
remote sensing  

Article

Improving the Applicability of Hydrologic Models
for Food–Energy–Water Nexus Studies Using Remote
Sensing Data

Akash Koppa * and Mekonnen Gebremichael

Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA;
mekonnen@seas.ucla.edu
* Correspondence: akashkoppa@ucla.edu

Received: 4 January 2020; Accepted: 9 February 2020; Published: 11 February 2020
����������
�������

Abstract: Food, energy, and water (FEW) nexus studies require reliable estimates of water availability,
use, and demand. In this regard, spatially distributed hydrologic models are widely used to estimate
not only streamflow (SF) but also different components of the water balance such as evapotranspiration
(ET), soil moisture (SM), and groundwater. For such studies, the traditional calibration approach
of using SF observations is inadequate. To address this, we use state-of-the-art global remote
sensing-based estimates of ET and SM with a multivariate calibration methodology to improve the
applicability of a widely used spatially distributed hydrologic model (Noah-MP) for FEW nexus
studies. Specifically, we conduct univariate and multivariate calibration experiments in the Mississippi
river basin with ET, SM, and SF to understand the trade-offs in accurately simulating ET, SM, and SF
simultaneously. Results from univariate calibration with just SF reveal that increased accuracy in SF
at the cost of degrading the spatio-temporal accuracy of ET and SM, which is essential for FEW nexus
studies. We show that multivariate calibration helps preserve the accuracy of all the components
involved in calibration. The study emphasizes the importance of multiple sources of information,
especially from satellite remote sensing, for improving FEW nexus studies.

Keywords: FEW nexus; remote sensing; multi-objective calibration; hydrologic models; satellite-based
evapotranspiration; remotely sensed soil moisture

1. Introduction

Understanding and predicting the linkages in the food, energy, and water (FEW) nexus requires
reliable hydrologic modeling tools [1]. Specifically, spatially distributed hydrologic models which
simulate different water balance components are widely used [2–4]. In addition to streamflow (SF),
evapotranspiration (ET) and soil moisture (SM) are the most important hydrologic variables required
for accurately characterizing the FEW nexus. This is especially true for studies that deal with the
connections between water availability, food production, and electricity usage. Another important
hydrologic modeling consideration for FEW nexus studies is the spatial scale at which different water
balance components are simulated. In contrast to a typical hydrologic study which requires estimates of
the hydrologic cycle at the catchment or watershed scale, FEW nexus studies may need high resolution
estimates at the grid-scale. For example, a study which analyzed the interactions between crops, energy,
and water availability in the Central Valley in California needed spatially distributed groundwater
changes and ET estimates to determine the water footprint for different crops across the study region [5].
Therefore, the establishment of an accurate hydrologic model for multiple water balance components
is imperative for reliable FEW nexus studies.
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A widely used method for improving the performance of distributed hydrologic models is
calibration using observations of a single output variable (either SF or ET or SM). However, recent
studies have shown that calibrating a hydrologic model with only one variable adversely impacts the
accuracy of other variables. A calibration study [6] showed that calibrating a distributed hydrologic
model with only SF reduces the accuracy of both ET and SM. Another study [7] showed that calibrating
a hydrologic model with only SM negatively affects the accuracy of the corresponding SF simulation
(compared to SF-calibrated model results). In a similar study which used remotely sensed ET instead
of SM for calibrating a hydrologic model, streamflow simulation improved compared to the base
model but not compared to a SF-calibrated model [8]. In addition, it is seen that using land surface
temperature (a proxy for ET) combined with SF for calibration reduces the error in ET (by 8%) but
results in an increase in SF error (by 6%) [9]. The findings of another study [10], which considered the
effect of calibrating a large-scale hydrologic model with both ET and SM estimates, is in line with the
aforementioned studies.

All these studies point towards the existence of a trade-off relationship among the simulated
water balance components wherein accurate simulation of one component, through model calibration,
comes at the cost of degrading the representation of other components. This issue with single objective
calibration can be explained by the fact that it is impossible to locate a single parameter set that can
enable the hydrologic model to simulate all the fluxes accurately [11]. In other words, multiple model
parameter sets are seen to be ‘behavioral’ in terms of simulating hydrologic fluxes, leading to the
problem of equifinality [12]. In this regard, a number of distinct, yet complementary, solutions have
been proposed in the form of generalized likelihood uncertainty (GLUE) [13] and multi-objective
calibration [14]. The study [14] proposed a theoretical framework for dealing with multiple error
metrics and multiple output fluxes at multiple sites in which objective functions are aggregated based
on various criteria.

In this study, we aim develop and test a Pareto optimality-based multivariate calibration approach
to improve the applicability of a spatially distributed hydrologic model for FEW nexus studies
which need accurate simulation of multiple water balance components (specifically ET, SM, and SF).
Specifically, we combine (1) the above-discussed trade-off relationship among the model-simulated
water balance components, specifically ET, SM, and SF and (2) global remote sensing-based estimates
of hydrologic variable, specifically ET and SM [15]. In this study, we address the following research
questions: (1) what is the impact of calibrating a spatially distributed hydrologic model with a
sparse network of gauges on the spatio-temporal representation of ET and SM? Specifically, to what
extent does univariate calibration of hydrologic with ET, SM, or SF estimates other hydrologic fluxes?
(2) Does multivariate calibration help preserve both the accuracy of streamflow and the spatio-temporal
representation of ET and SM? Specifically, can a parameter set be identified that can simulate all
the hydrologic fluxes with reasonable accuracy? We also discuss the implications of multivariate
calibration of hydrologic models for FEW nexus studies.

2. Materials and Methods

2.1. Study Area

To simulate large-scale FEW nexus studies, we choose the Mississippi river basin in the United
States as the study region. The basin covers an area of approximately 3.3 million sq. km. and six
USGS HUC-2 (Hydrologic Unit Code) sub-basins (Figure 1). The average temperature over the basin is
approximately 12 ◦C and the annual average annual rainfall is estimated as 800 mm [16]. The study [16]
also classifies the Ohio and Tennessee regions as wet regions, the Missouri sub-basin as dry, and the
Upper Mississippi region as a transitional region between wet and dry. As our study is a calibration
experiment that aims to analyze the effects of univariate and multivariate calibration, we use historical
data from 2004 for calibration and data from 2005 and 2006 for validation. There is a specific reason
for selecting one year of data for calibration. The hydrologic model (Noah-MP) used in the study is
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computationally expensive. Therefore, carrying out multiple univariate and multivariate calibration
scenarios for a longer length of time would be infeasible. Hence, we choose to limit the calibration
period to one year. Also, note that the study is a calibration experiment which aims to compare different
scenarios and as such it does not aim to produce the best Noah-MP model setup for the study region.
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Figure 1. A map of the Mississippi basin showing the six USGS Hydrologic Unit Code (HUC)-2 basins.

2.2. Observational Data

For the calibration of the hydrologic model, we use computed runoff for the six HUC-2 basins
sourced from USGS. For calibration of the model with remotely sensed ET, we select the Global Land
Evaporation Amsterdam Model (GLEAM) [17] dataset at monthly timestep, based on the findings
of [18]. Finally, for soil moisture estimates we use the European Space Agency–Climate Change
Institute (ESA–CCI) dataset [19]. We present a brief evaluation of the selected ET (GLEAM) and SM
(ESA–CCI) datasets in Appendix A.

2.3. Hydrologic Model Setup

We select the Noah-MP (multi-parameterization) land surface model (LSM) [20] as the spatially
distributed hydrologic model of choice. The Noah-MP model is driven through NASA’s Land
Information System (LIS) [21]. The Noah-MP model incorporates a dynamic groundwater model,
an improved vegetation canopy model, and a new snow pack model into the original Noah model. [16]
provide a detailed description of the model and evaluate the model over the Mississippi river basin.
All the static input datasets required for setting up Noah-MP model are sourced from NASA’s LIS
data portal (https://portal.nccs.nasa.gov/lisdata). The important static input datasets are land cover
(from USGS), soil texture (from USDA’s STATSGO), and elevation (from GTOPO30). Additional
variables such as albedo, greenness fraction, and temperature are sourced from NCEP reanalysis.
The Noah-MP model also requires dynamic input datasets such as precipitation, air temperature,
surface pressure, specific humidity, and radiation. These variables were sourced from the Global
Data Assimilation System (GDAS) of the NOAA. The model is setup for the study region at a spatial
resolution of 0.25◦ × 0.25◦. The model is spun-up for a period of 68 years by looping through the year
2003 until the storages (groundwater and SM) reach equilibrium. Details of the Noah-MP physics
options selected in this study are presented in Table 1.

https://portal.nccs.nasa.gov/lisdata
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The Noah-MP model contains approximately 210 soft (present in accessible user-defined tables)
and hard-coded parameters (present in the model source code). In this study we focus only on the
soft-coded parameters. The model output is seen to be sensitive to about two-thirds of the 71 soft-coded
parameters [22]. We select five parameters which are the most sensitive [22] to the three model outputs
considered in this study (ET, SM, and SF). The selected parameters are hydraulic conductivity at
saturation for silt clay loamy soil (REFDK), the surface infiltration factor (REFKDT), the exponent in
the Brooks–Corey equation (BB), soil porosity (MAXSMC), and hydraulic conductivity at saturation
(SATDK). Of the five parameters, BB, MAXSMC, and SATDK depend on soil texture. As there are
10 soil texture classes, the total number of parameters which are calibrated in this study is 38. Details
of the parameters selected for calibration is given in Table 2.

Table 1. Noah-MP (multi-parameterization) model physics options.

Model Physics Selected Physics Option

Vegetation model Use table Leaf Area Index (4)
Canopy stomatal resistance Ball-Berry (1) [23]

Soil moisture factor for stomatal resistance Original Noah (1) [24]
Runoff and groundwater TOPMODEL with groundwater (1) [25]

Surface layer drag coefficient Original Noah (2) [24]
Frozen soil permeability Linear effects, more permeable (1) [26]

Radiation transfer Modified two-stream (1) [27]
Snow surface albedo CLASS (2) [28]

Rainfall and snowfall Partitioning Jordan Scheme (1) [29]
Lower boundary of soil temperature Original Noah (2) [24]

Snow and soil temperature time scheme Semi-implicit (1)
Super-cooled liquid water No iteration (1) [26]

The number in the brackets represents the internal Noah-MP model code for the selected physics option.

Table 2. Details of Noah-MP parameters used for calibration.

Parameters Description Sensitive
Variable

Total
Parameters Units Minimum Maximum

REFDK Surface runoff
parameter SF 1 m/s 1.4 × 10−6 6.5 × 10−6

REFKDT Surface runoff
parameter SF 1 No Units 1.0 5.0

BB1-BB12
Exponent in the

Brooks Corey
Equation

SF, ET 12 No Units 0.5 12.0

MAXSMC1-MAXSMC12 Soil porosity SF, ET, SM 12 No units 0.1 0.7

SATDK1-SATDK12 Saturated hydraulic
conductivity SF, SM 12 m/s 2.0 × 10−6 7.0 × 10−2

Soil texture classes for BB, MAXSMC and SATDK (from 1 to 12): sand, loamy sand, sandy loam, silt loam, silt, loam,
sandy clay loam, silt clay loam, clay loam, sandy clay, silty clay, and clay.

2.4. Univariate Calibration

To quantify the effect of univariate calibration of the Noah-MP hydrologic model on the accuracy
of the other fluxes, we first define the calibration objective. In this study we select the Root Mean Square
Error (RMSE) metric as the objective to minimize. RMSE is a widely used measure of the difference
between observed and modeled fluxes which assumes that measurements errors are homoscedastic [14].
The defined objective (Equation (1)) is used to calibrate separately the five Noah-MP model parameters
for three hydrologic fluxes: (1) evapotranspiration (ET), (2) soil moisture (SM), and (3) streamflow (SF).
For ET and SM, RMSE is estimated by calculating the error between the modeled and the observed
quantities at each 0.25◦ × 0.25◦ grid cell inside the study area and at each time step (each month of
the year 2004). For SF, errors calculated for each of the six HUC-2 basins at each time (each month
of the year 2004) are used for estimating RMSE. The algorithm used for univariate calibration is the
Dynamically Dimensioned Search (DDS), a global optimization algorithm developed for automatic
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calibration of watershed models [30]. The DDS algorithm is implemented using the Optimization
Software Toolkit for Research Involving Computation Heuristics (OSTRICH) toolkit.

Minimize RMSEvar =

√√√ N∑
n=1

T∑
t=1

(Modn
t −Obsn

t )
2

N ∗ T
(1)

where var = hydrologic variable considered for calibration (ET, SM, or SF), N = total number of grid
cells (for ET and SM) or basins (for SF), T = total time period in months (12 months), Mod = modeled
quantity (ET, SM, or SF) at time t and grid cell (for ET and SM) or basin (for SF) n, Obs = observed
quantity (ET, SM, or SF) at time t and grid cell (for ET and SM) or basin (for SF) n.

DDS is a heuristic global search algorithm that dynamically scales the dimension of the calibration
problem based on the specified number of function evaluations. At the start, the algorithm searches for
a global optimum but reduces to a local search as the iterations approach the specified budget. It is
considered to be more efficient for high-dimension watershed model calibration problems, compared
to other popular algorithms such as the Shuffled Complex Evolution–University of Arizona (SCE–UA)
algorithm [31]. In this study, computational efficiency of the DDS algorithm is the primary reason for its
selection. As the study compares different calibration cases, the focus of the calibration is on achieving a
reasonable RMSE value within a limited computational budget. For the univariate calibration cases (ET,
SM, and SF), the maximum function evaluations are set to 15,000. On a workstation with 16 processors,
the parallel implementation of DDS, through DDS, required around 13 days to complete each case,
with each Noah-MP model run taking around 20 min. The DDS algorithm is initialized with random
parameter values and all parameters are considered to be uniformly distributed between the specified
bounds. In other words, the calibration is carried out without imposing any prior knowledge of either
the initial parameter values or the distribution of the parameters.

2.5. Multivariate Calibration

To analyze whether multivariate calibration can help preserve the spatio-temporal accuracy of all
the hydrologic fluxes, we consider the following calibration cases: (1) ET–SM in which only ET and
SM data from GLEAM and ESA–CCI are used for calibration, (2) ET–SF in which ET from GLEAM and
SF from USGS are used, (3) SM–SF in which only soil moisture and streamflow variables are calibrated,
and (4) ET–SM–SF in which all three fluxes are calibrated. In this study, multivariate calibration is
cast as a Pareto optimal problem which assumes a trade-off relationship among accurate simulation of
ET, SM, and SF. Similar to univariate calibration, we use the RMSE error defined in Equation (1) as
the calibration objective. For example, the objective functions in the ET–SM are to minimize RMSEET

and RMSESM error metrics. The Pareto optimal curves showing the trade-off relationship in each of
the four enumerated cases are derived using a Multi-Algorithm Genetically Adaptive Multiobjective
(AMALGAM) optimization algorithm [32].

Similar to the selection of DDS, the main reason for selecting AMALGAM for deriving
the Pareto fronts is computational efficiency. AMALGAM combines the strengths of multiple
optimization algorithms to improve the speed and efficiency of finding Pareto-optimal solutions for
multi-objective optimization problems [32]. In this study’s implementation, four search algorithms
are run simultaneously in AMALGAM: differential evolution [33], particle swarm optimization [34],
adaptive Metropolis [35], and NSGA-II [36]. In AMALGAM, offspring creation is adaptive; the best
performing algorithms in the present generation are weighted more in the creation of offspring for the
next generation. In the present study, the population size is set to 120 and the number of generations is
set to 100 resulting in a computational 12,000 model runs. Similar to DDS, no prior knowledge of the
38 parameters except their range is assumed. The sampling strategy used in AMALGAM to derive the
initial population is Latin Hypercube. On a 16-processor workstation, each of the four multi-objective
calibration cases required 10 days to converge to the Pareto-optimal solution.



Remote Sens. 2020, 12, 599 6 of 16

2.6. Methods Used for Analysis of Results

We first validate the Noah-MP hydrologic model using results from the univariate calibration
cases (ET, SM, and SF) for the validation period of 2005 and 2006 (Figure 2). We then quantify the
impact of univariate calibration on the representation of water balance components other than the one
considered for calibration. Finally, we test the effectiveness of multivariate calibration for overcoming
the drawbacks of univariate calibration and improving the simulation of the water balance components
important for FEW nexus studies considered in this study (ET, SM, and SF).

For the univariate and multivariate calibration cases, the temporal accuracy is analyzed using
bar plots of the RMSE error metric of the basin-averaged monthly ET (top panel), SM (middle panel),
and SF (bottom panel) for the seven calibrated scenarios (Figure 3). The RMSE values are scaled by
the maximum RMSE among the seven calibration scenarios to allow comparison among the different
fluxes that have different units. For the multivariate calibration scenarios (ET–SM, ET–SF, SM–SF, and
ET–SM–SF) ten samples are drawn from the Pareto front and the basin-average RMSE is calculated.
Spatial scaled-RMSE plots (Figure 4), variograms, and correlograms (Figure 5) calculated for average ET
and SM values at each grid cell are used to quantify the effect of calibration on the spatial accuracy of ET
and SM. For the multivariate calibration cases, the point that best represents the trade-off between the
objectives was selected from the Pareto front to plot the correlograms and variograms. The equations
used to calculate the variograms and correlograms are presented in Appendix B.

3. Results

3.1. Validation of the Noah-MP Hydrologic Model

The Noah-MP model is calibrated for 2004 and the simulated ET, SM, and SF results are validated
for 2005 and 2006. A time comparison of observed and simulated monthly ET, SM, and SF are presented
for the six HUC-2 sub catchments (Figure 2). We also present the corresponding Kling-Gupta Efficiency
(KGE) values in each panel of Figure 2. When the Noah-MP model is calibrated with GLEAM ET
(top panel), it is evident that the model performs very well in simulating the observed ET values
and seasonality. The results are consistent across the six HUC-2 hydrologic regions and also between
calibration (first 12 data points) and validation time periods (remaining 24 data points). Much higher
variance is observed in the SM results when the Noah-MP model is calibrated with ESA–CCI soil
moisture (middle panel). The simulated soil moisture for the Arkansas-White-Red, Lower Mississippi,
Ohio, and Tennessee regions are consistent with observed SM values for the top soil layer. For these
regions, the seasonality of soil moisture seen in the observations are well represented, with the last
six months of 2006 in the Tennessee region (middle panel, fifth column) and the first few months
of 2004 in the Arkansas-White-Red region (middle panel, first column) being the exceptions. In the
Missouri region (middle panel, third column), the model simulates the observed seasonality but is
unable to capture the absolute quantities of SM perfectly. In the Upper Mississippi region (middle
panel, sixth column), the model struggles to simulate the timing of both the peaks and the troughs seen
in the observed SM. The results for streamflow simulated by SF-calibrated Noah-MP model present
a more complex picture (bottom panel). It is seen that the model generally performs well for the
Arkansas-White-Red, Ohio, Tennessee, and Upper Mississippi regions. However, like soil moisture
results, there are some inconsistencies in simulating the seasonality of the last six months of 2006,
especially in Arkansas-White-Red (bottom panel, first column) and the Upper Mississippi (bottom
panel, sixth column) regions. The model also performs well for the first 20 months in the Lower
Mississippi and Missouri regions, but it seems to peak earlier (in 2006) than observed in the former
while overestimating the runoff by a significant amount (months 20 to 27) in the latter. The KGE values
are also very high for all the water balance components considered. In summary, it is seen that when
the model is calibrated with the water balance component of interest (ET, SM, or SF) it can simulate the
component with a reasonable degree of accuracy. The validation results also provide evidence for the
use of one year of data for calibration, as the discovered parameter sets.
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Figure 2. Time series plots of (1) top panel: Evapotranspiraton-calibrated (ET-calibrated) model ET
(red) and the Global Land Evaporation Amsterdam Model (GLEAM) observed ET (black) in mm/month,
(2) middle panel: Soil moisture-calibrated (SM-calibrated) model SM (red) and the European Space
Agency–Climate Change Institute (ESA–CCI) observed SM (black) in m3/m3 and (3) bottom panel:
Streamflow-calibrated (SF-calibrated) model SF (red) and observed Hydrologic Unit Code-2 (HUC-2)
runoff (black) in mm/month for the six HUC-2 sub-catchments of the Mississippi basin. The first
12 months correspond to the calibration period of 2004 and the next 24 months correspond to validation
years 2005 and 2006. The corresponding Kling-Gupta Efficiency (KGE) values are presented in
each panel.

3.2. Univariate Calibration

We first address the research question: does calibration of a distributed hydrologic model with a
sparse network of streamflow gauges adversely affect ET and SM? From the bottom panel of Figure 3,
it is clear that for SF, the model performs best when the calibration objective is SF (blue bar). Comparing
the SF-calibrated ET with ET-calibrated ET (top panel, green) and SF-calibrated SM with SM-calibrated
SM (middle panel, orange), it is also evident that this increased accuracy in SF comes at the cost of
reduced accuracy in simulating ET (top panel, blue) and SM (middle panel, blue). The trade-off in
SM accuracy is relatively higher compared to the reduction in ET performance. When the Noah-MP
model is calibrated with only SF, the spatial representation of ET and SM is adversely affected (column
three in Figure 4) when compared with ET-calibrated ET (first row, first column) and SM-calibrated
SM (second row, second column). While the model seems to perform worse in the Lower Mississippi
and Arkansas-White-Red sub-catchments for ET, the problem regions for SM seem to be the Ohio
and Tennessee regions (both wet regions). The problems in the spatial structure of SF-calibrated ET
and SM are clearer in the correlogram and variogram of ET and SM (Figure 5). For simulation of
the ET variable, the correlogram of SF-calibrated ET (blue) matches the observed correlogram (black)
up to a distance of 20 grid cells but significantly deviates after that. The variogram of SF-calibrated ET
(blue) shows a much higher deviation from the observed variogram (black) with semivariance values
between 300 and 400 compared to the observed range of 20 to 200. For SM, both the correlogram and
the variogram of SF-calibrated SM (blue lines) exhibit significant deviations from the observations.

Next, we extend the analysis presented above to test whether calibration of hydrologic models with
just one water balance component, in general, adversely affects the simulation of other water balance
components. From Figure 3, it is fairly evident that accurate representation of any one component
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(ET, SM, or SF) comes at the cost of degrading the accurate representation of other water balance
components. For example, ET-calibrated ET (top panel, green) has the least RMSE but corresponding SM
(middle panel, green) is much higher compared to SM-calibrated SM (middle panel, orange). Also the SF
simulated from ET-calibrated model is worse than SF-calibrated SF. The same conclusion can be drawn
for SM. This fact is reflected in the spatial RMSE plot (Figure 4) as well, where ET-calibrated ET (first row,
first column) shows good performance across the Mississippi river basin but the corresponding SM
(second row, first column) performs poorly compared to SM-calibrated SM (second row, second column).
The variogram of ET (Figure 5) shows that ET-calibrated ET (green lines) closely follows the observed
correlogram and variograms (black lines) but the corresponding ET-calibrated SM shows significant
deviation from the observed SM variogram. The correlogram of SM paints a slightly different picture,
with ET-calibrated SM (green) seemingly better than SM-calibrated SM. This could be because of the
nature of ESA–CCI soil moisture, which has a number of missing values due to the fact that there
are a number of days in which the satellite does not pass over certain areas of the Mississippi basin,
perhaps leading to erroneous spatial representation. However, we note that the spatial RMSE map of
SM-calibrated SM (orange) is very close to the observed variogram (black) but this comes at the cost of
reducing the accuracy of SM-calibrated ET. Barring the discrepancy in the correlogram of SM, we see
that univariate calibration adversely affects the spatial and temporal accuracy of water balance not
considered for calibration.
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Figure 3. Bar plots of scaled RMSE values of basin averaged monthly ET (top panel), SM (middle panel),
and SF (bottom panel) when the Noah-MP model is calibrated with (1) ET, (2) SM, (3) SF, (4) ET–SM,
(5) ET–SF, (6) SM–SF, and (7) ET–SM–SF as calibration objectives (x-axis in all three panels). RMSE values
for ET, SM, and SF are scaled by the maximum RMSE across the seven calibration cases. The maximum
values are provided in the header of each panel within square brackets. The multivariate calibration
results are derived by taking 10 samples from different points on the Pareto fronts. We also present
KGE values for each of the calibration cases above each barplot. For multivariate calibration cases, only
the range of KGE values from the selected Pareto-optimal parameter sets are shown.
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Figure 5. Correlogram and Variogram of ET (top panel) and SM (bottom panel) when the Noah-MP
model is calibrated with (1) ET, (2) SM, (3) SF, (4) ET–SM, (5) ET–SF, (6) SM–SF, and (7) ET–SM–SF as
calibration objectives.

3.3. Multivariate Calibration

Can multivariate calibration help overcome the drawbacks of univariate calibration? We first
analyze whether including ET and/or SM along with SF in calibration helps preserve the accuracy of
both SF and ET and/or SM. When only ET is considered along with SF (ET–SF calibration case), some
of the ET–SF-calibrated SF RMSE values (red bars, bottom panel, Figure 3) are slightly worse than
SF-calibrated ET (blue bar, bottom panel) but the corresponding ET–SF-calibrated ET values (red bard,
top panel) are considerably lesser than SF-calibrated ET values (blue bar, top panel). This shows
that multivariate calibration (in this case ET–SF) trades-off accuracy in simulation of SF to improve



Remote Sens. 2020, 12, 599 10 of 16

the accuracy of ET. However, as expected, the lack of consideration of SM in the calibration results
in a much higher RMSE value for the corresponding ET–SF-calibrated SM (red bars, middle panel).
The inclusion of ET in calibration also seems to have improved the spatial RMSE, especially in
the Missouri region of other Mississippi basin (first row, fifth column, Figure 4) compared to just
SF-calibrated ET (first row, third column). The improvement in the RMSE values is not reflected
in either the correlogram or the variogram of ET–SF-calibrated ET (red line, top panel, Figure 5).
However, note that the correlograms and variograms are calculated for just one point in the Pareto
front. It is safe to assume that there may be points on the Pareto front that could perform better as
far as the correlogram or variogram is concerned. When only SM is included with SF, accuracy in SF
simulation is traded for better simulation of SM. This is clearly evident in Figure 3, where all RMSE
values of SM–SF-calibrated SF (brown bars, bottom panel) are worse than SF-calibrated SF (blue bar,
bottom panel) but the corresponding SM–SF-calibrated SM (brown bars, middle panel) simulations
perform much better than SF-calibrated SM (blue bar, middle panel). As seen before, this improved
performance in SM comes at the cost of a slight reduction in SF accuracy, but the accuracy in ET suffers
substantially (brown bars, top panel, Figure 3). The spatial RMSE plots, correlograms, and variograms
paint a similar picture. Across the Mississippi basin, SM–SF-calibrated SM (second row, sixth column,
Figure 4) performs much better than just SF-calibrated SM (second row, third column) but slightly
worse than the SM-calibrated SM (second row, second column).

When both ET and SM are included with SF in calibrated (ET–SM–SF case), the derived Pareto
surface has points which trade-offs, within acceptable limits, the accuracy in SF for better simulation
of both ET and SM. In Figure 3, most RMSE values of ET–SM–SF-calibrated SF (yellow bars, bottom
panel) are worse than SF-calibrated SF (blue bar, bottom panel) but some of the corresponding
RMSE values for ET and SM are much better (in particular, the sixth yellow bar in top and middle
panel). This improvement is more evident in the spatial RMSE plot (Figure 4) in which both the
ET–SM–SF-calibrated ET (first row, last column) and ET–SM–SF-calibrated SM (second row, last
column) show improvements over SF-calibrated ET and SM (third column). In the variogram of ET
(Figure 5), ET–SM–SF-calibrated ET (yellow line) shows improvement over SF-calibrated ET (blue line)
and even ET–SF-calibrated ET (red line). The SM variogram shows similar improvement. Although
this analysis of results has been carried out from the perspective of SF, the conclusions drawn for SF
hold true for both ET and SM. In other words, multivariate calibration can discover parameter sets
which can simulate all the water balance components (in this case ET, SM, and SF) to a reasonable
degree of accuracy, unlike univariate calibration.

4. Discussion

The inadequacy of calibrating hydrologic models with only SF for FEW nexus studies is clear from
the results of our study. SF-calibration not only affects the basin-averaged values of other components
such as ET or SM, but also, more importantly, results in an improper spatial representation of ET
and SM. This behavior of hydrologic models, wherein the parameters are overfitted to accurately
simulate only streamflow, is well-known. Several studies have shown that streamflow, being an
integrative response of the entire watershed, cannot adequately inform the spatial representation of
ET and SM [37,38]. Recent studies have shown that using the spatial structure of ET and SM from
remote sensing data along with streamflow data in calibration can produce physically consistent
estimates of all the components [9,39,40]. In this regard, our study agrees with the findings of the
hydrologic modeling community, with the spatial RMSE plots (Figure 4), variograms, and correlograms
(Figure 5) showing that considering ET and SM moisture improves their spatial structure. However,
in this study, we go beyond quantifying and addressing the impacts of only streamflow calibration
by also focusing on the ill-effects of univariate calibration, in general, for hydrologic and FEW nexus
studies. In doing so, we find that using soil moisture data for calibration has the most adverse impact
on the accuracy of the other variables. This could be due to the fact that the parameters that are
sensitive to soil moisture may not be sensitive to other variables. This is in contrast to the findings
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of [7], who found out that incorporating near-surface remote sensing-based estimates of soil moisture
and streamflow in hydrologic model calibration positively impacts streamflow simulation. On the
other hand, ET-calibration yields much better results for SF and ET simulation but the corresponding
SM representation is poor. This is expected as the parameters which influence SF also impact ET
(more than SM). This highlights the need for better, physically interpretable, parameterization of
hydrologic models.

Multivariate calibration of hydrologic models is generally carried out by combining different
hydrologic variables into a single objective function by using weights [9,40,41]. Such an approach
makes it difficult to analyze the trade-offs in accuracy among the different variable involved. In this
study, we present a Pareto optimality-based calibration strategy for multivariate calibration which helps
in systematically quantifying the improvements in simultaneously simulating multiple water balance
components. This is especially true for FEW nexus studies which would need more than just ET, SM,
and SF variables, and the approach presented here can help in systematically introducing new datasets
such as total water storage change and groundwater information, among others. The advantage of
such an approach is apparent in Figure 3, where the progressive introduction of variables (for example,
SF, ET–SF, and ET–SM–SF) changes the RMSE of different variables of interest. These changes can
be systematically analyzed for a particular hydrologic model (in this case, Noah-MP) and relevant
calibration strategies for the specific FEW nexus study can be devised. For the Noah-MP model used
in this study, the progressive inclusion of different variables lead to the following calibration strategies
for different FEW nexus studies:

• ET: If the nexus study only requires ET as the primary input (for example, calculation of water
demand), then calibration of a hydrologic model using only observed ET gives the best results
in terms of spatial and temporal accuracy. However, increased accuracy in ET comes at the cost
of degrading SM and SF estimates. In the absence of SF estimates, calibration with observed ET
offers the best alternative for reliably simulating SF [42,43].

• SM: Calibration of a hydrologic model with SM observations improves SM simulations significantly
at considerable cost to the accuracy of both ET and SF simulations. Based on the results of this
study, SM-calibration is not a viable variable for FEW nexus studies which need either water
availability (SF) or water use (ET) information. SM-calibration maybe required for FEW studies in
drought-affected regions where water availability is government by SM.

• SF: Using a sparse network of streamflow gages for calibration adversely affects the spatio-temporal
accuracy of ET and SM. If no ET observations are available, then SF is a viable alternative for
reliably simulating mean ET over the basin but not the spatial patterns which are necessary for
most FEW nexus studies.

• ET–SM: Including ET and SM together in calibration not only improves the simulations of ET
and SM but also has a positive impact on SF estimates compared to univariate calibration cases.
This scenario exhibits the advantages of combining state-of-art remote sensing-based estimates of
hydrologic variables with models for FEW nexus studies, especially for FEW nexus studies in
data-scarce regions.

• ET–SF: Incorporating both ET and SF in calibration trades accuracy in SF simulation to improve
ET estimates compared to univariate SF calibration. If ET and SF variables are needed for the
FEW study, then this scenario is the best calibration strategy. However, combining and ET and SF
does not improve soil moisture simulation (even compared to univariate ET or SF calibration).

• SM–SF: In the absence of ET observations or estimates, SM and SF are seen to be poor alternatives.
Therefore this calibration scenario cannot be used for FEW nexus studies that require ET. However,
this strategy can be used in nexus studies in regions which suffer from episodic droughts where
both SM and SF are needed to quantify water availability.

• ET–SM–SF: Incorporating all the water balance components (ET, SM, SF) for calibration provides
the best compromise solution to preserve the accuracies in simulating each of the three components.
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Finally we discuss whether using remotely sensed ET and SM for calibration lead to reliable
streamflow simulations. This is important for FEW nexus studies in data-scarce regions where in situ
measurements of SF are not available. If better SF simulation is the sole objective, combining ET and
SM for calibration (ET–SM-calibrated case) produces slightly better results than just considering ET
(compare purple and green bars in bottom panel of Figure 3). However, if the intention of the model
is to preserve the accuracy of other variables (ET and SM), as is the case in FEW nexus studies, then
combining both ET and SM in a multivariate calibration setup produces better results (compare purple,
green, and orange bars in top and bottom panel). By comparing ET-calibrated SF (green bar, bottom
panel) and SM-calibrated SF (orange bar, bottom panel), it is clear that ET can inform SF simulation
better than SM. In most large scale FEW nexus studies it is important to simulate the spatial distribution
of ET and SM with reasonable accuracy. For this purpose, combining both ET and SM in calibration
produces much better spatial structure rather than univariate calibration (compare 4th column with
first and second columns in Figure 4, also purple lines with black lines in Figure 5).

