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Abstract: Accurate detection of cadmium (Cd) and lead (Pb)-induced cross-stress on crops is essential
for agricultural, ecological environment, and food security. The feasibility to diagnose and predict
Cd–Pb cross-stress in agricultural soil was explored by measuring the visible and near-infrared
reflectance of rice leaves. In this study, two models were developed—namely a diagnostic model and a
prediction model. The diagnostic model was established based on visible and near-infrared reflectance
spectroscopy (VNIRS) datasets with Support Vector Machine (SVM), followed by leave-one-out
cross-validation (LOOCV). A partial least-squares (PLS) regression, as the prediction model was
employed to predict the foliar concentration of Cd and Pb contents. To accurately calibrate the two
models, a rigorous greenhouse experiment was designed and implemented, with 4 levels of treatments
on each of the Cd and Pb stress on rice. Results show that with the appropriate pre-processing, the
diagnostic model can identify 79% of Cd and 85% of Pb stress of any levels. The significant bands that
have been used mainly distributed between 681–776 nm and 1224–1349 nm for Cd stress and 712–784
nm for Pb stress. The prediction model can estimate Cd with coefficient of determination of 0.7, but
failed to predict Pb accurately. The results illustrated the feasibility to diagnose Cd stress accurately
by measuring the visible and near-infrared reflectance of rice canopy in a cross-contamination
soil environment. This study serves as one step forward to heavy metal pollutant detection in a
farmland environment.

Keywords: greenhouse experiment; heavy metal diagnosis; cross-stress; prediction of heavy
metals; rice

1. Introduction

Over recent decades, the accumulation of heavy metals in agricultural soil has been an important
issue worldwide related to environmental pollution and human risk [1]. Distinguishing the types
and levels of heavy metals in agricultural soil is of crucial importance for food safety and health risks,
which does help to prevent and curb heavy metal pollution. Therefore, it is necessary to detect and
quantify heavy metal contaminations in agricultural soil.

Conventionally, the spatial distribution of heavy metals in agricultural soil was usually analyzed
by numerous field samplings and subsequent chemical analyses in the laboratory, followed by
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geo-statistical interpolation [2,3], which was low-efficiency and time-consuming. Moreover, due to the
limited information at certain locations and moments, it could not be used to describe the spatial and
temporal dynamics of heavy metal concentrations over large areas [4].

VNIRS (350 nm to 2500 nm) is a highly efficient and non-destructive tool for ecological applications,
which allows qualitative and quantitative analysis to be implemented in different matrices. Thus, it
can be used, not only to estimate soil properties by soils hyperspectral reflectance, such as clay [5],
moisture [6], organic matter [4,7,8] and iron oxides [9], but to estimate heavy metals concentration by
soils hyperspectral spectra, such as Pb [4,10,11], Cd [7,10,12], zinc (Zn) [7,13], copper (Cu) [9,13,14],
mercury (Hg) [15,16] and so on, in agricultural soils.

In terms of the diagnosis of heavy metals, intensive studies investigated the mechanisms and
feasibility based on VNIRS. Liu et al. [17] investigated the feasibility of using hyperspectral data
after wavelet-fractal analysis to monitor the polluted levels of rice with heavy metal pollution. Shi
et al. [18] explored the mechanism of why, with VNIRS, we are able to monitor limited types of
heavy metal contamination in soils and tried to diagnose the Arsenic contamination in agricultural
soils [19]. Chen et al. [12] investigated the feasibility of using VNIRS to identify soil Cd pollution
risk. Diagnostic techniques are essentially Boolean classification models, including random forests
(RF) [19], wavelet-fractal analysis [20], a support vector machine (SVM) [21] and an artificial neural
network (ANN) [19], which have been commonly applied in previous studies. However, these methods
were often implemented in diagnosis of single heavy metal pollution [22,23], and a few studies took
corresponding contaminative diagnosis with different stress levels into consideration, especially the
diagnosis of a common polluted phenomenon with Cd–Pb cross-stress in paddy fields [24–26].

In terms of prediction of heavy metals, first in 1997, VNIRS was used to estimate accurately heavy
metal concentrations in soil [27]. Hereafter, some similar studies were performed in various regions,
such as mining areas [14,28,29], floodplains [4,7,30], deltas [16,31,32], and suburban areas [33]. In
recent years, more and more studies, especially in China, have focused on estimating concentrations
of heavy metals in agricultural soils [13,34,35]. Among the predicted models, there were principle
component regression (PCR) [36], BPNN [37], linear regression model [4], stepwise multiple linear
regression (SMLR) [15], a genetic algorithm-based stacking algorithm [38] and a memory-based learning
approach [39]. However, partial least-squares regression (PLSR) was considered to be a common
standard tool to relate wavebands to biochemical contents with the optimal function by minimizing
the error of sum squares [5,13,34,40,41]. Several recent studies have also indicated the feasibility of
using PLSR to predict heavy metal contents in soils [13,34,42].

In the abovementioned studies, most involved the diagnosis and prediction of only a single heavy
metal. When involving multiple heavy metals, a traditional wet chemical analysis was often needed. A
few studies have tried to diagnose and predict the cross-stress caused by contamination with multiple
heavy metals on the basis on the hyperspectral datasets in canopy.

The major objective of this study was to investigate the feasibility of diagnosing and predicting
Cd–Pb cross-stress based on rice canopy hyperspectral data by the efficient and environmentally
friendly VNIRS. To the best of our knowledge, this is the first study identifying and predicting
Cd–Pb cross-stress by using VNIRS. The specific objectives of the current work were to: (1) acquire
hyperspectral datasets of rice canopy stressed by Cd–Pb cross-stress with four different stress levels,
ranging from 350 nm to 2500 nm; (2) establish discrimination models to diagnose the types and
the stress levels and investigate the diagnostic ability between single pretreatments and combined
pretreatments and (3) establish prediction models to predict the Cd–Pb contents in rice leaf.

2. Materials and Methods

2.1. Experimental Design

Rice was employed to be an indicator of heavy metal pollution in farmland, due to its extensive
planting in the vast areas of China and Southern India. Thanks to serious pollution, Cd and Pb were
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selected to be the polluted types [43,44]. To effectively control the environmental variables, such as
temperature, humidity, and light, the experiment was carried out in a glass greenhouse with a stable
temperature of 25–30 ◦C and a humidity of 60–80%. The greenhouse has a ceiling that can be opened
and closed by a switch. 576 pots of rice were planted in hydroponics and will be assigned to 96 groups,
with 6 pots per group. The stress levels of heavy metals could be accurately controlled during the
experiment. The nutrient solution recommended by the International Rice Research Institute was used
as the basic rice hydroponic solution, while cadmium chloride (CdCl2) and lead nitrate (Pb(NO3)2)
were used as the solute to regulate Cd and Pb contents in nutrient solution. solid plastic boxes with
painted black were used as the containers for nutrient solution, and black foam boards with holes
were used as fixed supports for rice seedlings above the boxes. These nutrient solutions with different
Cd–Pb concentrations were replaced every ten days to ensure the rice was not under the other stress
due to poor nutrient ingredients.

We designed a Cd–Pb cross stressed experiment with four different stress levels by referencing
the controlled concentrations in farmland in GB15618-2018 of China [45]. The four different stress
levels were 0 mg/L, 2 mg/L, 5 mg/L and 8 mg/L of Cd and 0 mg/L, 50 mg/L, 100 mg/L and 500 mg/L of
Pb, and then, there were, totally, 16 groups with different combinations. The detailed concentrations,
corresponding abbreviations and the combinations are showed in Figure 1. In the following statement,
the abbreviations were going to be used to represent the corresponding treatments. The experimental
process is showed in Figure 2.
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2.2. Spectrum and Cd–Pb Contents in Leaf Measurement

The spectral reflectance data of the rice canopy were measured inside the greenhouse with
ceiling opened, by a FieldSpec3 portable spectroradiometer (Analytical Spectral Devices, Inc., USA)
at 10:00–14:00 local time, under cloud-free or near-cloudless weather conditions [17,46]. The spectral
instrument covers the VNIRS region from 350 nm to 2500 nm with two different spectral resolutions: 3
nm for 350–1000 nm and 10 nm for 1000–2500nm, respectively.

At the late booting stages of rice, each group of rice were sampled for the reflective spectra of their
canopy. At this stage, when measured from nadir direction at 30 cm height, there are roughly 90% of
foliar tissue and 10% dark background within the field-of-view. Spectra were acquired with 8 averages
of slightly different centering points of the samples. Spectral measurements were calibrated with a
white standard reference panel, resulting in 96 reflective spectra for the 96 groups of rice canopy.

After the spectral measurement, these rice leaves were collected in groups and refrigerated in
the laboratory with the temperature of 16–18 ◦C. In the lab, rice leaves were ground to homogenate
and digested for later use. The linear regression equation of the relationship between absorbance
and concentration was found by blank test. Under the same conditions, an equal amount of sample
solution was put into the graphite furnace to measure the absorbance value; the above linear equation
was taken to obtain the sample Cd/Pb contents. The Cd/Pb contents in the sample was calculated as
follows:

X =
(c1 − c0) ×V

m× 1000
(1)

where C1 and C0 are the Cd/Pb contents with a unit of ng/mL in the digestive solution and the blank
control solution, respectively, while v is the total volume of the sample digestive solution with a unit of
Ml and m is the mass of the sample with a unit of g.

2.3. Spectral Pre-Processing

To reduce the random error of sampling randomly, the spectral means of eight randomly selected
measured spots in same stress pre-processing were calculated in the MATLAB 2015a platform, and
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then the calculated values were used as the spectrum for the corresponding stress treatments of
single acquisition. As a result, there were a total of 96 spectra, each group containing six. To
decrease instrument noises and to improve the signal-to-noise ratio, the spectral bands (1351–1460
nm, 1801–2030 nm and 2351–2500 nm) were removed from calculated reflectance spectra, and the
remaining hyperspectral datasets were processed by the following pretreatments:

Derivative pretreatment, including first derivative and second derivative, eliminated the
interferences of background noise, resolved overlapping spectra, and minimized additive baseline
drift of raw spectral reflectance [18]. Savitzky–Golay smoothing [47] was applied to remove random
noise and to increase spectral data quality. Normalization and standardization decreased redundant
information and extracted the spectral difference, which did help to remove unnoticeable weight.
Besides the above single pre-processing methods, we tried to combine two or more single pretreatment
methods together, and took the priority of pre-processing methods into consideration to find
appropriate combinations to improve diagnostic accuracies [19]. As a result, the study employed 10
different pretreatments.

Table 1 displayed the pre-processing methods employed in this study and their corresponding
abbreviations. In the combined pre-processing methods, the order of abbreviations represented the
priority of pre-processing methods. Take NorSG1D as an example. The abbreviation represented first
normalization, then Savitzky–Golay smoothing followed by 1st-Derivative.

Table 1. Pre-processing methods and their corresponding abbreviations.

Pre-processing Methods Abbreviations

Normalization + Savitzky–Golay smoothing + 1st-Derivative NorSG1D
Savitzky–Golay smoothing + normalization + 1st-Derivative SGNor1D
Savitzky–Golay smoothing + normalization + 2nd-Derivative SGNor2D
Savitzky–Golay smoothing + standardization + 1st-Derivative SGSta1D
Savitzky–Golay smoothing + standardization + 2nd-Derivative SGSta2D
Normalization + standardization + Savitzky–Golay smoothing + 1st-Derivative NorStaSG1D
Normalization + standardization + Savitzky–Golay smoothing + 2nd-Derivative NorStaSG1D
Normalization + Savitzky–Golay smoothing + standardization + 1st-Derivative NorSGSta1D
Normalization + Savitzky–Golay smoothing + standardization + 2nd-Derivative NorSGSta2D
Standardization + Savitzky–Golay smoothing + normalization + 1st-Derivative StaSGNor1D

2.4. Spectral Dimension Reduction

(Two-way analysis of variance) ANOVA was performed to extract significant bands from spectral
variables for Cd–Pb cross-stress. Analysis of variance was used to test the difference between multiple
means to determine whether a stressed factor had a significant effect on the spectral changes. ANOVA
was applied to discriminate the factors of spectral change in a certain band, and these factors included
Cd stress, Pb stress, and conjunct stress. These bands with spectral changes that were only related to
one stressed factor were selected to be used as the significant bands. By comparing the significance
value with a preset confidence (p = 0.05), the corresponding bands with lower value than the preset
significance value were selected as significant band for subsequent diagnosis and prediction.

2.5. Model Calibration

2.5.1. Diagnosis of Heavy Metals

SVM transfers training data into a higher-dimensional feature space using a kernel function and
then computes separating hyperplanes as a result of achieving maximum separation between the
classes [48]. It is often used to diagnose and classify the hyperspectral datasets with a small scale. In
this study, an SVM with the linear kernel function was employed to diagnose the levels of Cd–Pb
cross-stress. By pre-training, the optimal combination of parameters was determined.
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2.5.2. Prediction of Cd–Pb Contents

PLSR is often preferred to quantitatively derive information from hyperspectral reflectance
spectra [8]. When calculating the principal components, PLSR is more interpretable, and it is the more
efficient algorithm than PCR in relating the selected significant bands to heavy metals contents. PLSR
associates the partial least-squares (PLS) method with a classical multivariate linear regression to explain
the correlation between the selected significant bands from VNIRS datasets and the Cd–Pb contents:

ŷ = X·b̂ + b0 (2)

where XεRM,N is a matrix of M spectra samples with N spectral bands, ŷ ∈ RM,1 is the vector of the
predicted Cd or Pb values of the M rice leaf samples, b̂ ∈ RN,1 is the vector of the estimated PLSR
regression coefficients (b-coefficients) and b0 is the intercept [49].

Significant bands in different pretreatment methods were used as independent variables to predict
Cd–Pb contents in the leaves of rice. For each prediction, two thirds of hyperspectral samples were
randomly selected as calibration dataset, and one third remaining samples were treated as test dataset.
The model with the best evaluation performance was selected as the final model.

SVM is also widely used for its robust prediction tasks. This paper adopts SVMs with radial
basis kernel function. The hidden node is the inner product of the input sample and a support vector,
and the output node is the linear combination of the hidden layer output. The input variables of the
prediction model are the pre-processed significant bands. The output target value is the predicting
concentration of contaminations. Finally, accuracy of prediction was calculated against those of PLSR.
Method with higher performance is employed in this study.

2.6. Model Evaluation

2.6.1. Diagnostic Models Evaluation

Leave-one-out cross-validation was employed to evaluate the diagnostic performance of SVM
model in the study, whereby each hyperspectral dataset was diagnosed by remaining datasets [50]. By
this way, it provided nearly unbiased predictions even with the limitation of sample numbers [51]. For
96 hyperspectral samples total, the diagnostic model was run 96 times, and the mean of 96 diagnostic
results was regarded as the accuracies of diagnostic model.

2.6.2. Predictive Models Evaluation

The prediction models, created between the heavy metal (Cd and Pb) contents and spectral
variables, were evaluated based on the coefficient of determination (r2), the root mean squared error
(RMSE) and the ratio of the interquartile distance of measured values to RMSE (RPIQ) [52,53], which
were given by:

r2 = 1−
N∑

i=1

(
yi − y′i

)2
/

N∑
i=1

(yi − y)2 (3)

RMSE =

√∑N
i=1

(
yi − y′i

)2

N
(4)

RPIQ = IQ/SEP (5)

where yi and y′i are the measured and predicted values of the Cd/Pb contents, and y is the average
measured value and N is the hyperspectral sample number. By analyzing the predicted performance
of all significant bands, the predicted results with the highest r2 would be used as the final prediction
model. IQ is the interquartile distance, and SEP represents the standard error of prediction.
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3. Results

3.1. Leaf Cd–Pb Contents

The statistical descriptions of leaf Cd–Pb contents for the whole data sets, calibration data sets,
and validation data sets are shown in Table 2. These statistical characters, such as mean and standard
deviation (SD), were similar to three data sets with a small difference. These characteristic similarities
indicated that the randomly selected calibration and validation data sets could effectively represent the
whole data sets.

Table 2. Statistical Description of the leaf Cadmium-Lead (Cd–Pb) Contents (mg kg−1) for the whole
data sets, calibration datasets, and validation data sets.

Cd Contents Measured Pb Contents Measured

Whole Data
Set

Calibration
Data Set

Validation
Data Set

Whole Data
Set

Calibration
Data Set

Validation
Data Set

num 96 64 32 96 64 32
maximum 45.48 45.48 45.48 814.91 814.91 814.91
minimum 0 0 0 0 0 0

mean 12.96 13.29 12.31 240.87 230.36 261.88
SD 11.93 11.66 12.62 270.23 269.04 275.69

3.2. Significant Bands

The numbers of significant bands varied with different pretreatment methods for Cd and Pb, as
displayed in Figure 3.
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Figure 3. Numbers of significant bands selected with different pre-processing methods.

The number of significant bands selected for Pb stress was no more than 10 in any pretreatment
with the most bands of nine, while the most pre-processing methods for Cd stress were less than 10
with the most bands of 13. The minimum number of significant bands for Cd and Pb were 3 and 4,
respectively, which could not be selected by the same pre-processing method.

