Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources and Processing
3.2. LULC Dynamic Analysis
3.3. Calculation of ESVs
3.4. Hotspot Analysis of ESV Change
4. Results
4.1. Land Use/Land Cover Dynamics
4.1.1. LULC Change from 1980 to 2018
4.1.2. LULC Change before and after 1995
4.2. Ecosystem Services Value Change
4.2.1. ESV Change in Different Periods
4.2.2. Spatial Change of ESV Per Unit
4.3. Hotspots of ESV Change
5. Discussion
5.1. Characteristics of ESV Change Due to LULC Dynamics
5.2. Effectiveness of the HXNR on Ecosystem Services Protection
5.3. Application of ESV on the Effectiveness Assessment of PAs
5.4. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chape, S.; Spalding, M.; Jenkins, M. The World’s Protected Areas: Status, Values and Prospects in the 21st Century; University of California Press: Berkeley, CA, USA, 2008. [Google Scholar]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Rands, M.R.; Adams, W.M.; Bennun, L.; Butchart, S.H.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P. Biodiversity conservation: Challenges beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmer, H.; Gundimeda, H. The Economics of Ecosystems and Biodiversity in Local and Regional Policy and Management; Earthscan: London, UK; Washington, DC, USA, 2012. [Google Scholar]
- Eastwood, A.; Brooker, R.; Irvine, R.J.; Artz, R.R.E.; Norton, L.R.; Bullock, J.M.; Ross, L.; Fielding, D.; Ramsay, S.; Roberts, J.; et al. Does nature conservation enhance ecosystem services delivery? Ecosyst. Serv. 2016, 17, 152–162. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Claret, C.; Metzger, M.J.; Kettunen, M.; ten Brink, P. Understanding the integration of ecosystem services and natural capital in Scottish policy. Environ. Sci. Policy 2018, 88, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, V.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. USA 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Anton, C.; Young, J.; Harrison, P.A.; Musche, M.; Bela, G.; Feld, C.K.; Harrington, R.; Haslett, J.R.; Pataki, G.; Rounsevell, M.D.A.; et al. Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy. Biodivers. Conserv. 2010, 19, 2979–2994. [Google Scholar] [CrossRef]
- Jiricka-Purrer, A.; Tadini, V.; Salak, B.; Taczanowska, K.; Tucki, A.; Senes, G. Do Protected Areas Contribute to Health and Well-Being? A Cross-Cultural Comparison. Int. J Environ. Res. Public Health 2019, 16, 1172. [Google Scholar] [CrossRef] [Green Version]
- Convention on Biological Diversity. Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp/targets (accessed on 1 November 2019).
- UNEP-WCMC; IUCN; NGS. Protected Planet Report 2018; World Conservation Monitoring Centre (UN Environment Conservation Monitoring Centre): Cambridge, UK, 2018. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, H.; Wu, G. Comparison analysis on physical and value assessment methods for ecosystems services. Chin. J. Appl. Ecol. 2000, 11, 290–292. [Google Scholar]
- Häyhä, T.; Franzese, P.P. Ecosystem services assessment: A review under an ecological-economic and systems perspective. Ecol. Modell. 2014, 289, 124–132. [Google Scholar] [CrossRef]
- Armsworth, P.R.; Chan, K.M.A.; Daily, G.C.; Ehrlich, P.R.; Kremen, C.; Ricketts, T.H.; Sanjayan, M.A. Ecosystem-service science and the way forward for conservation. Conserv. Biol. 2007, 21, 1383–1384. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Allen, C.R.; Ban, N.C.; Biggs, D.; Biggs, H.C.; Cumming, D.H.M.; Vos, A.D.; Epstein, G.; Etienne, M.; Maciejewski, K.; et al. Understanding protected area resilience: A multi-scale, social-ecological approach. Ecol. Appl. 2015, 25, 299–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem proper-ties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Bao, Y.; Li, T.; Liu, H. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi province by InVEST model. Geogr. Res. 2016, 35, 664–676. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Dasgupta, P. Nature in economics. Environ. Resour. Econ. 2008, 39, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Zhen, L.; Lu, C.; Yu, X.; Cao, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R.E.; Lehner, B.; Ricketts, T.H. Global mapping of ecosystem services and conservation priorities. Proc. Natl. Acad. Sci. USA 2008, 105, 9495–9500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovács, E.; Kelemen, E.; Kalóczkai, Á.; Margóczi, K.; Pataki, G.; Gébert, J.; Málovics, G.; Balázs, B.; Roboz, Á.; Krasznai Kovács, E.; et al. Understanding the links between ecosystem service trade-offs and conflicts in protected areas. Ecosyst. Serv. 2015, 12, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tang, M.; Zhang, Z.; Wu, B. Whether Urban Development and Ecological Protection Can Achieve a Win-Win Situation—The Nonlinear Relationship between Urbanization and Ecosystem Service Value in China. Sustainability 2019, 11, 3277. [Google Scholar] [CrossRef] [Green Version]
- Karp, D.S.; Mendenhall, C.D.; Callaway, E.; Frishkoff, L.O.; Kareiva, P.M.; Ehrlich, P.R.; Daily, G.C. Confronting and resolving competing values behind conservation objectives. Proc. Natl. Acad. Sci. USA 2015, 112, 11132–11137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heather Tallis, P.K.; Michelle, M.; Chang, A. An ecosystem services framework to support both practical conservation and economic development. Proc. Natl. Acad. Sci. USA 2008, 105, 9457–9464. [Google Scholar] [CrossRef] [Green Version]
- Scolozzi, R.; Schirpke, U.; Morri, E.; D’Amato, D.; Santolini, R. Ecosystem services-based SWOT analysis of protected areas for conservation strategies. J. Environ. Manage. 2014, 146, 543–551. [Google Scholar] [CrossRef]
- García-Llorente, M.; Harrison, P.A.; Berry, P.; Palomo, I.; Gómez-Baggethun, E.; Iniesta-Arandia, I.; Montes, C.; García del Amo, D.; Martín-López, B. What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodivers. Conserv. 2016, 27, 1575–1597. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.J.; Martín-López, B.; López, E.; Plieninger, T.; Alcaraz-Segura, D.; Vaughn, C.C.; Cabello, J. Do protected areas networks ensure the supply of ecosystem services? Spatial patterns of two nature reserve systems in semi-arid Spain. Appl. Geogr. 2015, 60, 1–9. [Google Scholar] [CrossRef]
- Carvalho-Santos, C.; Monteiro, A.; Arenas-Castro, S.; Greifeneder, F.; Marcos, B.; Portela, A.; Honrado, J. Ecosystem Services in a Protected Mountain Range of Portugal: Satellite-Based Products for State and Trend Analysis. Remote Sens. 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Rao, E.; Chao, X.; Shi, J.; Zhang, C.; Xu, W.; Xiao, Y.; Ouyang, Z. Evaluating the effectiveness of nature reserves in soil conservation on Hainan Island. Acta Ecol. Sin. 2016, 36, 3694–3702. [Google Scholar]
- Sharma, B.; Rasul, G.; Chettri, N. The economic value of wetland ecosystem services: Evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosyst. Serv. 2015, 12, 84–93. [Google Scholar] [CrossRef]
- Yu, D.; Han, S. Ecosystem service status and changes of degraded natural reserves – A study from the Changbai Mountain Natural Reserve, China. Ecosyst. Serv. 2016, 20, 56–65. [Google Scholar] [CrossRef]