5. Conclusions

In this study, we presented the results of a calibration experiment in the Mississippi river basin
aimed at understanding the applicability of large scale spatially distributed hydrologic models for
FEW nexus studies. The primary objective of the study was to quantify the impact of using estimates
of a single water balance component on the other water balance components. For this, we analyzed the
results from seven different univariate (ET, SM, and SF) and multivariate calibration (ET–SM, ET–SF,
SM–SF, and ET–SM–SF) scenarios. We have shown that the univariate calibration does indeed affect
the simulation of water balance components that are not included in calibration, and as such is not
suitable for FEW nexus studies. In addition, we have shown that a trade-off relationship exists among
the simulated water balance components, which is best characterized by a Pareto front or surface.
This led us to use multivariate calibration as an approach to improve the applicability of hydrologic
models for FEW nexus studies.

Although the theoretical underpinnings of multivariate calibration have been well-established
over the last two decades, the applicability of these methods was hindered by the lack of estimates
of hydrologic variables other than streamflow. The availability of remote sensing data and powerful
optimization algorithms enabled us to quantify the trade-off relationship among accurate simulation of
different water balance components. Our results show that multivariate calibration approach used in
this study has the potential in improving hydrologic models for FEW nexus studies. With multivariate
calibration, the hydrologic models are able to (1) accurately represent the spatial structure of the
hydrologic variables other than streamflow (ET and SM) and (2) preserve the accuracy with which
streamflow is simulated. In addition, the study adds to an increasing body of evidence in favor of
using satellite-based remote sensing data for improving hydrologic models using different approaches
such as calibration and data assimilation. This is especially important within the framework of
food–energy–water nexus studies.

Finally, we briefly enumerate the limitations of the study and possible future directions.
The conclusions drawn above are a result of the chosen hydrologic model (Noah-MP), physics
options, parameters, input data, and meteorological forcing. For a different setup the trade-offs may
have different characteristics. However, the multivariate calibration approach of combining different
remote sensing-based dataset can be applied for any type of hydrologic model and FEW nexus study.
Future work involves using the Gravity Recovery and Climate Experiment (GRACE)-based estimates
of total water storage (TWS), which could perform better than just near-surface soil moisture (top 5 cm)
used in the study. Also, we have considered only a sparse network of streamflow gauges, primarily to
mimic large scale FEW nexus studies which deal with data sparsity, but it is worthwhile to explore if a
dense network of streamflow gauges could lead to better ET and SM simulations.
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Appendix A

As remote sensing-based hydrologic datasets exhibit large uncertainty [44], we evaluate the chose
ET and SM datasets with ground-based measurements. We compare the GLEAM estimates with
ground-based flux tower data from the Ameriflux network (https://ameriflux.lbl.gov/). Results of the
evaluation show that GLEAM can represent the ET flux in all the sub-basins to a fair degree of accuracy
for the year 2004 (Figure A1 (top)). The RMSE of GLEAM data is 21.4 mm/month. We compare the
remote sensing-based ESA–CCI SM dataset with near-surface soil moisture measurements from the
TAMU North American Soil Moisture Database (NASMDB) [45]. The scatter plot (Figure A1 (bottom))
shows that the remote sensing data underestimates observed soil moisture in the Lower Mississippi
Region. The RMSE value for ESA–CCI SM is 0.12 m3/m3. We note that for the study period SM data
from in situ sensors were available only for 3 of the 6 sub-basins.Remote Sens. 2020, 12, 599 14 of 17 

 

 
Figure A1. Scatter plots of a) GLEAM ET vs. Ameriflux measurements (top panel) and b) ESA–CCI 
soil moisture vs. TAMU NASMDB measurements (bottom panel) for 2004. RMSE and the Mean 
Absolute Error (MAE) values are indicated in red. 
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Appendix B

The correlogram presented in Figure 5 is calculated using the following equation.

c(d) =
1

n(d)

n(d)∑
i=1

[ (z(xi + d) z)(z(xi) − z) ] (A1)

where c(d), is he spatial autocorrelation, which is a function of distance d between two data points
(in this study we consider ET and SM), z(xi + d) and z(xi). z is the mean of the data considered for
determining the correlogram (ET or SM), n(d) is the total number of data pairs of ET or SM.

The semivariance in the variogram presented in Figure 5 for ET and SM is calculated using the
following equation

γ(d) =
1

2n(d)

n(d)∑
i=1

[z(xi + d) − z(xi)]
2 (A2)

where γ(d), is the semivariance, which is a function of the distance d between two data points
(ET or SM), z(xi + d) and z(xi). n(d) is the total number of data pairs of ET or SM.
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