For Cd, half of pretreatments could select the significant bands with no more than 5, three of which
have selected the 3, including NorStaSG2D, NorSGSta2D, and SGSta2D. Like Cd, there were three
pre-processing methods that selected the minimum number of four for Pb stress, such as NorStaSG1D,
StaSGNor1D, and SGNor1D, as illustrated in Figure 3.
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3.3. Spectral Response to Single Contamination

In Figure 4, the ranges of significant bands for Cd (a) and Pb (b), and the foliar spectral responses
to different level of Cd (c) and Pb (d) in these spectral ranges were plotted.
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Significant bands detected with ANOVA for Cd-stressed are mainly distributed in the two extents
of 681–776 nm and 1224–1349 nm, while that for Pb-stressed were concentrated distribution in the range
from 712 nm to 784 nm. The Cd–Pb spectral response showed reverse patterns. With the increasing
concentration of Cd, the foliar reflectance generally increases except the extent at 681–699 nm, while
with the increasing concentration of Pb, the reflectance generally drops. However, this pattern is not
applicable to the reflectance of unpolluted plants. Apart from the main ranges of significant bands,
plotted in Figure 4, there were some bands to scatter at 1461 nm for Cd and 815 nm, 1280–1281 nm,
1476 nm, and 1601 nm. The foliar reflectance characteristics of these scatted significant bands showed
the same pattern with the corresponding contaminative heavy metals.

3.4. Diagnosis of Cd–Pb Cross-Stress with Different Stress Levels

All pre-processing methods were employed one by one for the selection of significant bands and
for the further diagnosis of the specific stress levels that the rice was subject to. Based on the preset
diagnostic labels, the selected significant bands were input to the SVM diagnostic model to distinguish
specific stress levels and other stress levels, and the overall accuracies were the output diagnostic
accuracies. Take the diagnosis of zero-Pb stress level (C–ZPb) as an example. As shown in Table 3,
there was a total of 96 samples, including 24 zero-Pb stress level samples and 72 other stress levels
samples. Based on pretreatment of NorStaSG1D, 21 zero-Pb stress level samples and 64 other stress
level samples were diagnosed correctly, and total 85 samples were diagnosed with the correct stress
level and as a result, the overall accuracy was 0.89.

Table 3. Diagnostic details of C–ZPb with NorStaSG1D pre-processing (C-ZPb is zero Pb concentration
of cross stress, and NorStaSG1D is a pre-processing method with normalization, standardization,
Savitzky-Golay smoothing, and 1st-Derivative, successively).

Sample Number Correct Diagnosis Incorrect Diagnosis Accuracy

C–ZPb 24 21 3 0.88
Other Stress Levels 72 64 8 0.89

Statistical data 96 85 11 0.89

The complete diagnostic accuracies were showed in Table 4. When only a single pretreatment was
employed, the accuracies reached 0.60. When three or more pretreatment methods were combined, the
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diagnostic accuracies boosted to more than 0.8. The bolds represented that the diagnostic accuracy in
any stress level was not less than 0.75 and 0.85 for Cd and Pb, respectively.

Table 4. Diagnostic accuracies for Cd–Pb cross-stress with different pretreatment methods.

Pretreatment
methods

Diagnostic accuracies of Cd Diagnostic accuracies of Pb

C–ZCd C–LCd C–MCd C–HCd C–ZPb C–LPb C–MPb C–HPd

NorSG1D 0.86 0.75 0.81 0.83 0.86 0.81 0.83 0.92
NorStaSG1D 0.86 0.79 0.85 0.90 0.89 0.85 0.85 0.88
NorStaSG2D 0.81 0.77 0.81 0.81 0.85 0.81 0.85 0.88
NorSGSta1D 0.85 0.75 0.88 0.88 0.91 0.90 0.88 0.90
NorSGSta2D 0.81 0.75 0.83 0.81 0.88 0.81 0.88 0.88
StaSGNor1D 0.82 0.75 0.83 0.85 0.86 0.85 0.85 0.88

SGNor1D 0.86 0.77 0.90 0.90 0.86 0.85 0.85 0.88
SGNor2D 0.83 0.81 0.83 0.83 0.86 0.83 0.79 0.85
SGSta1D 0.86 0.79 0.85 0.90 0.91 0.90 0.88 0.90
SGSta2D 0.81 0.75 0.79 0.81 0.88 0.85 0.85 0.88

All diagnostic accuracies reached 0.75 for all pretreatments. The accuracies of Cd-stressed levels
ranged from 0.75 to 0.90, with the highest of 0.90 for C–HCd. The accuracies of Pb-stressed levels
ranged from 0.79 to 0.92. The highest accuracy was 0.91 for C–HPb.

For Cd stress in cross-stress, all pretreatments that reached accuracies of not less than 0.75 no
matter what Cd-stressed levels the rice was subject to. Especially there were three pretreatments
with an accuracy of not less than 0.79, including NorStaSG1D, SGNor2D, and SGSta1D. Based on
the pretreatments of SGNor2D, all accuracies reached 0.81 in any Cd stress level. When diagnosing
whether the rice was subject to zero-Cd stress level (C–ZCd), accuracies ranged from 0.81 to 0.86
from different pre-processing reflective spectra. the highest accuracy was 0.86 based on the four
pretreatments, including NorSG1D, NorStaSG1D, SGNor1D, and SGSta1D.; for low-Cd stress level
(C–LCd), the overall diagnostic accuracies were distributed in the range from 0.75 to 0.81, and the
highest accuracy was 0.81 based on the significant bands of SGNor2D. Half of pretreatments reached
diagnostic accuracies of not less than 0.77, which was a greatly acceptable result; for medium-Cd stress
level (C–MCd), the accuracies exceeded 0.80except SGSta2D at 0.79. its highest value reached 0.90
in the pretreatment of SGNor1D;; for high-Cd stress level (C–HCd), half of pretreatments reached a
diagnostic accuracy of no less than 0.85, which indicated that any of them could diagnose C–HCd
from four stress levels in cross-stress. There were three pretreatments that reached 0.90, including
NorStaSG1D, SGNor1D, and SGSta1D.

For Pb stress in cross-stress, among all pretreatments, there were six pretreatments that reached
accuracies of not less than 0.85, no matter what Pb-stressed levels the rice was subject to. Especially
for NorSGSta1D and SGSta1D, the diagnostic accuracies were not less than 0.88 in any Pb stress level.
When diagnosing whether the rice was subject to zero-Pb stress level (C–ZPb), and the diagnostic
accuracies ranged from 0.86 to 0.91 from different pre-processing reflective spectra, four of which
reached 0.88. The highest was 0.91 based on the pretreatment of NorSGSta1D and SGSta1D. for
medium-Pb stress level (C–MPb), the overall diagnostic accuracies were distributed to the extent of
0.81 to 0.90. with more than half of the pretreatments, these corresponding diagnostic accuracies were
not less than 0.85, and the highest accuracy reached 0.90 in NorSGSta1D and SGSta1D. All diagnostic
accuracies for C–HPb reached 0.85,and apart from SGNor2D at 0.85, the remaining all exceeded 0.85.
The highest reached 0.92 with the pretreatment of NorSG1D.

When considering comprehensively diagnostic accuracies of Cd-stressed and Pb-stressed
in different stress levels, there were four pretreatments that reached satisfying diagnostic
accuracies—namely NorStaSG1D, NorSGSta1D, SGNor1D, and SGSta1D. With especially SGSta1D,
the diagnostic accuracies of the four Cd-stressed levels were 0.86, 0.79, 0.85 and 0.90, respectively,
while the diagnostic accuracies of the four Pb-stressed levels were 0.91, 0.90, 0.88 and 0.90, respectively.
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These satisfying diagnostic accuracies indicated that the feasibility of using VNIRS of rice canopy to
diagnose the Cd-stressed and Pb-stressed levels in cross-stress.

3.5. Predictions Cd and Pb Contents

Compared with SVM, PLSR performed better with higher accuracy of prediction. Therefore, in
this section, results of PLSR are listed. See Section 4.2 for the comparison between the two methods.

Based on PLSR modeling and r2 evaluating, two predicted models with the highest r2 value were
selected as the Cd (a) and Pb (b) contents prediction model, respectively, as shown in Figure 5.
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Figure 5. Predictions of Cd contents (a) and predictions of Pb contents (b) in cross-stress based on
partial least squares regression (PLSR).

The predictions of Cd contents reached satisfying results. The r2 of prediction was 0.70. However,
both of our PLS and SVM models failed to predict the Pb concentration accurately, with a low r2 of
0.13 and a severely biased residual. The results indicated that it was only feasible to predict foliar Cd
concentration quantitatively, and the prediction of Pb contents needs further investigation.

4. Discussion

4.1. Comparisons of Pre-Processing Methods

The pre-processing methods NorStaSG1D and SGSta1D reached greatly satisfying diagnostic
accuracies. All of them were above 0.80, except for C–LCd at 0.79, as shown in Figure 6. Therefore,
the abovementioned two pre-processing methods should be given the priority for diagnosing Cd–Pb
cross-stress. Some significant bands, selected from the dataset after pre-processing NorStaSG1D and
SGSta1D, are likely to be used as sensitive indices to quickly detect the Cd and Pb stress in leaves,
which does help to apply remote sensing technology in large-scale heavy metal pollution detecting.
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Figure 6. Diagnostic accuracies of different types and stress levels with NorStaSG1D (Left) and
SGSta1D (Right). (NorStaSG1D is a pre-processing method with normalization, standardization,
Savitzky-Golay smoothing, and 1st-Derivative, successively, while SGSta1D is a pre-processing method
with Savitzky-Golay smoothing, standardization, and 1st-Derivative, successively).

We have found that the combination of pre-processing methods made significant difference in
diagnostic accuracies for Cd–Pb cross-stress, which coincides with Shi’s results, as shown in the
reference [19]. For example, compared with the pre-processing method of NorSG, the combined
method of NorSG1D showed a raised trend, no matter what types and stress levels the rice was subject
to, as shown in Figure 7.
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Figure 7. Diagnostic accuracies of Cd stress (a) and Pb stress (b) based on NorSG and NorSG1D.
(NorSG is a pre-processing method with normalization and Savitzky-Golay smoothing, successively,
while NorSG1D is a pre-processing method with normalization, Savitzky-Golay smoothing, and
1st-Derivative, successively).

For almost all pretreatments, the corresponding diagnostic accuracies became higher with the
increase of stressed levels. It is likely that the higher stressed levels of Cd–Pb cross-stress, the more
obvious the change in some rice biochemical parameters (chlorophyll, water content, nitrogen content,
etc.), which can be more easily detected and identified by VNIRS. These quantified stress levels can
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be gradually reduced to investigate the reliability of VNIRS in diagnosing low-level heavy metal
pollution [13].

We also investigated the prevailing pre-processing methods of using VNIRS to estimate Cd–Pb
concentrations in brief, as shown in Table 5.

Table 5. Methods of hyperspectral data pre-processing for estimating Cd–Pb concentrations.

Categories Pre-Processing Methods Important Bands (\nm) Refs

Cd principal component
analysis (PCA) 700–710 [54]

Cd First derivative(1D) 372, 374, 478 [55]

Cd

orthogonal signal
correction (OSC), ABS,

1D, second
derivative(2D), et al.

590–620, 580–595 [12]

Cd genetic algorithm (GA) 481, 563, 616, 718 [42]

Cd Savitzky–Golay
smoothing (SG) 2100–2300 [56]

Cd 1D,2D, normalization,
standardization

681, 683, 693, 694, 699, 769–776,
880, 1018, 1461, etc. This work

Pb PCA 700–710 [54]
Pb GA 617, 735, 2350 [42]
Pb SG 710–720, 2100–2300 [56]
Pb average 564, 624 [4]

Pb absorbance
transformation (ABS), SG 400–450, 1000, 2400–2420 [13]

Pb Fractional order
derivative (FOD) 400–560 [11]

Pb 1D,2D, normalization,
standardization

712–713, 717–720, 727–728,
751–752, 757–758, 815, etc. This work

The significant wavelength detected by this study for Cd stress were 681–699 nm, 738–776 nm,
880nm, 1018 nm, 1024 nm, and 1461 nm, while that for Pb were 712–728 nm, 751–784 nm, 815 nm, 1280
nm, 1476 nm, and 1601 nm. Some were closed to the previous researched results [12,13,42,56], but
part of them were new conclusions, such as 880 nm and 1461 nm for Cd and 784 nm and 1601 nm for
Pb. There is a closed relation between the reflectance of 670–760 nm and content of chlorophyll and
nitrogen [57], some of which were same to the Cd–Pb-stressed significant bands, indicating that Cd
stress and Pb stress also affected the rice photosynthesis. In addition, the Cd stresses also affected the
N–H stretch, which was sensitive in the range from 1005–1015 nm [58]. These results may service the
wavelength selection of hyperspectral sensors in the future.

Spectral pre-processing methods, such as SG, 1D, and average, et al. [4,12,13,56] were employed
to reduce noise levels. GA and OSC are relatively less commonly used to derive stable hyperspectral
signatures [12,42]. PCA is employed for spectral dimension reduction. Besides Table 5, two innovative
methods, a genetic algorithm-based stacking algorithm [38] and a memory-based learning approach [39],
may be worth exploring to diagnose and predict heavy metals with VNIRS datasets.

4.2. Comparisons of Estimated Models

Besides the prediction of PLSR, SVM was also conducted to estimate the Cd–Pb contents, but
the latter performed not better than the former. Some evaluated parameters were showed in Table 6.
Compared with SVM, PLSR predicted better with lower RMSE and RPIQ. Due to the poor performance
of SVM in predicting, only PLSR was used to predict the Cd–Pb contents in rice canopy. Recently,
Tsakiridis and Tziolas proposed two novel methods, namely a genetic algorithm-based stacking
algorithm [38] and a memory-based learning approach [39], which presented an increase in estimated
accuracies and a decrease in the RMSE about 6.47%. These innovative solutions could be considered
to predict heavy metals contents and to evaluate the predictive performance in the future, especially
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for Pb contents prediction, which might improve the estimated accuracies and the robustness of
predictive models.

Table 6. Evaluated parameters of support vector machine (SVM) prediction and partial least squares
regression (PLSR) predication.

Models
Factor Numbers r2 RMSE RPIQ

Cd Pb Cd Pb Cd Pb Cd Pb

SVM 4 3 0.38 0.29 50.45 421.56 9.72 15.79
PLSR 2 2 0.70 0.13 10.26 303.17 1.93 7.37

To conform to the performance of predicted results, we investigated some research about estimating
the Cd contents and Pb contents by VINRS in recent years. The details were displayed in Table 7.

Table 7. Predicted accuracies of using visible and near-infrared reflectance spectroscopy (VNIRS) based
on PLSR for recent research.

Monitoring
Object

Sampling
Site

Measuring
Site

Monitoring
Part

Sample
Number r2 Reference

Cd River
floodplains lab soil 36 0.21 [54]

Cd Irrigation
region lab soil 76 <0.72 [12]

Cd - field leaf 36 0.86 [55]

Cd Lake
sediment lab soil 103 0.47 [42]

Cd Suburban lab soil 93 0.76 [56]
Pb Mining areas lab soil 214 0.73 [59]

Pb River
floodplains lab soil 36 0.21 [54]

Pb Mining areas lab soil 30 0.59 [4]
Pb Paddy field lab soil 14 0.46 [13]

Pb Lake
sediment lab soil 103 0.41 [42]

Pb Suburban lab soil 93 0.27 [56]

Almost all Cd–Pb diagnosis are based on soil spectra measured in the laboratory, and the values
of r2 range from 0.21 to 0.86, with great fluctuation. There is one study of the spectral monitoring part
in the leaf only, without the strict conditions of the greenhouse. Although the highest value of r2 is
above our article, the study includes 36 samples with a single Cd stress only. In our study, there were
96 samples, which is nearly three times the samples number in the reference [55], and our study is on
Cd–Pb cross-stress with four different stressed levels. The highest r2 of Pb contents prediction was 0.73
in the above research [59], but the study involves amounts of soil sampling and wet chemical analysis.
Therefore, our prediction of Cd contents was acceptable, but that of Pb stress need to be improved in
the future work.

4.3. Investigations of Limits and Future Study

The study only explored the feasibility of diagnosing and predicting Cd and Pb due to limited
experimental site and samples. However, there are often cross-stress of various heavy metals, such as
Zn, Cu, Hg, Cr, Ni, etc. in farmland soil [11,14,41]. Therefore, it is necessary to explore possibilities of
using VNIRS to diagnose and predict quantitatively the certain stress from multiple stressed types.

It is worthy to further explore modeling methods and observatory angles. In this study, we have
used PLS and SVM solely to estimate the Cd–Pb concentrations in rice foliar based on the canopy
reflectance. More sophisticated modeling methods, such as random forest and Lasso regression, are
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worthy exploring in the future studies. In addition, this study diagnosed and predicted the Cd–Pb
cross-stress only from canopy hyperspectral reflectance, while other studies found that the diagnostic
accuracies could be improved by combining the hyperspectral reflectance of rice plants and soil [34].
This is also interesting to verify on our target pollutant and try to use combined spectra to estimate,
one step toward the reality.

5. Conclusions

In this paper, a Cd–Pb cross-stress experiment of heavy metals was designed and the feasibility of
using rice canopy spectra to diagnose and predict Cd and Pb in cross-stress was explored.

It is found that the significant bands were mainly distributed in the extent of 681–776 nm and
1224–1349 nm for Cd stress and 712–784 nm for Pb stress. With the increasing concentration, the foliar
reflectance generally increases for Cd stress, while it drops for Pb stress.

On one hand, all diagnostic accuracies reached 0.75 under any Cd–Pb-stressed level combination,
and with the proper spectral pretreatment, the accuracy may exceed 0.85 with very few exceptions. On
the other hand, the r2 was 0.70 and 0.13 for Cd and Pb contents prediction. We conclude from our
limited sample size in a greenhouse condition that from the VNIRS of rice canopy it is possible to
diagnose in which single or combined stress the rice crop is suffering, and it is possible to predict the
foliar Cd concentration from rice canopy. However, it is worth noting that this is only one example for
a trend, while a solid conclusion still needs further studies in the field and with a sufficient sample size.
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