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Abstract: Currently, the accurate estimation of the maximum snow water equivalent (SWE) in
mountainous areas is an important topic. In this study, in order to improve the accuracy and
spatial resolution of SWE reconstruction in alpine regions, the Sentinel-2(MSI) and Landsat 8(OLI)
satellite data with the spatial resolution of tens of meters are used instead of the Moderate-resolution
Imaging Spectroradiometer (MODIS) data so that the pixel mixing problem is avoided. Meanwhile,
geostationary satellite-based and topographic-corrected incoming shortwave radiation is used in the
restricted degree-day model to improve the accuracy of radiation inputs. The seasonal maximum
SWE accumulation of a river basin in the winter season of 2017–2018 is estimated. The spatial and
temporal characteristics of SWE at a fine spatial and temporal resolution are then analyzed. And the
results of reconstruction model with different input parameters are compared. The results showed
that the average maximum SWE of the study area in 2017–2018 was 377.83mm and the accuracy of
snow cover, air temperature and the radiation parameters all affects the maximum SWE distribution
on magnitude, elevation and aspect. Although the accuracy of other forcing parameters still needs
to be improved, the estimation of the local maximum snow water equivalent in mountainous areas
benefits from the application of high-resolution Sentinel-2 and Landsat 8 data. The joint usage of
high-resolution remote sensing data from different satellites can greatly improve the temporal and
spatial resolution of snow cover and the spatial resolution of SWE estimation. This method can
provide more accurate and detailed SWE for hydrological models, which is of great significance to
hydrology and water resources research.

Keywords: snow water equivalent; high resolution; reconstruction; Landsat 8; Sentinel-2;
mountainous area; pixel mixing problem

1. Introduction

Seasonal snowmelt in the mountainous areas affects the life of billion people around the world [1],
it provides enough water for the snowmelt season in basin, and is also used for soil and cropping
purpose in the later stages of snowmelt [2]. In the arid areas of high and middle latitudes in China's
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interior, the contribution of runoff from mountain snowmelt reaches more than 80% [3,4]. In addition,
in the context of the climate transition from warm and dry to warm and wet in northwest China,
the hydrological process of rivers in northern Xinjiang has a significant response to climate change and
increased snow cover, leading to an earlier flood season and an increase in peak flow. The northern
Xinjiang is one of the areas exhibiting frequent snowmelt flood disasters in Xinjiang [5]. Therefore,
the assessment of maximum snowpack volumes plays an important role in regional water resource
management and flood prevention [6–8].

The snow water equivalent (SWE), as an important variable in the earth system, reflects the
amount of water resources in the form of snow. The SWE is also the main factor influencing river runoff,
the regional water resources supply, and flood safety during the snowmelt period. Therefore, accurate
acquisition of the snow water equivalent is of great significance for studies on hydrology, meteorology,
the water cycle, and global climate change [8,9]. However, accurate estimation of the watershed SWE
is the major problem to be solved in the study of mountain hydrology [10]. There are four commonly
used methods to obtain SWE. The first method is the spatial interpolation method [11–13], which uses
automatic observation data of the snow pillow at the observation point and measured data of the
snow courses to carry out regional interpolation in combination with the snow area products obtained
from satellite images. This method requires a high density of measured points. The second method is
passive microwave remote sensing retrieval [14–20], which is insensitive to wet and thick snow and has
a very low resolution (10–25 km), so it is not suitable for mountain snow with a complex topography.
The third is the numerical climate model or the data assimilation model [21,22], such as NOAA’s
SNOw Data Assimilation System (SNODAS), which also depends on data from ground observation
points and has a questionable accuracy. The last method is the snow cover reconstruction technique
proposed by Martinec and Rango [2,23], which establishes a reverse snow melt process and deduces
backward the maximum SWE accumulation on the basis of daily snow melt and area change in the
snow melt period from the date when the snow cover disappears to the accumulated peak SWE period.
Compared with the interpolation method using the measured data and the data assimilation models,
the SWE reconstruction model can achieve a higher resolution without any measured data [2,10,11] by
using the optical snow cover data, and the amount of snow melt can be estimated by combining it with
the energy balance method.

Due to rugged mountainous terrain, the sparse density of actual measuring points, and the
heterogeneous distribution of snow, measured data from the ground network cannot effectively
represent the distribution characteristics of snow in surrounding areas [12,24]. Therefore, remote
sensing images are an important input parameter of the model for the study of snow cover in mountains
in the world [9,25]. At present, MODIS sub-pixel snow cover and SWE reconstruction technology for
reconstruction are used for snow water equivalent estimation in mountainous areas [11,12,26], but the
resolution of MODIS is 500 m, which means that additional effort in pixel unmixing may be required to
estimate the sub-pixel snow cover fraction. In recent years, the launch of the European Space Agency
(ESA) Sentinel-2 satellites has greatly improved the temporal resolution of remote sensing observations
with a spatial resolution of tens of meters and the original 16-day revisit interval based only on Landsat
8 satellites was improved to an average of 4 days. In this study, Sentinel-2 and Landsat 8 satellites were
first used to extract snow cover variation information in mountainous areas with a high spatial and
temporal resolution. Then, the energy balance method was used to calculate the snow melt amount,
and the maximum SWE in mountainous areas was finally reconstructed in a time series manner.
The computations in this study are performed by C++ programming, and GDAL [27] libraries are used
for data reading and writing. Remote sensing data with tens of meters spatial resolution is applied in
the mountain SWE reconstruction, which can greatly improve the mountain SWE estimation accuracy
and spatial resolution, as well as provide more accurate input parameters for hydrological models
and a reliable scientific basis for decision making in meteorological, water conservancy, agriculture,
and other agencies. Furthermore, the current research also given significance importance in the field of
water resources development, water circulation system and global climate change.
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The geographical and climatic characteristics of the study area, and the data used in this study are
described in Section 2. In Section 3, models and methodologies are described in detail. In Section 4,
the spatial-temporal distribution characteristics of snow cover and cumulative SWE are analyzed
respectively from the perspective of time and space. The discussion of data and results is given in
Section 5.

