Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data?
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Datasets
2.2. Evaluation Methods
3. Results
3.1. Comparison of the Spatial Pattern of Multi-Year Mean Annual Precipitation
3.2. Evaluation on an Annual Scale
3.3. Evaluation on a Seasonal Scale
3.4. Evaluation on a Monthly Scale
3.5. Evaluation by Scorecard
3.6. Evaluation of Precipitation Intensity
3.7. Evaluation of Extreme Precipitation
4. Discussion and Future Work
5. Conclusions
- For the spatial pattern of climate, MSWEP, GSMaP_GAUGE, TRMM_3B42, CMORPH_SUN, and CHIRPS can be used to represent the spatial pattern of precipitation in arid/semi-arid and humid/semi-humid areas of the Qinghai-Tibet Plateau. Although the horizontal resolution of GSMaP_GAUGE and CHIRPS was more than 0.10°, they fail to reproduce the spatial pattern of orographic precipitation (e.g., in the Kunlun Mountains of the northern Qinghai-Tibet Plateau). Furthermore, the CMORPH family, TRMM_3B42 and WCR have high value regions, which are incorrect values caused by an algorithm from NWP models and a satellite retrieved algorithm.
- Except for CMORPH_RAW and PERSIANN_CCS, most precipitation products can capture the variability of change on an interannual scale. On an interannual scale, the correlation coefficients in MSWEP, GSMaP_GAUGE, and CMORPH_SUN were higher than those of the other products. In addition, the mean errors in TRMM_3B42, GSMaP_GAUGE, CMORPH_ADJ, CMORPH_SUN, and CFSR were close to zero. GSMaP_GAUGE, CMORPH_SUN, and MSWEP had a smaller root mean square error than the other products. In basins of the Qinghai-Tibet Plateau, the correlation coefficients in the Hei River Basin and Inner Tibetan Plateau were relatively low. In the Qaidam River Basin, the mean error had smaller values than in other basins. In addition, in the Salween River Basin, mean error generally had negative values.
- On a seasonal scale, the quantitative precipitation estimate in all precipitation datasets performed poorly in summer and winter. Precipitation datasets generally overestimate light rain and underestimate heavy rain. On a monthly scale, TRMM_3B42, GSMaP_GAUGE, CMORPH_SUN, and MSWEP performed better than the other products. On a daily scale, quantitative precipitation estimates in all precipitation datasets can basically reproduce the pattern of daily probability density function. In arid/semi-arid areas, most products overestimate the probability of light rain (0.1–1.0 mm) and underestimate the probability of moderate and heavy rain (over 10 mm), even including MSWEP, CFSR, and GSMAP_GAUGE. Most extreme precipitation was generally overestimated the extreme indices of R99, Rmax, and R5dmax and underestimated the extreme index of the total number of days with daily precipitation less than 1 mm.
- MSWEP, which employed three sources datasets (global reanalysis precipitation, satellite retrieved precipitation, and ground-based) rain gauge observations, performed better than satellite-retrieved precipitation with gauge bias correction and reanalysis. Furthermore, TRMM_3B42, GSMaP_GAUGE, and CMORPH_SUN, which are blended and have bias correction with ground observations, performed better than single-source precipitation (CMORPH_RAW, PERSIANN_CCS, WCR, and HAR). Therefore, multi-source blended precipitation products will be expected to be the hotspots of global and regional precipitation research in the future.
Author Contributions
Funding
Conflicts of Interest
References
- Yan, D.-H.; Han, D.-M.; Wang, G.; Yuan, Y.; Hu, Y.; Fang, H.-Y. The evolution analysis of flood and drought in Huai River Basin of China based on monthly precipitation characteristics. Nat. Hazards 2014, 73, 849–858. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, K.; Hong, Y.; Zhao, Q.; Huang, Q.; Xu, Y.; Xue, X.; Chen, S. Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China. J. Hydrol. 2017, 549, 313–325. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.-P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. A global map of uncertainties in satellite-based precipitation measurements. Geophys. Res. Lett. 2010, 37, L24407. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, Q.; Chen, X.; Xu, C.-Y.; Chen, S.; Moss, E.M.; Huang, Y. Evaluation of TRMM Multisatellite Precipitation Analysis in the Yangtze River Basin with a Typical Monsoon Climate. Adv. Meteorol. 2016, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2017, 21, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yang, D.; Hong, Y. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol. 2013, 500, 157–169. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, J.; Xiong, Z.; Dong, X. Evaluation of High-Resolution Gridded Precipitation Data in Arid and Semiarid Regions: Heihe River Basin, Northwest China. J. Hydrometeorol. 2017, 18, 3075–3101. [Google Scholar] [CrossRef]
- Gao, Y.C.; Liu, M.F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 2013, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Maguire, L.; Chu, Z.; Hong, Y. Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau. J. Hydrol. 2018, 556, 634–644. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, G.; Lei, X.; Hong, Y.; Yang, N. Can Satellite Precipitation Products Estimate Probable Maximum Precipitation: A Comparative Investigation with Gauge Data in the Dadu River Basin. Remote Sens. 2018, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Alazzy, A.A.; Lü, H.; Chen, R.; Ali, A.B.; Zhu, Y.; Su, J. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau. Adv. Meteorol. 2017, 2017, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Appl. Clim. 2014, 118, 429–445. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A.-X. Evaluation of Three Satellite Precipitation Products TRMM 3B42, CMORPH, and PERSIANN over a Subtropical Watershed in China. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Liu, Y. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water 2016, 8, 281. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, D.; Wang, Y.; Yang, H. Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin. Sci. China Technol. Sci. 2013, 56, 853–865. [Google Scholar] [CrossRef]
- Yang, X.; Yong, B.; Hong, Y.; Chen, S.; Zhang, X. Error analysis of multi-satellite precipitation estimates with an independent raingauge observation network over a medium-sized humid basin. Hydrol. Sci. J. 2016, 61, 1–18. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Wang, F.; He, H.; Zhou, J.; Wu, X.; Liu, Z. Hydrologic Evaluation of Multi-Source Satellite Precipitation Products for the Upper Huaihe River Basin, China. Remote Sens. 2018, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, S.; Ren, L.; Yong, B.; Zhang, L.; Wang, M.; Lu, Y.; He, Y. Hydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme Precipitation and Streamflow over a Medium-Sized Basin in China. Water 2018, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Hsu, K.-l.; Xu, Y.-P.; Yang, T. Evaluation of a new satellite-based precipitation data set for climate studies in the Xiang River basin, southern China. Int. J. Clim. 2017, 37, 4561–4575. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Fu, G.; Sweetapple, C.; Zhou, H. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrol. Earth Syst. Sci. 2016, 20, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Li, Y.; Huang, Y.; Li, Y.; Hou, C.; Shi, X. Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. Atmos. Res. 2018, 207, 28–41. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, Y.; Chen, L.; Wang, Z.; Zhu, H.; Li, B. Inter-Comparison and Evaluation of Remote Sensing Precipitation Products over China from 2005 to 2013. Remote Sens. 2018, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Nie, S.; Deng, W.; Cao, W. Statistical evaluation of the performance of gridded monthly precipitation products from reanalysis data, satellite estimates, and merged analyses over China. Appl. Clim. 2018, 132, 621–637. [Google Scholar] [CrossRef]
- Huang, A.; Zhao, Y.; Zhou, Y.; Yang, B.; Zhang, L.; Dong, X.; Fang, D.; Wu, Y. Evaluation of multisatellite precipitation products by use of ground-based data over China. J. Geophys. Res. Atmos. 2016, 121, 10654–10675. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteor. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.-J. A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. 2011, 116, 251. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteor. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Wu, T.; Luo, Y.; Deng, X.; Shi, X.; Wang, Z.; Liu, X.; Huang, J. A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions. Adv. Atmos. Sci. 2016, 33, 889–904. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Ushio, T.; SASASHIGE, K.; Kubota, T.; Shige, S.; Okamoto, K.I.; Aonashi, K.; INOUE, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. JMSJ 2009, 87A, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Hsu, K.-l.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteor. 1997, 36, 1176–1190. [Google Scholar]
- Mega, T.; Ushio, T.; Takahiro, M.; Kubota, T.; Kachi, M.; Oki, R. Gauge-Adjusted Global Satellite Mapping of Precipitation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1928–1935. [Google Scholar] [CrossRef]
- Xie, P. A 15-Year High—Resolution Gauge—Satellite Merged Analysis of Precipitation: A 15-Year High - Resolution Gauge—Satellite Merged Analysis of Precipitation. In Proceedings of the 93rd American Meteorological Society Annual Meeting, Austin, TX, USA, 5–10 January 2013. [Google Scholar]
- National Meteorological Science Data Center—Online Data. Available online: http://data.cma.cn/data/online.html?t=6 (accessed on 4 August 2018).
- Xu, B.; Xie, P.; Xu, M.; Jiang, L.; Shi, C.; You, R. A Validation of Passive Microwave Rain-Rate Retrievals from the Chinese FengYun-3B Satellite. J. Hydrometeor. 2015, 16, 1886–1905. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Meehl, G.A.; Goddard, L.; Murphy, J.; Stouffer, R.J.; Boer, G.; Danabasoglu, G.; Dixon, K.; Giorgetta, M.A.; Greene, A.M.; Hawkins, E.; et al. Decadal Prediction: Can it be skillful? Bull. Am. Meteorol. Soc. 2009, 90, 1467–1486. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- NWP >> GRAPES_MESO >> Regional products >> Eastern China >> 3h accumulated precipitation + 10 m wind field. Available online: http://www.nmc.cn/publish/area/he/3h10mw.html (accessed on 3 August 2018).
- COSMO-1—High-Resolution Forecasts for the Alpine Region-MeteoSwiss. Available online: https://www.meteoswiss.admin.ch/home/measurement-and-forecasting-systems/warning-and-forecasting-systems/cosmo-forecasting-system/cosmo-1-high-resolution-forecasts-for-the-alpine-region.html (accessed on 3 August 2018).
- Wang, R.; Chen, J.; Wang, X. Comparison of IMERG Level-3 and TMPA 3B42V7 in Estimating Typhoon-Related Heavy Rain. Water 2017, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Jin, C.; Wang, A.; Guan, D.; Wu, J.; Yuan, F.; Xu, L. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China. PLoS ONE 2015, 10, e0120026. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, A.J.; Clark, M.P.; Barlage, M.P.; Newman, A.J.; Xue, L.; Arnold, J.R.; Rasmussen, R.M. High-Resolution Historical Climate Simulations over Alaska. J. Appl. Meteorol. Climatol. 2018, 57, 709–731. [Google Scholar] [CrossRef]
- Kim, T.; Jin, E.K. Impact of an interactive ocean on numerical weather prediction: A case of a local heavy snowfall event in eastern Korea. J. Geophys. Res. Atmos. 2016, 121, 8243–8253. [Google Scholar] [CrossRef] [Green Version]
- Di, Z.; Duan, Q.; Gong, W.; Wang, C.; Gan, Y.; Quan, J.; Li, J.; Miao, C.; Ye, A.; Tong, C. Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area. Geophys. Res. Lett. 2015, 42, 579–587. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Clim. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Sahlu, D.; Moges, S.A.; Nikolopoulos, E.I.; Anagnostou, E.N.; Hailu, D. Evaluation of High-Resolution Multisatellite and Reanalysis Rainfall Products over East Africa. Adv. Meteorol. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Nair, A.; Indu, J. Performance Assessment of Multi-Source Weighted-Ensemble Precipitation (MSWEP) Product over India. Climate 2017, 5, 2. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; You, Y.; Mullens, E.; Hu, J.; Yuan, Y.; Huang, M.; He, L.; Luo, Y.; Zeng, X.; et al. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLoS ONE 2014, 9, e89681. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ren, L.; