
remote sensing  

Article

Two-Phase Object-Based Deep Learning for
Multi-Temporal SAR Image Change Detection

Xinzheng Zhang 1,2,*,† , Guo Liu 1, Ce Zhang 3,4,† , Peter M. Atkinson 3 , Xiaoheng Tan 1,2,
Xin Jian 1,2, Xichuan Zhou 1 and Yongming Li 1

1 College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044,
China; 20114898@cqu.edu.cn (G.L.); txh@cqu.edu.cn (X.T.); jianxin@cqu.edu.cn (X.J.); zxc@cqu.edu.cn (X.Z.);
yongmingli@cqu.edu.cn (Y.L.)

2 Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion,
Chongqing 400044, China

3 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;
c.zhang9@lancaster.ac.uk (C.Z.); pma@lancaster.ac.uk (P.M.A.)

4 UK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, UK
* Correspondence: zhangxinzheng@cqu.edu.cn
† These authors contributed equally to this work.

Received: 15 December 2019; Accepted: 4 February 2020; Published: 7 February 2020
����������
�������

Abstract: Change detection is one of the fundamental applications of synthetic aperture radar (SAR)
images. However, speckle noise presented in SAR images has a negative effect on change detection,
leading to frequent false alarms in the mapping products. In this research, a novel two-phase
object-based deep learning approach is proposed for multi-temporal SAR image change detection.
Compared with traditional methods, the proposed approach brings two main innovations. One is to
classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels
caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real
changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local
spatial context. Two phases are designed in the methodology: (1) Generate objects based on the
simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and
unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of
this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over
the changed superpixels only, obtained in the first phase, to discriminate real changes from false
changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and
sparse decomposition are applied to these new superpixels to suppress speckle noise significantly.
A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained
to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments
demonstrate that, compared with benchmark methods, the proposed approach can distinguish real
changes from false changes effectively with significantly reduced false alarm rates, and achieve up to
99.71% change detection accuracy using multi-temporal SAR imagery.

Keywords: synthetic aperture radar (SAR); change detection; deep learning; superpixel

1. Introduction

With its cloud penetrating capability, synthetic aperture radar (SAR) images have drawn a large
amount of attention, for example, in environmental surveillance, urban planning and military
applications over the past decades. Using SAR images for change detection often involves two images
acquired over the same area at different times, utilising the information in the differences between them.
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Depending on the availability of a difference image (DI), change detection approaches can be
divided into two categories. One is post-classification comparison which is undertaken to identify
changed and unchanged regions directly from two images that were classified independently before
the analysis. In this approach, the change detection result is not influenced by radiation normalization
and geometric correction. However, the accuracy of the change detection relies on the quality of the
classification results, with errors propagating to the outcome. The other approach is post-comparison
analysis, in which change detection is achieved by generating a DI from two multi-temporal images,
and obtaining the final change map from it. The classification errors in this case do not accumulate, but
the way that the DI is generated may influence the validity of the change detection results [1].

From a machine learning perspective, change detection can also be categorized into supervised and
unsupervised approaches, depending on whether labelled data are used or not [2,3]. For supervised
methods, features extracted from labelled data are fed into a subsequent classifier. This strategy requires
a significant number of ground reference data to train the algorithm, and the labelling process can
be extremely labour-intensive and time-consuming [4]. In [5], a context-sensitive similarity measure
is presented based on supervised classification to amplify the dissimilarity between changed and
unchanged pixels. Unsupervised methods for change detection can be viewed as a clustering approach
which divides the data into changed and unchanged classes [6,7]. In [8], the DI is cast into an eigenvector
space and k-means clustering is used to partition the space into two clusters. In [9], a modified Markov
Random Field (MRF) energy function is employed to update iteratively the membership association of
fuzzy c-means (FCM), to cluster the DI into two classes. In [10] a novel method based on spatial fuzzy
clustering was used to add spatial information to enhance change detection performance.

Recently, deep learning has gained widespread attention in the field of computer vision and pattern
recognition, and demonstrated state-of-the-art prediction accuracy in various challenging tasks, such as
target detection, image classification, etc. The major benefit of deep learning is that it can extract abstract
and high-level representations that are hard to hand-code through feature engineering [11,12]. In
addition, deep networks are often pre-trained using a large-scale dataset (e.g., ImageNet), and fine-tuned
to other domains including remote sensing. Convolutional neural networks (CNNs) are considered
as the pioneer of deep learning methods which mimic the receptive fields of the human brain neural
cortex, with less redundancy and complexity through the weight-sharing architecture [12,13]. Some
well-developed CNN models, such as AlexNet [12], VGG [14] and ResNet [15], have been adopted
quickly in the remote sensing community to solve real-world challenges (e.g., land cover and land
use classification).

Given the advantages of deep learning, some pioneering methods have been proposed for
multi-temporal SAR image change detection. In [1], a stack of restricted Boltzmann machine (RBM)
networks was used to learn efficiently the relationship between two multi-temporal SAR images for
change detection. A dual-channel CNN structure was used to extract features of two SAR images
for change detection [16]. In [17] presents a local restricted CNN for SAR image change detection,
which is formed by imposing a spatial constraint on the output layer of the CNN, such as to learn from
several layered difference images. In [18], a stacked contractive autoencoder (sCAE) using a contractive
penalty was proposed to promote local invariance and robustness, such that robust features can
be extracted from superpixels of SAR images for change detection. In [19], a deep learning-based
weakly supervised framework was developed for urban change detection using multi-temporal
polarimetric SAR data. In [20], a transferred multi-level fusion network (MLFN) was trained using
a large dataset and fine-tuned to extract features from SAR image patches for sea ice change detection.
PCANet is an alternative deep learning model with its convolution filter banks chosen from principal
component analysis (PCA) filters, which is suitable for SAR image change detection [21,22]. In PCANet,
the cascaded PCA filters and binary quantization (hashing) are used as a data-adapting convolution
filter bank in each stage and in the nonlinearity layer [21]. During the PCANet training process, there
is no requirement for regularized parameters and numerical optimization solvers, which promotes the
efficiency and accuracy of the network. In [22], PCANet was shown to be accurate, with great potential
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for SAR image change detection. In [23], context-aware saliency detection was employed to obtain
training samples for PCANet in SAR image change detection, which reduces the number of training
samples required while maintaining the reliability of the training sample sets, leading to less training
time and computational efficiency. In [24], a morphologically supervised PCANet was designed to
overcome the class imbalance problem in SAR image change detection (changed pixels are far less
common than unchanged pixels).