2. Data

2.1. Study Area

The study area (47–49◦N, 86–90◦E) is located in the Altay region of Xinjiang, China. The Altay
region, as the region with the most abundant snow in winter in China, is known as the “snow capital
of China”. The Caiertes river, which originates from the Altay mountains in the north of the Altay
region, is one of only two main sources of the Irtysh rivers in China that flow into the arctic ocean
(Figure 1a). There is no glacier in this region, and the river water source is not affected by glacier melt.
It mainly depends on the supply of snowmelt runoff in the basin from spring to early summer [3].
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Figure 1. (a) The secondary diagram shows the location of the study area (purple rectangular box) in
China. The main diagram displays the location of the Irtysh river and the Altay mountain; (b) the
elevation and drainage distribution of the study area. The elevation data is Space Shuttle Radar Terrain
Mission (SRTM) provided by Geospatial Data Cloud site, Computer Network Information Center,
Chinese Academy of Sciences. (http://www.gscloud.cn).

The Caiertes river basin (47–48◦N, 89–90◦E) is located in the southern slope of the Altay mountain
in China. It is in the northeast-southwest direction and belongs to the northwest arid region of China.
The elevation is 1150–3856 m (Figure 1b); it is high in the northeast and low in the southwest. Snow
melt begins in early march and ends in early August in this basin. The westerly circulation in summer
brings sufficient moisture to the Atlantic Ocean and forms abundant precipitation [28]. Due to the
blocking of Siberian high pressure in winter [29,30], it is difficult for the water vapor transported by
the westerly wind to reach the study area, and the precipitation is mainly affected by the cold air in
Siberia and the air flow in the Arctic Ocean [30]. During the study period, water vapor in the study
area originated from the northwest direction.

http://www.gscloud.cn
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2.2. Remote Sensing Data

In this paper, Landsat 8 and Sentinel-2 were used to obtain the snow cover variations in time
and space. Landsat 8 is the 8th satellite to be launched by the National Aeronautics and Space
Administration (NASA) on February 11, 2013, carrying Operational Land Imager (OLI) and Thermal
Infrared sensors (TIRS) [31,32]. Among them, OLI sensor covers 9 bands, the swath is 185 × 185 km,
the revisit interval is 16 days, and the spatial resolution is 15–30m. In this study, a total of 10 images
covering 10 days of Landsat8 OLI L1T (Level 1 Terrain-corrected) were downloaded from the USGS
website (http://www.usgs.gov/). Among these 10 images, three images are completely covered by
cloud and were excluded in this study. Sentinel-2 includes two high-resolution multispectral imaging
satellites, Sentinel-2a (S2A) and Sentinel-2b (S2B), both of which carry a Multi-Spectral Imager (MSI)
with 13 bands. The two satellites were launched on June 23, 2015 and March 07, 2017 respectively. The
revisit interval of one satellite is 10 days, the two satellites complement each other, and the revisit
interval is 5 days when two satellites are available. The spatial resolution is 30–60m, and the swath is
290km [33]. 284 scenes covering 71 days of Sentinel-2 MSI L1C (Level-1C) multispectral data are used
in this study, which were downloaded from the ESA website (https://scihub.copernicus.eu/). A total
of 27 days of these Sentinel-2 data are completely obscured by the cloud and 176 scenes covering 44
days were used subsequently for snow mapping. Two days of Sentinel-2 data and Landsat 8 OLI data
were duplicated, so a total of 49 days of data sources could be used to obtain snow cover information
during the study period. The spectral information used for image preprocessing and snow and cloud
recognition in the two data sources is shown in Table 1. Band3(30m) and Band6(30m) of Landsat 8 OLI,
and Band3(10m) and Band11(20m) of Sentinel-2 are used for snow mapping, respectively.

Table 1. Partial band information of Landsat 8 OLI and Sentinel-2 MSI used in the study.

Sensor Channel Band Number Wavelength Range (µm) Spatial Resolution (m) Temporal Resolution (day)

Landsat8
OLI

Blue 2 0.45–0.51 30

16

Green 3 0.53–0.59 30
NIR 1 5 0.85–0.88 30

SWIR1 2 6 1.57–1.65 30
PAN 8 0.50–0.68 15

SWIR-Cirrus 9 1.36–1.38 30

Sentinel-2
MSI

Blue 2 0.458–0.523 10

5

Green 3 0.543–0.578 10
Red Range1 5 0.698–0.713 20
Red Range2 6 0.733–0.748 20

NIR Narrow1 7 0.765–0.785 20
NIR 8 0.785–0.900 10

Cirrus 8a 0.855–0.875 20
Water Vapour 9 0.930–0.950 60
SWIR-Cirrus 10 1.365–1.385 60

SWIR1 11 1.565–1.655 20
SWIR2 12 2.100–2.280 20

1 The Near-Infrared band. 2 the Short-Wave InfraRed band.

Preprocessing of Landsat-8 OLI and Sentinel-2 data was performed before snow and cloud
mapping. The resolution of Landsat-8 OLI images was improved to 15 m by applying Gram-Schmidt
Pan Sharpening in ENVI. Sen2cor tool was applied to L1C level data of Sentinel-2 for atmospheric
correction to obtain Bottom-of-Atmosphere corrected reflectance of Sentinel-2 for snow mapping. LIC
level data of Sentinel-2 was also used for cloud mapping in Section 3.3.2.

MODIS data was also used in this study to compare with Sentinel-2 and Landsat 8. The snow
cover fraction of MODIS is from MOD10A1 product, which is available from the National Snow and
Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC).

2.3. Air Temperature Data

The air temperature used in the reconstruction model was from the Global Land Data Assimilation
System (GLDAS) data. The data was developed by the National Aeronautics and Space Administration
(NASA) the Goddard Earth Sciences Data and Information Services Center (GES DISC) [34], with a

http://www.usgs.gov/
https://scihub.copernicus.eu/
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temporal resolution of 1 day. The spatial resolution could reach a maximum of 1/4◦ in the study area,
which cannot truly reflect the air temperature variation characteristics caused by elevation change in
a small watershed. Therefore, the digital elevation model of SRTM with a finer resolution of 1/10◦

was used to downscale the GLDAS air temperature in Figure 2. The absolute vertical error of SRTM
DEM was less than 16 m [35]. Before elevation correction, SRTM elevation data after splicing and
clipping were resampled and Gaussian-filtered to 1/10◦, and the original resolution of 1/4◦ of GLDAS
air temperature data was then increased to 1/10◦ through the Gaussian filter. According to a certain
lapse rate of air temperature, elevation correction of the filtered GLDAS's air temperature data was
carried out to obtain the final air temperature with a resolution of 1/10◦.
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Figure 2. GLDAS air temperature data and its processing results on April 1, 2018, including (a) 1/4◦

GLDAS air temperature, (b) 1/10◦ air temperature after the Gaussian filter, and (c) 1/10◦ air temperature
after elevation correction.

In the Snowmelt-Runoff Model (SRM) or other air temperature elevation corrections, the air
temperature lapse rate is usually set to a fixed value of −6.5 ◦C/km [12,36]. However, in fact, the air
temperature lapse rate changes with the change of season. Linear fitting of original GLDAS air temperature
data and elevation for each day was performed in this study to calculate the optimized lapse rate k. When
the determination coefficient R2 was greater than or equal to 0.8, the optimized lapse rate k was used
further in air temperature downscaling; when the determination coefficient R2 was smaller than 0.8, the
effective optimized lapse rate of adjacent time was used. In Figure 3, we can see that the rate before April
is greater than −6.5 ◦C/km, and that after April, it is almost less than −6.5 ◦C/km, and the determination
coefficient is mostly larger than 0.8. Section 5.2 describes the influence of dynamic estimation of the air
temperature lapse rate on the maximum SWE accumulation in detail.
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2.4. Radiation Data

The net radiation index is the difference between the total incident energy of sunlight (the
sum energy of long waves and short waves) and the total reflected energy from the ground, that is,
downward radiation minus upward radiation. In this study, the net long-wave radiation is also from
GLDAS with the temporal resolution of 1 day and the spatial resolution of 1/4◦. Studies on the spatial
scale of the snow process have shown that the solar and thermal radiation inputs are biased at a
resolution greater than 1/4◦, while the 1/10◦ grid of the energy flux produces results equivalent to 30 m
and sufficient for the prediction of snowmelt runoff [37]. Therefore, we downscaled the resolution
of the net long-wave radiation from GLDAS to 1/10◦, which requires setting a Gaussian filter with a
size of 401 × 401 centering on the pixel with a resolution of 1/10◦, that is, the net long-wave radiation
values of each pixel and other pixels within the neighborhood of 20 km are weight-averaged to obtain
the pixel’s downscaled radiation values.

Considering the influence of mountain topography on solar radiation and the accuracy of
shortwave radiation, we used Himawari-8 to calculate the hourly Shortwave Downward Radiation
(SWDR) with a 90 m resolution after terrain correction. Himawari-8 estimates SWDR at a 10-min scale,
and its high temporal resolution makes it more sensitive to cloud-radiation interactions and variations
in surface radiation over a short period of time. First, the components of solar direct and diffuse
radiation were derived from the 10-min Himawari-8 data [38], then a shortwave topographic radiation
model (SWTRM) was applied [39]. Combined with MOD10A1 and MYD10A1 albedo product of
MODIS, the upward radiation energy of solar radiation was calculated to obtain the net radiation
index of short-wave radiation. In Section 5.3, the maximum SWE accumulation calculated by using net
short-wave radiation from GLDAS, and Himawari-8/MODIS with terrain correction are compared.

3. Methodology

3.1. The SWE Reconstruction Model

Previous studies have shown that the reconstruction method can be used to estimate SWE at
multiple spatial scales in complex terrain areas (mountain areas, river basins, etc.) [40,41]. Rittger et al.
verified the reconstructed SWE with snow cover survey data and showed that the model could
accurately estimate SWE values in different wet and dry years in different terrain environments [12].
It was also found that the model was very comparable to the measurement results of the NASA Airborne
Snow Observatory (ASO) by measuring the snow cover area and improving the SRM model [2].

The purpose of the reconstruction is to calculate the maximum snow water equivalent for the
whole season. The core idea is to carry out an inverse time series accumulation of the daily snowmelt
amount from the time of complete snowmelt to the time of the beginning of snowmelt [12]:

SWEn = SWE0 +
n+1∑
j=1

M j (1)

In Equation (1), SWEn is the equivalent of snow water at the beginning of melting and the maximum
value of a pixel at all time points. It serves as the total solid precipitation during the accumulation
period and stable period of the snow season, excluding water loss such as evapotranspiration and
soil infiltration. SWE0 is the snow water equivalent on the Nth day after the maximum SWE occurs.
The reverse calculation starts from SWE = SWE0, taking one day as the time step, Mj is the snowmelt
amount on the day j, and SWEn is the snow water equivalent on the day n + 1. If n refers to the
number of days between the date of the maximum SWE and complete snow melt, then SWE0 = 0 and
M1 = 0. Generally, drier years have an earlier maximum SWE, while wetter years have a later SWE.
Considering the actual situation of the region and the selection time of remote sensing images, March
2nd is taken as the peak of SWE in the snow season of the research area from 2017 to 2018.
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3.2. The Restricted Degree-Day Model

In the simple degree-day snowmelt model [23,42], the daily snowmelt amount Mj of each
hydrological response unit (HRU, in pixels) is only related to air temperature:

M j =

{
0, Ta − Tmlt ≤ 0
α× (Ta − Tmlt), Ta − Tmlt > 0

(2)

In Equation (2), Mj (mm/day) is the ablation amount of one pixel on day j in the inverse time
series, and the depth of snowmelt water is used to represent the amount of snowmelt. α (mm/(day
◦C)) is the degree-day factor; Tmlt refers to the temperature that snow melt needs, which is generally
considered to be the temperature of ice water mixture under standard atmospheric pressure, namely
0 ◦C; and Tα represents the average daily air temperature and generally means the average of the
maximum and minimum daily air temperature values [36]. When Tα is less than or equal to Tmlt,
the snowmelt amount is 0. When Tα is greater than Tmlt, air temperature values are converted into
snowmelt by the degree-day factor.

Considering that the amount of snowmelt is related to the energy balance of the snow surface, in
addition to the temperature, we added the daily net radiation value into the daily snowmelt model [43]
and the restricted degree-day coefficient was used. The amount of ablation in each HRU in the restricted
degree-day snowmelt model depends on the contribution of two parts: one is the air temperature value
multiplied by the restricted degree-day factor (βr), and the other is the ablation amount proportional
to the net radiation index Rd (W m−2).

M j = mQRd + βrTa (3)

In Equation (3), mQ ((mm day−1)/(W m−2)) is similar to α in Equation (2), and is a physical constant
used to convert energy into the water depth, and the value is usually set at 0.26 [12] .βr (mm/(day ◦C))
is a restricted degree-day factor, and the value is 1.5 [40,43], which is not equal to α in Equation (2), but
both values are multiplied by the air temperature value Ta.

In Equations (2) and (3), the two snow melt models calculate the snow melt amount when the snow
cover of each pixel is 100%. In practical conditions, pure snow pixels do not always exist. Therefore,
we multiplied the snow melt amount of a single pixel Mj by the snow cover fraction of the pixel fSCA,j

(0%–100%), as the daily snow melt amount Mj on the pixel scale:

M j = M j × fSCA, j. (4)

The maximum SWE of the whole snow season was then calculated by substituting the daily snow
melt amount obtained from Equation (4) into Equation (1). Compared with the simple calculation
method of the degree-day snowmelt water model in Equation (2), net radiation is introduced in
Equation (3) to better describe the energy balance of snow. The heterogeneity of snow cover in space
and the characteristics of snow cover in the watershed are considered in Equation (4) in a more objective
and detailed way, thus snow melt can be estimated with a higher accuracy.

3.3. Snow Cover

3.3.1. Snow Detection

There are many methods for the snow identification of remote sensing images, including the snow
index method [44,45], the MODIS Snow Covered Area and Grain Size (MODSCAG) algorithm [46],
machine-learning-based decision tree classification [33], etc. These methods have different adaptabilities
to remote sensing images for different sources and different regions, among which the SNOWMAP
algorithm based on the snow index method is the most widely used. The SNOWMAP algorithm was
developed and tested using Landsat TM data [45], prior to the launch of MODIS [47]. According to the



Remote Sens. 2020, 12, 460 8 of 20

results of manual visual interpretation, the algorithm is also applicable to the Sentinel-2 satellite image
in the Caiertes river basin. Its physical basis is as follows: both snow cover and cloud have a high
reflectance in the visible band, while snow cover has strong absorption characteristics in the SWIR
band, but most clouds still have a high reflectance in the SWIR band. With such differences of spectral
characteristics, the snow pixel can be easily identified from the cloud by setting a threshold for the
Normalized Difference Snow Index (NDSI). The calculation of NDSI is

NDSI =
Green− SWIR
Green + SWIR

(5)

In Equation (5), Green is the reflectance of snow in the green band and SWIR is the reflectance
of snow in the SWIR band. For Sentinel-2, band3 (Green, 0.56 µm) and band11 (SWIR1, 0.61 µm) are
used, and for Landsat 8 OLI data, band3 (Green, 0.525–0.600 µm) and band6 (SWIR1, 1.560–1.651 µm)
are used. The study of snow cover in the Sierra Nevada in California, USA [44] and in the Indian
Himalayan basin [48] has shown that NDSI ≥ 0.4 can be used as a criterion for identifying snow in
Landsat 7 images. Negi et al. also found that this criterion could ignore the impact of slope and
aspect changes caused by topography on the threshold [48]. In addition, Kulkarni et al. found that
the threshold value of NDSI would not be affected by mountain shadow [49]. Based on these studies,
the NDSI threshold of the SNOWMAP algorithm was set as 0.4, and when NDSI ≥ 0.4, the pixel was
defined as snow. However, due to different observation times and multiple sources of images, NDSI
thresholds could not be fixed in this study. In the process of snow identification, different thresholds
were set according to different remote sensing images and sensing time. The thresholds of Sentinel-2
were between 0.35 and 0.45, and those of Landsat 8 were between 0.3 and 0.4.