- Kibria, A.S.M.G.; Behie, A.; Costanza, R.; Groves, C.; Farrell, T. The value of ecosystem services obtained from the protected forest of Cambodia: The case of Veun Sai-Siem Pang National Park. Ecosyst. Serv. 2017, 26, 27–36. [Google Scholar] [CrossRef]
- Jia, J. The characteristics of formation, development and evolution of National Protected Areas in China. Int. J. Geoherit. Parks 2019, 7, 24–32. [Google Scholar] [CrossRef]
- Wang, W.; Xin, L.; Du, J.; Chen, B.; Liu, F.; Zhang, L.; Li, J. Evaluating conservation effectiveness of protected areas: Advances and new perspectives. Biodiv. Sci. 2016, 24, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, Z.; Qi, W.; Wu, X.; Bai, W.; Li, L.; Ding, M.; Liu, L.; Wang, Z.; Zhang, D. Assessment of protection effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large-sample-comparison method. Acta Geogr. Sin. 2015, 70, 1027–1040. [Google Scholar]
- Xu, W.; Ouyang, Z.; Huang, H.; Wang, X.; Miao, H.; Hu, Z. Priority analysis on conserving China’s terrestrial ecosystems China. Acta Ecol. Sin. 2006, 26, 271–280. [Google Scholar]
- George, B.S.; Kang, A.; Hashi, T.; Cai, P. A winter wildlife survey in the northern Qiangtang of Tibet Autonomous Region and Qinghai Province, China. Acta Theriol. Sin. 2007, 27, 309–316. [Google Scholar]
- Song, X. Dynamic monitoring of Tibetan antelope habitat suitability in the Hoh Xil Nature Reserve using remote sensing images. Resour. Sci. 2016, 38, 17–23. [Google Scholar] [CrossRef]
- Hu, Y.; Li, W.; Jiang, Z.; Liu, W.; Liang, J.; Lin, Y.; Huang, Z.; Qin, H.; Jin, K.; Hu, H. A wild yak survey in Chang Tang of Tibet Autonomous Region and Hoh Xil of Qinghai Province. Biodiv. Sci. 2018, 26, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Ma, S. Current situation investigation of grassland resource in Tanggula Mountain and Kekexili in Qinghai-Tibet Plateau. Pratacul. Sci. 2007, 9, 15–19. [Google Scholar]
- Yao, X.; Liu, S.; Li, L.; Sun, M.; Luo, J. Spatial-temporal characteristics of lake area variations in Hoh Xil region from 1970 to 2011. J. Geogr. Sci. 2014, 24, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xie, C.; Wang, W. Analysis on expansion trend and outburst risk of the Yanhu Lake in Hoh Xil region, Qinghai-Tibet Plateau. J. Geogr. Sci. 2019, 41, 1–12. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to Land Use/Cover Change for the Three Gorges Reservoir Area. China Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Tallis, H.T.; Ricketts, T.H.; Guerry, A.D. InVEST 3.2.0 User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Gland, Switzerland, 2015. [Google Scholar]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Li, F.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total. Environ. 2019, 701, 134690. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Wang, S. Exploring spatiotemporal changes in ecosystem-service values and hotspots in China. Sci. Total. Environ. 2016, 545, 609–620. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Liu, C.; Cui, X. Research on Geomorphological Morphology and Regionalization of Hoh Xil Based on Digital Elevation Model (DEM). Acta Sci. Nat. Univ. Pekin. 2017, 53, 833–842. [Google Scholar]
- Li, R.; Duo, H.; Shi, L.; Zhou, Y.; Jiao, S.; Qiupei, Z.; Lei, G. Characteristics of climate change in Hoh Xil and its impact on landscape pattern during 1970—2013. J. Beijing Fores. Univ. 2015, 37, 59–68. [Google Scholar]
- Wu, D.; Li, Y.; Jiang, D.; Huang, Y.; Yan, H. Research of Remote Sensing Monitoring on Human Activity Impacts on Hoh Xil Nature Reserve. J. Gansu Sci. 2015, 27, 73–84. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. The Annually Normalized Difference Vegetation Index (NDVI) Spatial Distribution Datasets for China; Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Wang, X.; Bao, Y. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 83–89. [Google Scholar]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Chen, C.; Dai, J.; Wang, H.; Liu, Y. Changes of the Value of Ecosystem Services in the Sanjiangyuan Region Based on Land Use Data. Prog. Geogr. 2012, 31, 970–977. [Google Scholar]
- Palomo, I.; Montes, C.; Martín-López, B.; González, J.A.; García-Llorente, M.; Alcorlo, P.; Mora, M.R.G. Incorporating the Social–Ecological Approach in Protected Areas in the Anthropocene. BioScience 2014, 64, 181–191. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounaridis, D.; Symeonakis, E. Assessing the impact of dams on riparian and deltaic vegetation using remotely-sensed vegetation indices and Random Forests modelling. Ecol. Indic. 2019, 103, 630–641. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Zhao, M.; Liu, Y.; Lu, T. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geogr. Sin. 2017, 72, 960–973. [Google Scholar]
- Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G. Monitoring the vegetation activity in China using vegetation health indices. Agr. Forest Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Biggs, R.; Schluter, M.; Schoon, M.L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
Primary Categories (Code) | Subcategories Types (Code) |
---|---|
Cropland (1) | Paddy field (11), dry land (12) |
Woodland (2) | Forested land (21), Shrubland (22), Sparse land (23), Other woodlands (24) |
Grassland (3) | High dense grassland (31), Moderate dense grassland (32), Sparse grassland (33) |
Water bodies (4) | River and canals (41), Lakes (42), Reservoir and pond (43), Permanent glaciers and snow (44), Intertidal zone (45), Floodplain (46) |
Built-up areas (5) | Urban areas (51), Rural housing areas (52), Other construction land (53) |
Unused land (6) | Sandy desert (61), Harsh/Gobi desert (62), Saline and alkaline land (63), Marshy land (64), Bare land (65), Bare rock (66), Other unused land (67) |
Ocean (99) | - |
Areas | LULC Area (km2) | 1980 | 1995 | 2008 | 2018 |
---|---|---|---|---|---|
The HXNR | Forest | 7.20 (0.01) 1 | 0.19 (0) | 7.21 (0.01) | 7.22 (0.01) |
Grassland | 17,322.98 (35.31) | 17,773.43 (36.23) | 17,304.22 (35.27) | 17,616.34 (35.91) | |
Waterbodies | 3543.29 (7.22) | 3412.15 (6.95) | 3584.37 (7.31) | 3580.71 (7.30) | |
Wetland | 723.93 (1.48) | 607.31 (1.24) | 675.65 (1.38) | 834.36 (1.70) | |
Urban | 0 | 0 | 0 | 0 | |
Desert | 27,466.26 (55.98) | 27,270.60 (55.58) | 27,492.25 (56.03) | 27,025.04 (55.08) | |
The Control Area | Forest | 4.03 (0.04) | 4.04 (0.04) | 4.06 (0.04) | 3.28 (0.03) |
Grassland | 9389.02 (87.95) | 10,133.31 (94.93) | 9379.32 (87.86) | 9289.67 (87.02) | |
Waterbodies | 126.70 (1.19) | 121.27 (1.14) | 126.88 (1.19) | 128.44 (1.20) | |
Wetland | 50.75 (0.48) | 19.51 (0.18) | 50.60 (0.47) | 49.37 (0.46) | |
Urban | 0.80 (0.01) | 1.74 (0.02) | 0.81 (0.01) | 6.16 (0.06) | |
Desert | 1103.58 (10.34) | 395.01 (3.70) | 1113.22 (10.43) | 1197.97 (11.22) |
LULC Types (%) | 1980–1995 | 1995–2008 | 2008–2018 | 1980–2018 | ||||
---|---|---|---|---|---|---|---|---|
SoH 1 | SoC 2 | SoH | SoC | SoH | SoC | SoH | SoC | |
Forest | −6.49 | 0 | 284.51 | 0.04 | 0.01 | −1.92 | 0.01 | −0.54 |
Grassland | 0.17 | 0.53 | −0.20 | −0.57 | 0.18 | −0.10 | 0.05 | −0.03 |
Waterbodies | −0.25 | −0.29 | 0.39 | 0.36 | −0.01 | 0.12 | 0.03 | 0.04 |
Wetland | −1.07 | −4.10 | 0.87 | 12.25 | 2.35 | −0.24 | 0.44 | −0.08 |
Urban | 0 | 7.80 | 0 | −4.14 | 0 | 66.51 | 0 | 19.08 |
Desert | −0.05 | −4.28 | 0.06 | 13.99 | −0.17 | 0.76 | −0.05 | 0.24 |
Conversion Types (km2) | The HXNR | The Control Area | ||||
---|---|---|---|---|---|---|
1980–1995 | 1995–2008 | 2008–2018 | 1980–1995 | 1995–2008 | 2008–2018 | |
Forest Translations | 7.08 | 7.08 | 0.51 | 0.01 | 0.12 | 0.61 |
Grassland to Waterbodies/Wetland | 10.26 | 84.83 | 54.80 | 4.59 | 44.98 | 5.67 |
Urban Expansion | - | - | - | 0.96 | 0.03 | 5.51 |
Desert Expansion | 1312.60 | 1548.07 | 368.16 | 70.89 | 781.54 | 159.84 |
Waterbodies/Wetland to Grassland | 79.12 | 14.26 | 77.26 | 44.35 | 5.11 | 4.54 |
Transitions between Waterbodiesaters & Wetland | 51.89 | 33.05 | 400.55 | 0.19 | 0.19 | 0.35 |
Desert to Green | 1508.27 | 1326.43 | 839.86 | 778.86 | 63.32 | 73.21 |
Areas | ESV (million USD) | 1980 | 1995 | 2008 | 2018 | 1980–1995 (%) | 1995–2008 (%) | 2008–2018 (%) |
---|---|---|---|---|---|---|---|---|
The HXNR | Provisioning | 38.00 | 38.86 | 37.94 | 38.60 | 0.15 | −0.18 | 0.17 |
Regulating | 447.07 | 441.41 | 445.77 | 456.61 | −0.08 | 0.07 | 0.24 | |
Supporting | 210.67 | 214.75 | 210.39 | 213.15 | 0.13 | −0.16 | 0.13 | |
Cultural | 68.37 | 67.82 | 68.25 | 69.56 | −0.05 | 0.05 | 0.19 | |
Total | 764.11 | 762.85 | 762.36 | 777.92 | −0.01 | −0.004 | 0.20 | |
The Control Area | Provisioning | 45.17 | 47.50 | 45.13 | 44.79 | 0.34 | −0.40 | −0.08 |
Regulating | 362.53 | 368.49 | 362.14 | 359.76 | 0.11 | −0.13 | −0.06 | |
Supporting | 236.97 | 247.73 | 236.73 | 235.13 | 0.30 | −0.35 | −0.07 | |
Cultural | 53.44 | 54.27 | 53.39 | 53.11 | 0.10 | −0.13 | −0.06 | |
Total | 698.11 | 718.00 | 697.38 | 692.78 | 0.19 | −0.22 | −0.07 |
ESV per Unit (USD per ha) | The HXNR | The Control Area | ||||||
---|---|---|---|---|---|---|---|---|
1980 | 1995 | 2008 | 2018 | 1980 | 1995 | 2008 | 2018 | |
Provisioning | 7.75 | 7.92 | 7.73 | 7.87 | 42.31 | 44.50 | 42.27 | 41.96 |
Regulating | 91.12 | 89.97 | 90.86 | 93.09 | 339.61 | 345.20 | 339.25 | 337.01 |
Supporting | 42.94 | 43.77 | 42.88 | 43.45 | 221.99 | 232.06 | 221.76 | 220.26 |
Cultural | 13.93 | 13.82 | 13.91 | 14.18 | 50.06 | 50.84 | 50.01 | 49.75 |
Total | 155.74 | 155.48 | 155.38 | 158.59 | 653.97 | 672.60 | 653.29 | 648.98 |
Periods | ESV Changed Patches | Number of Hot Spots | Number of Cold Spots | ||
---|---|---|---|---|---|
A 1 | B 2 | A | B | ||
1980–1995 | 3,281,059 | 307,324 (9) 3 | 1,311,912 (40) | 1,016,464 (31) | 437,961 (13) |
1995–2008 | 3,334,318 | 1,032,753 (31) | 435,893 (13) | 330,902 (10) | 1,338,828 (40) |
2008–2018 | 1,851,733 | 527,571 (28) | 450,687 (24) | 189,580 (10) | 337,833 (18) |
1980–2018 | 1,939,336 | 539,118 (28) | 455,401 (23) | 211,097 (11) | 373,246 (19) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Chen, T.; Yao, X.; Chen, W. Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 471. https://doi.org/10.3390/rs12030471
Zeng J, Chen T, Yao X, Chen W. Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau. Remote Sensing. 2020; 12(3):471. https://doi.org/10.3390/rs12030471
Chicago/Turabian StyleZeng, Jie, Tianyang Chen, Xiaowei Yao, and Wanxu Chen. 2020. "Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau" Remote Sensing 12, no. 3: 471. https://doi.org/10.3390/rs12030471
APA StyleZeng, J., Chen, T., Yao, X., & Chen, W. (2020). Do Protected Areas Improve Ecosystem Services? A Case Study of Hoh Xil Nature Reserve in Qinghai-Tibetan Plateau. Remote Sensing, 12(3), 471. https://doi.org/10.3390/rs12030471