated DInSAR calculations and improves processing efficiency. Our case study
in southwestern Inner Mongolia successfully identified 49 legal mining sites with an overall accuracy
of 90.74% and commission error of 9.26%. Although the overall miss rate was 14.04%, considering only
open-pit coal mines, the miss rate was just 7.55%. Across all the three study areas, six illegal mining
sites were identified and in study area B, at which ongoing illegal mining activity was confirmed at
one site.

Overall, our work shows the feasibility of using InSAR coherence to identify illegal mining activity.
The extraction results in three distinct study areas illustrate the applicability of our method in different
scenarios and can be applied to other areas suffering from illegal mining. Certain difficulties remain,
however. To extract illegal excavation from InSAR coherence, the intervals between SAR acquisitions
cannot be too long, or other ground feature changes than excavation (i.e., defoliation due to seasonal
change) could blend in, making it harder for our method to be implemented. Besides, due to SAR
data resolution limitations, very small-scale open-pit mining may not be detected using our method,
to address this problem higher-resolution SAR data are needed. Another limitation of the developed
approach is that it was only intended to identify the locations of illegal mining activity rather than its
extent. Further study is, therefore, needed to further develop these methods to quantitatively evaluate



Remote Sens. 2020, 12, 367 13 of 15

open-pit mining extent using SAR data. As well as adopting a broader range of datasets and focusing
on the development of a time-series surveillance system for better monitoring of excavation activity.
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