Snow and water also have similar spectral characteristics in the visible and SWIR bands. In order
to further identify snow from water, we used the feature of the strong absorption of water in the NIR
band, while the absorption of snow is weaker than that of water [47]. Therefore, another discriminating
criterion of snow recognition was added into SNOWMAP:

NIR ≥ 0.11 (6)

In Equation (6), NIR refers to the reflectance of the near-infrared band, corresponding to band8 of
Sentinel-2 (0.842 µm) and band5 of Landsat 8 OLI (0.845–0.885 µm). When NDSI ≥ 0.4 and NIR ≥ 0.11,
the pixel is recognized as snow cover.

In addition, when the vegetation coverage is relatively high, the signal of snow cover observation
will be attenuated, so some NDSI pixels lower than 0.4 can also be considered as snow cover. In this
study, vegetation coverage products [42] were adopted to identify snow pixels affected by vegetation
coverage. When the vegetation coverage is more than 40% and the conditions of NDSI ≥ 0.1 and
NIR ≥ 0.11, the pixel is also considered as snow.

3.3.2. Cloud Detection and Interpolation

In snow cover extraction, the cloud cover and cloud discrimination algorithm are the main factors
affecting the data continuity and accuracy. Before the snow cover classification based on NDSI and
NDVI is carried out, an important step is to carry out preprocessing for the cloud removal of images.
Due to the long period of this study, significant differences in climate and environment, and diverse
cloud forms, we found that only one cloud detection algorithm could not be used for all images.
Therefore, according to their morphology and spectral characteristics, clouds were classified into cirrus
clouds, dense clouds, and ice clouds. Based on the threshold value of existing studies, Sentinel-2
was taken as an example to conduct an adaptive analysis for this research area and a new combined
identification algorithm is proposed.

Cirrus clouds are high-altitude clouds, for which the altitude is typically between 4500 and
10,000 m, and can be classified as ice clouds. They are composed of fine ice crystals which are relatively
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sparse in the upper air, so the clouds are relatively thin and they have good light transmission. This type
of cloud is too thin, transparent, or translucent to be easily recognized. Hollstein et al. used a machine
learning algorithm [50] to effectively identify cirrus clouds [33]. By training a given data set, it returns
an optimized decision tree algorithm with a given depth. The purpose of this method is to find an
optimal classification method without additional parameters. When the given depth is set to four
layers, more than a 91% correct classification accuracy can be achieved. In this study, we found that
this algorithm is very suitable for cirrus removal in the research area of the Caiertes river basin. The
identification index used is

B3< 0.319, B(8a) > = 0.166, R(2, 10)< 14.689 and R(2, 9) > = 0.788 (7)

B3 >= 0.319, R(5, 11) < 4.330, S(11, 10)< 0.255 and S(6, 7) > = −0.016. (8)

In Equations (7) and (8), B, R, and S refer to the reflectance, ratio, and difference of the corresponding
band of images, respectively. For example, B3 represents the reflectance of band3 of Sentinel-2 MSI, R(2,10)
represents the ratio of band2 to band10, and S(11,10) represents the difference between band11 and band10.
When Equations (7) and (8) are applied simultaneously, the pixel can be considered as cirrus.

Dense cloud, also known as opaque cloud, is identified by the cloud mask algorithm of the Sentinel-2
LIC product [51]. Dense clouds and snow have a high reflectance in the blue region (B2, 0.49 µm), but snow
has a much lower reflectance than dense clouds in the SWIR band (B11 and B12, 1.61 µm and 2.19 µm),
so they can be separated by setting thresholds in the SWIR band. Additionally, some ice clouds show ice
crystals on the cloud top due to their high altitude, resulting in low reflectance, similar to snow in SWIR
band B11 and B12, which is difficult to distinguish. Therefore, a threshold of SWIR band B10 (1.375 µm) is
needed to identify ice clouds with a higher altitude. In this step of ice cloud recognition, cirrus clouds at the
same altitude will not be recognized, as they are transparent in the blue band B2 [51].

After obtaining the snow and cloud cover data during the study period, we interpolated the
cloud pixels and pixels without effective data according to the continuous characteristics of snow
cover in time and space. The linear interpolation method was used in time interpolation, which is
robust and efficient. A three-dimensional Gaussian filter was used in spatial interpolation to make
the snow cover more continuous in time and space [52]. By performing interpolation to the binary
snow and cloud mapping results, we can get the daily fraction snow cover (fSCA,j). Figure 4 shows the
interpolation results in which the data loss caused by cloud cover is filled. The characteristics of snow
cover changing with topography can also be identified from Figure 4. The interpolation method is also
applicable to MOD10A1 snow cover products.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 
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4. Results

4.1. Snow Cover Characteristics in a Mountainous Area

4.1.1. Temporal Variation

Time series snow cover fractions of every 300 m elevation band of the whole basin are shown
in Figure 5. It shows that the snow cover in the whole basin began to melt on March 2, 2018, and
nearly disappeared in late July. Snow cover was close to 100% on March 2 and almost zero in late
July. The snow cover gradually decreases with time, but there will also be a sudden increase of snow
cover, which is because of the phenomenon of new snow after the beginning of the ablation period.
There are differences in the starting and disappearing time of snow cover at different elevations: the
higher the altitude, the later the melting time, and the later the disappearing time. In the early stage of
snowmelt (March), the snow at a low altitude (less than 2200 m) begins to melt first; the higher the
altitude, the slower the snow area shrinks. In the middle period of snowmelt (April and May), the air
temperature gradually increases, and the shrinking rate of snow cover slightly accelerates. In the later
period of snowmelt (June and July), the low-altitude snow cover completely disappears, while the
high-altitude snow cover (over 2800 m) begins to disappear, and ends in early August. The ablation
process of each elevation zone also has some similar characteristics: the area shrinkage rate is basically
similar, and the ablation takes about 2 months. The reasons for this phenomenon will be explained in
Section 4.2.1.
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Figure 5. Daily variation of snow cover fraction ( fSCA) in the whole watershed and its elevation zones.
The black dotted line represents the time series change of snow cover in the whole basin, while the
colored solid line represents the change of each elevation zone.

4.1.2. Spatial Variation

In order to show snow cover variation spatially, distribution maps of snow cover on the first day
of each month in the ablation period are shown in Figure 6. The accumulated peak of snow cover
is in early March, when almost the whole basin is covered with snow. However, some areas were
affected by human activities, air temperature rising, radiation enhancement, and other factors at the
valley bottom, resulting in snow melt and incomplete snow cover. From March to June, the snow
cover gradually decreases, and the snow shrinks from the valley bottom to the peak. The time of the
beginning and completion of melting of the low altitude is earlier than that of the high altitude, which
is consistent with the conclusion in Section 4.1.1. Compared with Figure 5, it is found that the snow
melt is basically completed in early July, and then, only a small part of the snow above the altitude of
2500 m exists. In early August, the snow cover is almost 0.
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Figure 6. Spatial variation characteristics of snow cover ( fSCA). (a–f) represent snow cover on the first
day of March–August respectively; blue represents the snow covered area; red represents the no snow
cover area; and other colors represent the areas with snow cover, but not complete cover, the snow
cover of which is between 0 and 100%. Among them, yellow represents the area with snow cover of 0.5,
and light blue represents the area with almost full snow cover.

4.2. The Reconstructed SWE

4.2.1. Temporal Variation

We also divided the SWE according to an elevation band of 300 m, and then recorded statistics
of its change characteristics with time. Figure 7 shows that the mean maximum SWE accumulation
during the initial snowmelt period of the whole basin is 377.83mm. The SWE decreases to 0 gradually
with time and lasts for a total time span of 5 months. The mean maximum SWE accumulation of each
elevation band increases with the increase of altitude and also decreases with time in the ablation
period. As the altitude increases, it takes longer for SWE to decrease to 0. Different from the retreat
rate of snow cover in Section 4.1.1, the higher the altitude is, the faster the snow ablation rate will
be. This is because the ablation rate is related to air temperature and the net radiation at the time of
ablation, while the retreat of the snow cover area is not only related to the ablation rate, but also the
SWE. Even though the melting rate in high-altitude areas accelerates in the later stage of snowmelt,
the snow area shrinkage rate is close to that in low-altitude areas as the SWE at a high altitude is
much larger than that in low-altitude areas. This also explains why there are different maximum SWE
accumulation values at the beginning of ablation for different elevation bands, but the ablation process
for all elevation bands takes about 2 months.

4.2.2. Spatial Variation

Figure 8 shows the distribution of maximum SWE accumulation in the study area. SWE gradually
increased from valley to peak, which is consistent with the conclusion in Section 4.2.1. In Figure 11a,
the scatter density map of maximum SWE accumulation and elevation is shown. We found that the
maximum SWE accumulation increases with elevation in the area which has an elevation below 2800 m.
However, there was a turning point at 2800 m. SWE above 2800 m did not increase completely with
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elevation, but decreased more significantly. This conclusion is consistent with the results of Grünewald
and Rittger et al. [12,53], which are caused by the topographic effect [12].
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Figure 7. Daily variation of the snow water equivalent (SWE) in the whole basin and at different
elevation bands. The range of elevation zone represented by the legend is consistent with Figure 5.
The black dotted line represents the temporal change of SWE of the whole basin, and the solid colored
line represents the change of SWE at each elevation band, respectively.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 21 

 

Figure 7. Daily variation of the snow water equivalent (SWE) in the whole basin and at different 
elevation bands. The range of elevation zone represented by the legend is consistent with Figure 5. 
The black dotted line represents the temporal change of SWE of the whole basin, and the solid colored 
line represents the change of SWE at each elevation band, respectively. 

4.2.2. Spatial Variation 

Figure 8 shows the distribution of maximum SWE accumulation in the study area. SWE 
gradually increased from valley to peak, which is consistent with the conclusion in Section 4.2.1. In 
Figure 11a, the scatter density map of maximum SWE accumulation and elevation is shown. We 
found that the maximum SWE accumulation increases with elevation in the area which has an 
elevation below 2800 m. However, there was a turning point at 2800 m. SWE above 2800 m did not 
increase completely with elevation, but decreased more significantly. This conclusion is consistent 
with the results of Grünewald and Rittger et al. [12,53], which are caused by the topographic effect 
[12]. 

  

  

Figure 8. Two-dimensional (a) and three-dimensional (b) spatial distribution of the maximum SWE 
at the initial stage of snowmelt. 

The distribution of maximum SWE accumulation calculated by Sentinel-2/Landsat snow cover 
at a local scale is shown in Figure 9b,e. The application of high-resolution remote sensing data in the 
SWE reconstruction offers a detailed description of the local SWE spatial distribution over mountain 
terrain. However, the distribution of maximum SWE accumulation calculated by MOD10A1 snow 
cover product shown in Figure 9c,f hardly reflects the distribution characteristics of snow affected by 
local topography. Even in some local areas, as shown in Figure 9c, the snow cover area is 
underestimated due to the low spatial resolution of MODIS image, leading to inaccurate SWE 
calculation. 

Figure 8 shows that the maximum SWE accumulation occurs in areas with a high altitude (above 
2800 m), where the slope, aspect, and other topographic characteristics are good for the storage of 
snow. In Figure 9, large SWE accumulation areas are caused by local topography, which means 
that snow can be stored in such local basins, as well as blowing snow. On the other hand, it is 
difficult for snow to be stored in areas with a steep slope. For example, the high SWE accumulation 
area such as the valley in Figure 9a–c has the characteristics of low-lying flat terrain, which is 
conducive to the accumulation of snow, while the slope of the yellow region is larger, which is not 
conducive to the retention of snow. In Figure 9d–f, the high SWE area is located under steep slopes, 

Figure 8. Two-dimensional (a) and three-dimensional (b) spatial distribution of the maximum SWE at
the initial stage of snowmelt.