Although the above-mentioned deep learning methods exhibit excellent performance in SAR
image change detection, there are still some shortcomings. First of all, all the above methods are
actually binary classification algorithms, which separate pixels of the changed class (CC) from pixels
of the unchanged class (UC). In reality, variation in the pixel values caused by strong speckle noise
may lead to allocation to the changed class, potentially producing a large number of false alarms.
Here, strong speckle noise refers to those speckles which have amplitude values similar to the terrain
pixel amplitude values or even larger. Thus, strong speckle noise can bring significant false alarms to
change detection. However, for SAR image change detection, the strong or weak speckle is relative
to the amplitudes of terrain pixels. Due to the complexity of the terrain background, some objects
have smaller pixel amplitude values in the SAR image, and some objects have larger pixel amplitude
values in the SAR image. It is difficult to use a general certain value or standard to measure “strong”
degree in SAR image change detection. Therefore, in this research, only the term “strong speckle”
is introduced qualitatively. There are actually two kinds of changed pixels: one is produced by real
terrain object changes (i.e., real changed class, RCC), and the other caused by strong speckle noise
(i.e., false changed class, FCC). For example, if there was a building in a location in the first temporal
SAR image, but it was no longer available in the second temporal SAR image. This situation belongs
to RCC. The FCC means that there is no change in terrain, but the change is caused by the speckle
noise. For example, the original speckle noise is weak in the first temporal SAR image, but the later
speckle noise of the same location is very strong in the second temporal SAR image. This kind of
strong speckle noise variation is often regarded by the change detection algorithm as a real terrain
change leading to false alarms. Therefore, this kind of change belongs to the FCC. Even if deep learning
models have powerful classification capabilities, there will still be several false alarms due to strong
speckle noise. Secondly, in current deep learning-based SAR image change detection, high quality
training samples are required to train the networks. Those training samples are commonly taken
as rectangular patches centring around the pixels that are of interest. However, this operation often
introduces artefacts on the border of these rectangular patches, which produces uncertainty in the
classification maps. For example, unchanged pixels and changed pixels could potentially exist in one
image patch simultaneously. Heterogeneous pixels can also be found in one rectangular patch, which
will increase the difficulty of distinguishing between CC and UC classes.

In this research, a new framework of two-phase object-based deep learning (TPOBDL) is proposed
for SAR image change detection. Object-based deep learning has been shown to be suitable for remote
sensing applications [25]. Thus, in TPOBDL, change detection is implemented in an object-based
rather than pixel-wise fashion. Superpixel generation is applied to SAR images to acquire image
objects (also called superpixels in computer science, and here) using a simple linear iterative clustering
(SLIC) algorithm [26]. In fact, all processing steps in TPOBDL are based on image superpixels. Since
a superpixel is a local set of homogeneous pixels, superpixels can reflect the local spatial context [27–29].
Therefore, this approach can overcome the problems caused by operations involving rectangular
patches, such as introducing artefacts and uncertainty in the classification. The proposed approach
involves two phases to differentiate RCC and FCC objects in an automated approach. Our two-phase
deep learning strategy is, thus: Phase 1 deep learning to classify the objects of CC and those of
UC, and Phase 2 deep learning to classify objects of CC into RCC and FCC objects. This two-phase
framework reduces the classification difficulty faced by deep learning models at each phase, and is
conducive to increasing the overall accuracy of change detection.

Our major contributions are as follows:
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(1) Change detection through an object-based rather than pixel-wise approach. Superpixel generation
is applied to SAR images to obtain objects via SLIC, such that the local spatial context is captured.

(2) A two-phase approach is designed for multi-temporal SAR image change detection. Deep learning
methods are developed to identify objects of FCC and RCC by combining low rank and sparse
decomposition (LRSD) with reduced false alarms.

The remainder of this paper is organized as follows. In Section 2, the proposed approach is
described in detail. Section 3 presents the experimental datasets and results. Discussion on the
experiment results and the proposed approach are shown in Section 4. Finally, conclusions are drawn
in Section 5.

2. Methodology

2.1. Problem Statement and Overview of the Proposed Method

Consider two SAR images taken from the same location, but at different times I1 and I2, both of
size M×N. Change detection is required to generate a binary change map labelling changed pixels and
unchanged pixels between I1 and I2. Figure 1 shows the scheme of TPOBDL, which consists mainly of
two phases of deep learning, described in detail as follows.
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2.2. First Phase Deep Learning

2.2.1. Superpixel Generation of Multi-Temporal SAR Images

In existing deep learning-based SAR image change detection methods, the patches for the training
and testing of deep neural networks are generated mainly in the shape of rectangles, which is
convenient [24]. However, the operation of taking rectangular patches has significant disadvantages
for SAR image change detection. Firstly, when the current pixel is near the boundary between changed
and unchanged regions, the patch generated will contain both changed and unchanged pixels, which
may introduce uncertainty to the deep neural network and impair the learning process [25]. Secondly,
rectangular patch generation ignores the local spatial context, which is conducive to the change
detection. Instead of taking a rectangular patch, in this paper, patches come from superpixels, where
all pixels are homogeneous. This reduces the likelihood that heterogeneous pixels, or even changed
and unchanged pixels appear in one patch simultaneously. Patches that are superpixels, compared
with traditional rectangular patches, provide more valid information to the deep learning model. In
fact, deep learning based on superpixels is an object-based approach, which have more advantages.

In this research, we use SLIC to apply superpixel generation to two multitemporal SAR images
I1 and I2. SLIC is chosen for its simplicity, flexibility in compactness, memory efficiency and high
accuracy, as applied to SAR image processing [30,31]. First, superpixels of I1 are obtained by SLIC.
Then the superpixel pattern from I1 is copied to I2, as shown in Figure 2. Pattern copying ensures that
the corresponding two superpixels of I1 and I2 represent the same local region.
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The principles of SLIC are briefly described as follows. Firstly, the number of superpixels is set as
v, which means I1 is portioned into v pixel-blocks at the beginning. The centre of each pixel-block
is called a seed. The distance (step length) between two seeds is defined as Ω =

√
M×N/v. To

avoid seeds falling on the contour boundary with a larger gradient, the seeds are redefined where
the gradient is the smallest in the neighbourhood. Then searching in the neighbourhood of each seed,
the distance between a pixel in the neighbourhood and the seed, including distance in feature (colour)
space dc and in geographical space ds, is gained by

dc =

√(
l j − li

)2
+

(
a j − ai

)2
+

(
b j − bi

)2
(1)

ds =

√(
x j − xi

)2
+

(
y j − yi

)2
(2)

D =

√
(dc/Γ)2 + (ds/Ω)2 (3)

where dc means feature (colour) distance, Γ is the maximum colour distance in the SLIC algorithm.
Colour distances can vary significantly from image to image, therefore the parameter Γ can be fixed to
a constant. Based on the experiments in this research, we determined the value of this parameter to
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be 10. ds means spatial distance, and D is the distance metric. li, ai and bi represent the three colour
values of the seed in the CIELAB colour space [l a b]T respectively, and xi, yi represents the coordinate
of the seed. l j, a j, b j, x j and y j are corresponding parameters of the pixel in the neighbourhood. In
this manner, a pixel will be searched many times with different seeds. The seed with the smallest D is
taken as the clustering centre of this pixel. Then the seeds are updated. According to observations in
our experiments, we found that the SLIC algorithm converges within 10 iterations on the SAR images.

Superpixels possess a range of geometries and sizes (i.e., numbers of pixels). In contrast, the inputs
of the deep neural network are required to be uniform rectangles with the same numbers of pixels.
Thus, the superpixels need to be reshaped into rectangles before being fed into the network. Assume
that the input patches are of size k× k. Then, each reshaped superpixel should also have k2 pixels. If
a superpixel contains p pixels, there are two ways to reshape the superpixel. One is p ≤ k2. For this
case, assume that a superpixel represented as Sm

n,i (where m represents the phase it is in, in this stage
m = 1, n represents the image it comes from, n = 1, 2, i is an index of the superpixels, i = 1, 2, · · · , v) is
reshaped to a vector Vm

n,i having k2 pixels. The first p pixels of Vm
n,i is filled by pixels of Sm

n,i, and the
other k2

− p pixels are chosen randomly from Sm
n,i. The other one is p > k2. For this case, we reshape the

superpixel Sm
n,i into q + 1 vectors Vm

n,i,1, Vm
n,i,2, . . . , Vm

n,i,q, each of which has k2 pixels, and an extra vector

with p− qk2 pixels. This extra vector is filled with a vector Va
b,i,(q+1)

of k2 pixels under the condition

p ≤ k2. For a unified description, Vm
n,i of case p ≤ k2 is redefined as Vm

n,i,1.

2.2.2. Superpixel DI Generation and FCM

The reshaped superpixel vectors V1
1,i,h and V1

2,i,h (h = 1, 2, . . . , q, q + 1) from S1
1,i and S1

2,i of I1 and I2

are fed into the superpixel DI (SPDI) operator F1
i,h =

∣∣∣∣V1
1,i,h −V1

2,i,h

∣∣∣∣. All F1
i,h form a SPDI. The reason for

generating the superpixel difference map is to help the FCM algorithm to cluster satisfactorily in the
next step. Then all the F1

i,h are clustered into three classes by FCM: changed class (CC) ω1
c , unchanged

class (UC) ω1
u and intermediate class ω1

m. Details of FCM can be found in [32]. F1
i,h belonging to ω1

c

or ω1
u means that superpixel S1

1,i and S1
2,i corresponding to V1

1,i,h and V1
2,i,h have a high probability to

be changed or unchanged, respectively. The pair of superpixels S1
1,i and S1

2,i with the case p ≤ k2 can
easily be inferred to be one of three classes, because each pair of them only has one set of V1

1,i,h and

V1
2,i,h which forms one F1

i,h. However, for superpixels S1
1, j and S1

2, j with p > k2, each pair has q + 1 sets

of V1
1,i,h and V1

2,i,h, which leads to q + 1 F1
i,h. Thus, a voting mechanism is employed to determine their

classes. Specifically, for the +1 F1
i,h, those clustered into ω1

c are weighted by 1, those clustered into ω1
u

are weighted by 0 and those clustered into ω1
m are weighted by 0.5. Then, all q + 1 weights are summed

to be Λ, and the class of superpixel pair S1
1, j and S1

2, j with p > k2 is determined as follows:

class of superpixel pair S1
1, j and S1

2, j=


ω1

c , Λ/(q + 1) ≥ 0.8
ω1

m, 0.8> Λ/(q + 1) ≥ 0.5
ω1

u, Λ/(q + 1) < 0.5
(4)

These specific thresholds in Equation (4) are selected according to the voting mechanism. If
Λ/(q + 1) < 0.5, it means that UC are the majority in q + 1 F1

i,h, so the corresponding superpixel pair
are identified as UC. If 0.8 > Λ/(q + 1) ≥ 0.5, it indicates that the intermediate class has the majority
and there are a few changed class, so the corresponding superpixel pair is judged as the intermediate
class. If Λ/(q + 1) ≥ 0.8, it indicates that CC is the majority, so the corresponding superpixel pair is
judged as CC.

The V1
b,i,h determined as CC and UC are reshaped to patches, which will be fed into the deep

learning model as training samples. Those V1
b,i,h belonging to the intermediate class will be classified to

CC or UC by the trained deep neural network.
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2.2.3. Training PCANet1

As a type of deep learning model, PCANet is easy to train and can be adapted to other tasks. For
SAR image change detection, PCANet has been shown to learn non-linear relations from multi-temporal
SAR images, which is an advantage compared to other deep neural networks [22]. It has already been
employed in SAR image change detection [22–24]. Considering these superiorities of PCANet in SAR
image change detection tasks, we use PCANet here to further classify those superpixel pairs identified
to the intermediate class in the previous phase. Since PCANet is used in the second phase, the network
in the first phase is called PCANet1.

First, the V1
b,i,h of CC and UC are used as samples to train PCANet1. V1

1,i,h and V1
2,i,h are reshaped

and combined to form the patches Ri,h to be fed into the network (Figure 3). If I1 is segmented into v
superpixels and the i-th superpixel is reorganized as γi vectors. Then the number of Ri,h of size 2k× k
is Γ =

∑v
i=1 γi.
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The structure of PCANet1 is shown in Figure 4, consisting of two PCA filters convolution layers,
a Hashing and histogram generation layer. After patch generation, all Ri,h have their means removed,
are vectorised and combined as a matrix Y.

Y =
[
y1,1, . . . , y1,γ1

, y2,1, . . . , y2,γ2
, . . . , yv,1, . . . , yv,γv

]
(5)

where yi,h denotes mean-removed and vectorised Ri,h.
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Next, we choose L1 principal eigenvectors of YYT (T denotes the matrix transposition) as the PCA
filters W1

l of the first layer, that is

W1
l = mat

(
ql(YYT)

)
∈ <

2k2
×2k2

, l = 1, 2, . . . , L1 (6)

where ql(YYT) means l−th principal eigenvector and mat(x) can map a vector x ∈ <4k4
into a matrix

W ∈ <2k2
×2k2

. So, the output of the first layer is

Rl
i,h = Ri,h ∗W1

l (7)

where the ∗ operator means 2-D convolution. Rl
i,h forms the input of the second layer.

In the second layer, all Rl
i,h have their means removed and are vectorised to be zl

i,h, which

is combined to be a matrix Zl =
[
zl

1,1, . . . , zl
1,γ1 , zl

2,1, . . . , zl
2,γ2 , . . . , zl

v,1, . . . , zl
v,γv

]
. Then, all Zl are

combined as:
Z =

[
Z1, Z2 . . . , ZL1

]
(8)

The following step is similar to that for the first layer. We choose L2 principal eigenvectors of ZZT

as the PCA filters W2
l of the first layer, that is:

W2
p = mat

(
ql(ZZT)

)
∈ <

2k2
×2k2

, p = 1, 2, . . . , L2 (9)

Then the outputs of the second convolution layer are:

Rl,p
i,h = Rl

i,h ∗W2
p (10)

After these two convolution layers, every Ri,h has L1L2 outputs. Each output is binarized by the
Heaviside step function (one for positive input and zero otherwise) to obtain an integer value of each
pixel of Rl

i,h, which is in the range
[
0, 2L2 − 1

]
. Thus, we gain an integer-value image Tl

i,h

Tl
i,h =

L2∑
p=1

2p−1H(Rl
i,h ∗W2

p) (11)

Further, Tl
i,h is transformed into a histogram histTl

i,h. Then the feature of input Ri,h is defined by
PCANet as:

κi,h =
[
hist

(
T1

i,h

)
, hist

(
T2

i,h

)
, . . . , hist

(
TL1

i,h

)]
(12)

The features obtained as above are fed into a support vector machine (SVM) to train a model
which can classify superpixels of intermediate class to CC or UC. It is worth noting that there are almost
no CC objects in the final UC at the end of the first phase. The reason is as follows. If FCM clusters all
superpixel vectors into two categories, namely UC and CC, then UC parts may contain CC objects
probably. To avoid this problem, in the first phase, the clustering results are three categories, UC, CC,
and intermediate class. In this way, the obtained UC and CC are of highly probability. It means that
there are almost no CC objects in UC, and there are almost no UC objects in CC. For those CC objects
that are easily assigned to UC in only two categories clustering, they are assigned to intermediate
class in three categories clustering. Therefore, those samples with high uncertainty are assigned to the
intermediate class. Later, we use the high probability UC and CC objects to train PCANet1, and use
the trained PCANet1 to accurately classify objects of the intermediate class. PCANet1 can extract the
deep features of UC and CC, therefore it can classify objects belonging to intermediate class to UC or
CC well. In summary, we combine FCM and PCANet to ensure that there are almost no CC Objects in
UC, thereby ensuring extremely low missing detection. However, it is worth noting that the CC of
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the first phase includes not only the changed pixels caused by real terrain variation, but also changed
pixels caused by strong speckle noise.

2.3. Second Phase Deep Learning

As stated above, when SAR images are contaminated by strong speckle noise, the CC of the first
phase contains two categories of change. One is false change caused by speckle noise called FCC, the
other is caused by real terrain variation called RCC. Thus, in the second phase, we aim to separate
FCC and RCC, between which the intra-class interval is so small that they are difficult to distinguish.
However, the hypostatic difference between the two categories is such that the change caused by strong
speckle noise has strong randomness. If the influence of the random noise can be greatly weakened,
discrimination between the RCC and FCC can be increased. Therefore, in the second deep learning
phase, we adopt different methods to the first phase. One key step in the second phase is speckle noise
suppression based on low rank and sparse decomposition. Details are as follows.

2.3.1. Superpixel Generation on the Updated SAR Images

In the second phase, we firstly use mask processing on the original SAR images I1 and I2 to set the
pixels classified as UC in the first phase to zero, thus, easing the burden on the classifier in this phase.
Then SLIC is conducted on these two masked images to generate new superpixel objects denoted by
S2

b,i. The superpixel generation in the phase has two differences from that in the first phase. Firstly, the
superpixel generation of this phase is based on the masked images, so the spatial context of the pixels
has altered significantly leading to different superpixel patterns. Secondly, when applying SLIC in this
phase, we set the number of pixels of each superpixel to be less than that in the first phase because
there are many discontinuous areas caused by the mask operation compared to the generation in the
first phase. Then we reshape the superpixel objects S2

b,i into vectors V2
b,i,h using a strategy similar to

that in the first phase.

2.3.2. Low Rank and Sparse Decomposition

The principle of using LRSD is that the pair of noisy superpixels from the same unchanged area of
I1 and I2, have an inherent large correlation with a low rank characteristic. Therefore, to discriminate
RCC and FCC, we propose an idea based on LRSD to suppress speckle noise and restore the superpixel
objects. The LRSD model establishes the effective expression of observed data with noise [33,34]. Low
rank regularization constraints and sparse regularization constraints can separate noise effectively
from observed data and recover data. By optimizing the LRSD model, speckle noise can be separated
and observed objects restored, which may greatly increase the discrimination between RCC and FCC.

At first, we apply a logarithmic operation on each vector of superpixel objects to convert
multiplicative speckle noise to additive noise. Then, each vector can be formulated as follows.

V2
b,i,h = u2

b,i,h + e2
b,i,h (13)

where u2
b,i,h indicates the pixels of observed objects ideally without any speckle noise, and e2

b,i,h
indicates additive speckle noise. All vectors V2

1,i,h and V2
2,i,h are arranged in pairs to construct a matrix

Φ =
[
V2

1,1,1, V2
2,1,1, . . . , V2

1,1,q1
, V2

2,1,q1
, . . . . . . , V2

1,v,1, V2
2,v,1, . . . , V2

1,1,qv
, V2

2,1,qv

]
, as shown in Figure 5. Thus,

we can obtain the matrix version of Equation (13) as Equation (14).

Φ = U + E (14)

where U =
[
u2

1,1,1, u2
2,1,1, . . . , u2

1,1,q1
, u2

2,1,q1
, . . . . . . , u2

1,v,1, u2
2,v,1, . . . , u2

1,1,qv
, u2

2,1,qv

]
E =[

e2
1,1,1, e2

2,1,1, . . . , e2
1,1,q1

, e2
2,1,q1

, . . . . . . , e2
1,v,1, e2

2,v,1, . . . , e2
1,1,qv

, e2
2,1,qv

]
.
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According to the principle of low rank representation, in order to estimate a low rank matrix U
and a spare matrix E from a noise-contaminated observedΦ, we formulate an optimization problem
as follows.

min
U,E
‖U‖∗ + ε(1− λ)‖U‖2,1 + ελ‖E‖2,1, subject toΦ = U + E (15)

where ‖ · ‖∗ indicates the nuclear norm, ‖ · ‖2,1 indicates the l1 norm of a vector formed by the l2 norm of
the column vector of the underlying matrix. ‖ · ‖∗ induces sparsity of the singular values of the matrix,
and ‖ · ‖2,1 induces sparsity of the elements of the matrix.

The optimization problem can be solved by an augmented Lagrange algorithm. The augmented
Lagrange formula of the Equation (16) is as follows:

L(U, E, X,µ) = ‖U‖∗ + ε(1− λ)‖U‖2,1 + ελ‖E‖2,1 + 〈X,Φ−U− E〉+
µ

2
‖Φ−U− E‖2F (16)

where X is the Lagrange multiplier. Given X = Xk and µ = µk, the key to solving the problem is to
solve:

min
U,E

L(U, E, Xk;µk) (17)

The solution of which will emerge though iteration. First, fix U = Uk, and solve:

Ek+1 = argmin
E

L(Uk, E, Xk;µk) (18)

Then, fix E = Ek+1, and solve:

Uk+1 = argmin
U

L(Uk, Ek+1, Xk;µk) (19)

After LRSD, we utilize column vectors u2
1,i,h and u2

2,i,h of low rank matrix U to restore V2
b,i,h,

abandoning the noise matrix E, as shown in Figure 6.
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2.3.3. SPDI Generation and FCM

In the second phase, the difference vector is obtained from the superpixel vectors restored by

LRSD, and FCM clustering is also adopted. At this stage, F2
i,h =

∣∣∣∣u2
1,i,h − u2

2,i,h

∣∣∣∣, forming a new SPDI, is

taken as the input of FCM, to be clustered into three classes, FCC ω2
f c, RCC ω2

rc and the intermediate

class ω2
mc.

2.3.4. Training PCANet2 and Obtaining the Final Change Map

As mentioned earlier, in the second phase, the FCM clusters the superpixel vectors into three
categories, which are RCC ω2

rc, FCC ω2
f c and the intermediate class ω2

mc. RCC is the category of those
superpixel vectors that have real changes with a high probability caused by terrain objects. FCC
is the category of those superpixel vectors that have false changes with a high probability caused
by strong speckle noise. Other superpixel vectors are with high uncertainty, which are difficult to
be determined as RCC or FCC. Thus, those superpixel vectors with high uncertainty is named the
intermediate class. This is the role of the intermediate classes. In fact, these superpixel vectors of
the intermediate class belong to either RCC or FCC. However, FCM cannot identify the category of
these superpixel vectors with higher uncertainty due to its limited clustering ability. Therefore, a deep
learning classifier is needed to accurately identify whether these superpixel vectors of the intermediate
class belong to RCC or FCC. We design a new PCANet model to accomplish this precise identification
task. To distinguish it from the first phase, we named this PCANet as PCANet2, the structure of which
is the same as PCANet1.

The model training of PCANet2 is to use FCC and RCC superpixel vectors obtained by FCM as
training samples to train the SVM in PCANet2. The training process of PCANet2 is similar to PCANet1,
except that the training samples of the two deep learning model are different. After model training,
PCANet2 with the trained SVM can accurate identify superpixel vectors of intermediate classes to be
RCC or FCC. Additionally, since the size of the superpixels of this phase is smaller than that in the
first phase, the patch size of PCANet2 is smaller than that of PCANet1 relatively. Once the network
extracts the features of all the training samples, the extracted features are employed to train an SVM
model. Further, those vectors belonging to the intermediate class ω2

mc are fed into the PCANet2 with
the trained SVM to be classified to FCC or RCC. It is worth noting that the classification task of the
PCANet2 is performed only once, without any iteration. In this way, we obtain the result of the second
phase, which discriminates strong-noise-induced changes and real terrain changes. Finally, the real
changed pixels of the SAR images are only the pixels of superpixel objects belonging to RCC ω2

rc. By
doing this, the final binary change detection result can be obtained.
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2.4. Computational Complexity

The analysis of the computational complexity of the method proposed in this paper is as follows.
In the first phase, the computational complexity of SLIC is O(MN), the FCM is O(MNk), the PCANet1
is O

(
MNk2(L1 + L2) + MNk4) and the SVM is O(MNk2). In the second phase, due to the masking

operation, the number of pixels actually participating in the operation is no longer M ×N. For
ease of description, it is assumed that the number of pixels actually participating in the operation
can be arranged into a rectangle of size M′ × N′. Then, the computational complexity of SLIC
is O(M′N′), the LRSD is O(M′N′k′ + k′3), where k′ is one dimension of a patch reshaped from
a superpixel in the second phase. The computational complexity of FCM is O(M′N′k′), the PCANet2
is O(M′N′k′2(L1 + L2) + M′N′k′4) and the SVM is O(M′N′k′2). Therefore, the total computational
complexity of the proposed method is summed as

O(MNk + M′N′k′ + MNk2(L1 + L2 + k2) + M′N′k′2(L1 + L2 + k′2))

3. Experiments and Results

To demonstrate the accuracy and effectiveness of the proposed approach, we compared TPOBDL
with other state-of-the-art methods: principal component analysis and k-means clustering (PCAKM) [8],
Gabor feature extraction and PCANet (GaborPCANet) [22], neighbourhood-based ratio and extreme
learning machine (NR_ELM) [35] and convolutional-wavelet neural network (CWNN) [36].

3.1. Datasets and Experimental Setup

The pre-requisite steps for applying SAR images include geometric correction, radiation correction,
and geocoding. Particularly, the multi-temporal SAR images should be registered before change
detection. Our experimental datasets were registered by the commercial satellite data supplier at high
geometric accuracy.

We applied the proposed and benchmark methods to three real space-borne SAR datasets to
evaluate the performance of TPOBDL. The three datasets used are co-registered and geometrically
corrected SAR images acquired by the COSMO-Skymed satellite sensor, as shown in Figure 7.
The images in Figure 7a,c were acquired on 10 June 2016 and those in Figure 7d,f on 26 April 2017.
The three areas are selected to represent different landscapes containing a river, a plain, mountain and
buildings. They are all of size 400× 400 pixels. It is obvious that the three SAR datasets suffer from
speckle noise. Many studies have pointed out that speckle reduction algorithms result in the loss of
spatial resolution and feature suppression [35]. This is because a typical speckle reduction algorithm,
such as multi-looking processing, usually involves a moving average within a rectangular window.
This will significantly reduce spatial details such as edges, textures and even remove some point-like
targets. However, these details are especially useful for change detection. Therefore, no speckle filters
were applied to these three SAR datasets prior to our approach. The corresponding ground truth maps
are shown in Figure 7g,i, which were obtained by manual annotation. In all ground truth maps, white
represents pixels of the changed class, and black represents pixels of the unchanged class.
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Figure 7. Synthetic aperture radar (SAR) images including (a–f), were acquired by the COSMO-Skymed
spaceborne SAR instrument at X-band, which has the spatial resolution of 3 m. Each of (a–f) has the size
of 400 × 400 pixels, equivalent to a ground area of 1.2 km × 1.2 km. (a,d) are dataset C1 that contains
river and mountains, and (g) is its ground truth. (b,e) are dataset C2 that contains buildings, roads and
mountains and (h) is its ground truth. (c,f) are dataset C3 that contains plain and buildings and (i) is its
ground truth.

How to evaluate the performance of SAR image change detection algorithms is a key issue.
Here, we utilized several state-of-the-art evaluation metrics, including the false alarm probability
P f , missing detection probability Pm, percentage correct classification PCC, Kappa coefficient KC and
GD/OE [1,22]. Assume that the actual numbers of pixels belonging to UC and CC are denoted by Nu

and Nc, respectively, in the ground reference data, then

P f =
Fn

Nu
× 100% (20)

Pm =
Mn

Nc
× 100% (21)

where Fn denotes the number of unchanged pixels detected as changed, while Mn represents the
number of changed pixels detected as unchanged.

PCC =
(Nu + Nc − Fn −Mn)

Nu + Nc
× 100% (22)
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KC =
(PCC− PRE)

1− PRE
× 100% (23)

where,

PRE =
(Nc + Fn −Mn) ×Nc + (Nu + Mn − Fn) ×Nu

(Nc + Nu)
2 (24)

The definition of GD/OE is then as follows.

GD/OE =
(Nu −Mn)

Fn + Mn
× 100% (25)

3.2. Experiments

We analysed and evaluated the final results visually and quantitatively.
The change detection results of multi-temporal SAR dataset C1 are shown in Figure 8 and

Table 1. As presented in Figure 8, the change map of PCAKM contains many false alarms, scattered
widely across the image with P f reaching 39.23%. This is because PCAKM is unable to classify the
false changes caused by strong speckle noise and real changes caused by terrain variation as shown
in Figure 8a. However, different from PCAKM, the false alarms of GaborPCANet, NR_ELM and
CWNN are centred in the river, as shown in Figure 8b–d. On one hand, PCAKM uses pixel values for
change detection, which are affected by strong speckle noise. Thus, the P f of PCAKM is very high.
However, GaborPCANet and CWNN, two deep learning-based methods, can extract deep features and
have a certain speckle noise suppression capability, so the P f is greatly reduced compared to PCAKM.
Moreover, the extreme learning machine in NR_ELM can also effectively extract features and suppress
speckle noise. Therefore, the performance of GaborPCANet, NR_ELM and CWNN is better than that
of PCAKM. On the other hand, compared to the original two SAR images, we found that false alarms
occur in the river region for the latter three methods. The river region in the two SAR images looks
very dark, because the river backscatter of electromagnetic waves is relatively weak. Thus, under
strong speckle noise, the signal-to-noise ratio (SNR) in the river region of the SAR image is very low.
Therefore, in this case, the difference in values of pixels between the two images in the river region is
relatively large, and pixels in the river region are easily classified as CC.

It can be seen that the final change map obtained by the proposed approach TPOBDL is very
close to the ground reference, as shown in Figure 8f. Compared with the former methods, the P f
obtained by TPOBDL is only 0.18% (see Table 1), which is a remarkable result. This is because the
second phase of TPOBDL uses a special network to identify the pixels of FCC and those of RCC. In
addition, compared to CWNN, our approach uses object-based deep learning removing those scattered
false alarms effectively, which demonstrates the advantages of object-based deep learning. Therefore,
TPOBDL can eliminate effectively the false alarms caused by strong speckle noise.

As can be seen from Table 1, the quantitative analysis is consistent with the visual analysis.
The performance of TPOBDL is better than for the benchmark algorithms in terms of PCC, P f , KC and
GD/OE. It is worth noting that although the Pm of PCAKM, GaborPCANet and NR_ELM are smaller
than that of TPOBDL, these three methods come at the cost of a much larger P f . The reason why the
Pm of our method is larger than for the three benchmark methods, is that a few superpixel objects
of RCC are mistakenly classified as FCC in the second deep learning phase. Therefore, we need to
consider the value of the more convincing KC. TPOBDL has the highest value of KC (97.84%), which
means that the change detection accuracy of TPOBDL is the highest amongst all five methods.
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Figure 8. Results of experiments on C1; (a) principal component analysis and k-means clustering 
(PCAKM); (b) GaborPCANet; (c) neighbourhood-based ratio and extreme learning machine 
(NR_ELM); (d) convolutional-wavelet neural network (CWNN); (e) two-phase object-based deep 
learning (TPOBDL); (f) ground truth. 

Figure 8. Results of experiments on C1; (a) principal component analysis and k-means clustering
(PCAKM); (b) GaborPCANet; (c) neighbourhood-based ratio and extreme learning machine (NR_ELM);
(d) convolutional-wavelet neural network (CWNN); (e) two-phase object-based deep learning (TPOBDL);
(f) ground truth.

Table 1. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and
TPOBDL on dataset C1 using the false alarm probability (P f ), missing detection probability (Pm),
percentage correct classification (PCC), Kappa coefficient (KC) and GD/OE.

Methods
Results on C1(%)

PCC Pf Pm GD/OE KC

PCAKM [9] 60.99 39.24 1.78 0.07 58.87
GaborPCANet [23] 64.67 35.46 4.88 0.08 59.36

NR_ELM [33] 73.85 26.26 9.86 0.11 61.39
CWNN [34] 85.22 14.69 29.18 0.19 65.67

TPOBDL 99.71 0.18 15.10 9.97 97.84

Figure 9 and Table 2 present the final change detection results on dataset C2. In terms of visual
comparison, PCAKM still includes many false alarms. The performance of GaborPCANet is better than
that of PCAKM in terms of P f . However, there are several false alarms due to speckle noise. Moreover,
for each of PCAKM, GaborPCANet or NR_ELM, there is an obvious long and narrow area with fewer
false alarms in the upper right corner of the change map. Comparing the original two multi-temporal
SAR images, we find that this long and narrow area has an area of relatively strong back-scattering
(visually white), which means the amplitude value of these pixels is relatively large. This indicates
that change detection in areas with strong scattering is less affected by speckle noise because of the
high SNR. This situation is exactly the opposite of the high false alarm phenomenon in the river region
in the experiments on C1. As for CWNN, it is clear that the value of P f due to speckle noise is smaller
than for the three benchmarks. This benefit arises from the wavelet pooling layers in CWNN, which
suppress speckle noise by losing high-frequency sub-bands while preserving low-frequency sub-bands
to extract features. However, TPOBDL has less false alarms than CWNN, because the object-based
methodology is adopted, which greatly reduces classification uncertainty induced by rectangular
patches. As for TPOBDL, two-phase deep learning is not only effective for change detection in low
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SNR region, but also for change detection in high SNR regions. This is due to the influence of the
LRSD, which greatly constrains the influence of speckle noise. Among the five methods, TPOBDL
has the best performance in terms of PCC, P f , GD/OE and KC, reaching 99.43%, 0.26%, 4.70% and
95.67%, respectively.
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Figure 9. Results of experiments on C2; (a) PCAKM; (b) PCANet; (c) NR_ELM; (d) CWNN; (e) TPOBDL;
(f) ground truth.

Table 2. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and
TPOBDL on dataset C2 using the false alarm probability (P f ), missing detection probability (Pm),
percentage correct classification (PCC), Kappa coefficient (KC) and GD/OE.

Methods
Results on C2(%)

PCC Pf Pm GD/OE KC

PCAKM [9] 55.65 45.24 1.81 0.07 58.13
GaborPCANet [23] 79.64 20.66 6.19 0.14 63.22

NR_ELM [33] 86.99 13.14 7.11 0.21 67.37
CWNN [34] 95.24 4.59 12.41 0.56 78.49

TPOBDL 99.43 0.26 15.02 4.70 95.67

The results of experiments on dataset C3 are exhibited in Figure 10 and Table 3. The performance of
PCAKM is again the least good. Compared with the first two datasets, there are no weak backscattering
regions (like river, C1) or strong backscattering regions (like mountain, C2). However, the contrast
in the whole scene of C3 is relatively low, which means that classification may be more challenging
due to low discrimination. Thus, it can be seen from Table 3 that the Pm of all methods is relatively
high. Still, TPOBDL is superior to CWNN in terms of Pm under the circumstances, which is opposite
to the experiments on C1 and C2. Among the five methods, TPOBDL again produces the best result,
with a PCC of 98.42%, P f of 1.18%, GD/OE of 1.59% and KC of 89.32%. It is worth noting that in the
experiments on C3, TPOBDL again produces the best values of PCC, P f and KC, while also producing
a similar Pm of 19.64% to other methods, at the same time. The experimental results illustrate the
superiority of TPOBDL.
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Figure 10. Results of experiments on C3; (a) PCAKM; (b) PCANet; (c) NR_ELM; (d) CWNN; (e) TPOBDL;
(f) ground truth.

Table 3. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and
TPOBDL on dataset C3 using the false alarm probability (P f ), missing detection probability (Pm),
percentage correct classification (PCC), Kappa coefficient (KC) and GD/OE.

Methods
Results on C3(%)

PCC Pf Pm GD/OE KC

PCAKM [9] 62.23 38.29 14.39 0.07 58.50
GaborPCANet [23] 84.61 15.32 18.92 0.16 64.84

NR_ELM [33] 89.54 9.98 31.90 0.21 67.56
CWNN [34] 94.53 5.02 25.90 0.43 75.55

TPOBDL 98.42 1.18 19.64 1.59 89.32

4. Discussion

4.1. Parameters Selection

In the proposed approach, there exist four parameters to be discussed, which are the number of
superpixels SP1 and the patch size k1 in the first phase, and the equivalents, SP2 and k2, in the second
phase. These four parameters affect the ability to learn neighbourhood information in the two-phase
object-based deep learning approach. As indicated in [21], when the patch size is set as 5× 5, it leads to
an optimal result. Hence, we fix k1 = 5 at the beginning. As for SP1 and SP2, to reduce redundancy
and increase superpixel generation efficiency, we assume SPi ≈ (M×N)/ki

2 (i = 1, 2), which means
that the number of pixels in a superpixel and the number of pixels in a patch should be the same, as far
as possible. So we fix SP1 = 6400. Then, we conduct experiments on SP2 = 17800, 6400, 3200 and
k2= 3, 5, 7, 9 in pair-wise fashion, respectively. The experimental results are shown in Figures 11
and 12.

Observing from Figures 11 and 12, we found that when SP2 = 17800 and k2= 3, the values of
PCC and KC were the best. The experimental result is consistent with the principle of the proposed
approach. As mentioned before, the spatial context of the pixels has altered significantly after masking
in the second phase. There may be many discontinuous areas after masking. Hence, superpixel
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objects with a small number of pixels have the benefit of avoiding heterogeneous pixels inside the
objects, which reduces classification uncertainty in PCANet2. This reveals that, in the second phase,
the relatively small superpixels helps the PCANet2 to exploit more details, which cater to the purpose
of distinguishing RCC and FCC.
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Figure 11. The influence of different parameters (SP2 and k2) on PCC.
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We then fixed the parameters of the second phase as SP2 = 17800 and k2= 3 to conduct experiments
on SP1 = 17800, 6400, 3200 and k1= 3, 5, 7, 9 in a pair-wise fashion, respectively. The experimental
results are presented in Figures 13 and 14.
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As shown in Figures 13 and 14, there are two pairs of SP1 and k1 that obtain a larger and KC
than other parameter values. One pair is SP1 = 6400 and k1= 5, and the other pair is SP1 = 3200 and
k1= 7. This means that superpixels with relatively large number of pixels are of benefit for classifying
UC and CC in the first phase. After further observation, these two pairs of parameters adhere to
SPi ≈ (M×N)/ki

2, which indicates that theoretically the number of pixels in a superpixel should be
similar to the number of pixels in a patch. Thus, the best parameter combination is SP1 = 3200, k1 = 7
for the first phase, and SP2 = 17800, k2 = 3 for the second phase.

4.2. Comparison with Other Methods

Firstly, we compare the proposed approach with four other methods. The experimental results of
all methods are presented in Figures 8 and 10 and Tables 1–3. TPOBDL outperforms other methods in
all evaluation indicators, except for missing alarms rate. This is because by using superpixel objects
and two phases of PCANet, TPOBDL is more robust to speckle noise, able to extract deep features and
capable of learning the nonlinear relations from multi-temporal SAR images efficiently. The patches
reshaped from superpixel objects with homogeneous pixels are beneficial to the deep feature extraction
and PCANet training, which avoids uncertainty due to rectangular patches.

The two deep learning phases in TPOBDL are important for acquiring the desired change detection
performance. The first phase generally classifies pixels into two classes, CC and UC. However, there
are actually two kinds of changes in CC. One is strong speckle noise-induced change, and the other is
real terrain variation-induced change. In the second phase, the pixels belonging to UC are set to zero
so that the PCANet2 can focus on identifying two indistinguishable changes. PCANet2 faces a more
difficult classification tasks than PCANet1. Hence, we equip the second phase with LRSD to suppress
noise and increase the ability to discriminate the two previously indistinguishable changes. Despite
noise interference, multi-temporal SAR images of the same object should have a strong correlation.
Based on this principle, we established the LRSD model. LRSD can not only suppress speckle noise,
but also highlight the correlation between objects via the low rank constraint, as shown in Figure 15.
Through this, TPOBDL achieves the best performance amongst the five methods when facing strong
speckle noise. It is worth noting that there is no speckle filtering in TPOBDL.
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4.3. Modular Deep Learning Framework for Change Detection

In the proposed approach, PCANet1 in the first phase completes the classification tasks of CC and
UC, and PCANet2 in the second phase completes the classification tasks of RCC and FCC. In fact, other
deep neural networks can also be used in the first stage, instead of PCANet. In the same way, it is not
necessary to use the PCANet in the second phase. Therefore, the two phase deep learning framework
proposed in this paper can be regarded as a modular structure. The structure does not actually limit
what deep learning models are used. The key to this modular structure is hierarchical classification.
Moreover, the advantage of this modular deep learning framework is that the deep neural network
in each module can complete a specialized, and not particularly complicated task, so the difficulty
of classification in each module is reduced. For example, in this research, if only one PCANet is
used to complete the classification of UC, RCC and FCC simultaneously, it is easy to generate more
misclassifications, which will lead to a larger number of false alarms or larger number of missing
alarms. In addition, this modular deep learning-based change detection structure is particularly
suitable for engineering implementation.

4.4. Time-Series SAR Images to Suppress Speckle Noise

In fact, we used LRSD to strip speckle noise at the beginning of the second phase, so as to
differentiate between false change and real change. The LRSD cannot strip off the speckle noise
completely. Thus, how to improve the speckle noise separation effect in the second phase without
the loss of spatial details would be our future work. The multi-temporal speckle noise reduction
can potentially be used, which may better preserve spatial details. With multi-temporal SAR image
time series, change-detection-aware speckle noise reduction algorithm may be also applied in our
future research.

5. Conclusions

In this research, a novel change detection algorithm with two-phase object-based deep learning
approach for multi-temporal SAR images is presented. An object-based approach is used instead
of a pixel-wise approach. The object-based change detection approach can effectively exploit the
spatial context of neighbourhood pixels, which is conducive to increasing the ability to identify UC
and CC. Using superpixel objects, the pixels in each object are generally more homogeneous, which
avoids the classification uncertainty caused by heterogeneous pixels and provides high-quality training
samples for subsequent PCANets. In addition, this paper uses a two-phase deep learning framework
to implement change detection on multi-temporal SAR images. The first phase of deep learning
realizes the distinction between UC and CC. The second phase of deep learning realizes the distinction
between RCC and FCC. The two-phase deep learning framework can tackle effectively the classification
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challenge faced by deep learning in each phase, and can effectively distinguish RCC and FCC, while
maintaining a very low false alarm under strong speckle noise. The experimental results illustrate that
the proposed approach can achieve high accuracy and validity.
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