The distribution of maximum SWE accumulation calculated by Sentinel-2/Landsat snow cover at
a local scale is shown in Figure 9b,e. The application of high-resolution remote sensing data in the SWE
reconstruction offers a detailed description of the local SWE spatial distribution over mountain terrain.
However, the distribution of maximum SWE accumulation calculated by MOD10A1 snow cover
product shown in Figure 9c,f hardly reflects the distribution characteristics of snow affected by local
topography. Even in some local areas, as shown in Figure 9c, the snow cover area is underestimated
due to the low spatial resolution of MODIS image, leading to inaccurate SWE calculation.
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Figure 9. Spatial distribution of the local maximum SWE accumulation calculated by Sentinel-2/Landsat
(b and e) and MOD10A1 (c and f) snow cover at the early stage of snowmelt. (a) and (d) represent
the distribution of local terrain in Google Earth, and height is exaggerated in Google Earth with a
coefficient of 3.0. The regions in these figures are respectively located at (a–c) 47.702682◦N,89.950935◦E
and (d–f) 47.784629◦N, 89.660171◦E.

Figure 8 shows that the maximum SWE accumulation occurs in areas with a high altitude (above
2800 m), where the slope, aspect, and other topographic characteristics are good for the storage of
snow. In Figure 9, large SWE accumulation areas are caused by local topography, which means that
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snow can be stored in such local basins, as well as blowing snow. On the other hand, it is difficult
for snow to be stored in areas with a steep slope. For example, the high SWE accumulation area such
as the valley in Figure 9a–c has the characteristics of low-lying flat terrain, which is conducive to the
accumulation of snow, while the slope of the yellow region is larger, which is not conducive to the
retention of snow. In Figure 9d–f, the high SWE area is located under steep slopes, which is probably
caused by the sliding of snow from the upper slopes. However, there is another possibility: the red
area is located on the northern slope of the mountain, and the SWE of the northern slope is larger than
that of the southern slope due to the influence of the water vapor source [30] and wind direction.

5. Discussion

5.1. Snow Cover of Sentinel-2/Landsat and MODIS

The time series snow cover fraction and SWE of the whole basin derived from Sentinel-2/Landsat
and MOD10A1 are shown in Figure 10. As shown in Figure 10, the snow cover fraction from MOD10A1
is significantly lower than that from Sentinel-2/Landsat. For the whole snowmelt season, the snow
cover fraction is underestimated by 37.64% compared to snow cover fraction from Sentinel-2/Landsat.
The maximum snow cover on March 2 was underestimated by 32.28%; The underestimated error of
snow cover from March to May did not change significantly, which is about 30%. Figure 10b also
shows that the SWE reconstructed by MOD10A1 snow cover area is lower than the SWE calculated by
the snow cover parameter obtained in this study, and the SWE is underestimated by an average of
58.72% in the whole snowmelt season. From March to May, the underestimated error of SWE was
close to that of 31.31% on average.
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5.2. Air Temperature

The maximum SWE accumulation was calculated by using an optimized air temperature lapse rate
and fixed lapse rate. The relationship between elevation and maximum SWE accumulation calculated
by these two methods is shown in Figure 11a,b, respectively. For both results, the maximum SWE
accumulation increases with increasing elevation under 2800 m, and the maximum SWE accumulation
then starts to decrease with increasing elevation beyond 2800 m. The difference of the results by
using the optimized air temperature lapse rate or fixed lapse rate lies in that the maximum SWE
accumulation of the optimized lapse rate method is smaller than that of the fixed lapse rate method for
elevations larger than 2300 m (Figure 11c). This is because the optimized air temperature lapse rate
after ablation season fitting is lower than the fixed lapse rate for most of the time period. Therefore,
the air temperature above average elevation calculated by using the optimized lapse rate is lower
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than that calculated by using the fixed lapse rate, while the air temperature below average elevation
calculated by using the optimized lapse rate is higher than that calculated by using the fixed lapse rate.
In addition, the snow melt time in low elevation areas is short and is not sensitive to the lapse rate,
and the reconstructed SWE in the high-elevation area is more affected by the lapse rate used in air
temperature downscaling.
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Figure 11. (a,b) The relationship between maximum SWE accumulation and elevation in mountainous
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rate of −6.5 ◦C/km.

5.3. Solar Radiation

Figure 12a,b shows the relationship between aspect and maximum SWE accumulation calculated
by the Himiwari-8 solar radiation with terrain correction and the GLDAS short-wave radiation without
terrain correction. Maximum SWE accumulation obtained from the two kinds of solar radiation data
has the same trend with respect to aspect. The SWE in the north slope (0–45◦ and 315–356◦) is larger
than that in the south slope (135–225◦), and the SWE in the east and west slope is close to each other.
However, the SWE calculated with terrain correction is smaller than that without terrain correction
in all directions in different levels. Figure 12c shows that the difference between the two results on
the north slope is greater than that on the south slope. In addition, we also calculated the RMSE of
these two kinds of radiation data on the north and south slope respectively to evaluate the difference
between the two types of radiation data on the north and south slope. The RMSE of south slope and
north slope is 182.67 and 269.01 respectively. The SWE values of the south slope are close to each other,
while the value deviation of the north slope is large. Therefore, it can be concluded that the difference
of SWE between north and south slope after terrain correction is smaller than that without correction.
The solar radiation corrected by topography is weaker on the north slope than on the south slope due
to the influence of mountain shadows. Therefore, not only natural factors such as topography, but
also the calculation of solar radiation also affects the spatial distribution difference of maximum SWE
accumulation on aspect.
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5.4. Error Analysis

Wind plays a key role in sublimation [54], but the wind speed in the Altay mountains is small, which
is negligible compared with snow melt caused by air temperature and radiation energy. The errors
of the reconstructed model mainly come from the errors of the input parameters in the restricted
degree-day model and errors in the model itself.

Snow cover is one of the most important parameters affecting the accuracy of SWE reconstruction.
Section 5.1 proved MOD10A1 snow products to be underestimated, due to the serious omission
error caused by the resolution of MODIS 500 m in areas with mountain shadows and the edge of
snow cover [55]. In this study, since the cloud may not have separated from the snow during snow
recognition, it is possible to overestimate snow recognition from Landsat 8 and Sentinel-2 images.

In this study, a revisit time of about 3–4 days can be achieved by combing Sentinel-2 and Landsat
images, and this makes the retrieval of snow cover variation in fine spatial and temporal resolution
possible. In order to obtain the snow cover under cloud, linear interpolation in time and Gaussian filter
in space are performed. However, when a certain pixel is covered by cloud for a long period of time
and in the meanwhile the snow cover changes significantly in this time period, linear interpolation
is not accurate. Fortunately, this situation is rare. When more satellite images with tens of meters
resolution are included, such as GF-1 and GF-6 satellites, this problem can be effectively solved.

The degree-day factor in the restricted degree-day model depends on the air temperature data,
which can only be calculated with the reanalysis data. The seasonal variation of degree-day factors is
large, which requires a large amount of actual data correction. In addition, Brubaker et al. found that,
in addition to air temperature, when using long and shortwave net radiation energy, the performance
of the model was less dependent on the restricted degree-day factor and had greater universality.
The model could be extended to areas lacking actual measurement experience [43]. Marks and Dozier
confirmed that solar radiation in the Sierra Nevada, California, USA, contributes more to snow melt
than air temperature parameters, but air temperature also plays a role in the studied region [56].
In Section 5.2, the SWE difference estimated before and after fitting of the linear air temperature
lapse rate reaches 38.26mm to the maximum extent at the elevation (2800 m) of the SWE maximum,
accounting for about 7.01% of the maximum estimated SWE in the same elevation.

According to Mahat et al. [57] and Brubaker et al. [43], the conversion factor of the radiation
parameter represents the coefficient of conversion of any form of energy (W/m2) into the amount of
snow melt (mm/day) when the snow temperature is equal to 0 ◦C, which is fixed in theory. In Section 5.3,
the SWE calculated by GLDAS is larger than that calculated by SWDR after terrain correction, so the
net short-wave radiation data of GLDAS is larger than the net short-wave radiation calculated by
SWDR and MOD10A1 albedo products. This may be due to the high value of GLDAS, or the low value
of SWDR and the high value of albedo. GLDAS long-wave radiation data without terrain correction
will also affect the estimation of maximum SWE accumulation to some extent.

In mountainous areas with high precipitation uncertainty, the accumulation of daily snowmelt
can only reflect the change of new snow area in the snowless area, but not in the snow-covered area.
The new snow will be considered as the original snowpack, and the estimated value of the maximum
SWE accumulation will be overestimated. However, compared with other measurement methods,
estimation of the reconstruction method is more in line with the actual situation [58].

The tree cover fraction is very low in the study area, so the influence of tree attenuation on
radiation is not considered in this study. In further work, tree attenuation of radiation should be
considered by calculating radiation under the tree canopy.

6. Conclusions and Outlook

In this study, the seasonal maximum SWE accumulation in a mountainous area has been
reconstructed using multi-source remote sensing images with resolutions of tens of meters.
The combination of Landsat 8 and Sentinel-2 satellite images improved the accuracy of snow cover
parameters of the reconstructed model, which greatly improved the retrieval accuracy and spatial
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resolution of the SWE in mountainous areas. In this case, complex pixel unmixing efforts can be
avoided when estimating the fractional snow cover. Snow in the Caiertes river basin disappeared
in late July for five months. The melting date and vanishing date of snow at different altitudes are
different, but they all last about 2 months. In the spatial distribution of snow cover, the melting and
disappearing time of snow is getting earlier and earlier from the valley to the top of the mountain.
The area shrinking rate of each elevation zone is basically similar. However, the higher the altitude,
the faster the snow melts. The average maximum SWE accumulation of the whole basin at the
beginning of snowmelt is 377.83 mm. In the early stage of snowmelt, the maximum SWE accumulation
increases with elevation, but in the area above 2800 m, the SWE decreases with elevation. Compared
with MOD10A1 snow cover products, the reconstruction technology can describe the maximum SWE
accumulation distribution characteristics of local snow cover in mountainous areas with a higher
accuracy by using high-resolution remote sensing images to extract the snow cover area. In addition
to regional elevation, the slope, aspect, and other topographic features all affect the accumulation
and storage of snow. The errors of the reconstructed model are mainly derived from air temperature
and radiation, as well as the estimated values of the snow cover area. Therefore, the accuracy of
each parameter of the reconstructed model is very important to the accuracy of the results. In future
research, air temperature and radiation data with higher accuracy are expected to improve the accuracy
of SWE. Other freely available remote sensing data with a tens of meters spatial resolution (such as
the Chinese Gaofen-1 and Gaofen-6 satellite data) could also be added to the snow cover mapping
scheme, which would improve the temporal resolution of snow mapping. Furthermore, to validate
the absolute value of reconstructed maximum SWE results, snow depth and SWE ground stations are
needed on the mountains in this basin in the future.
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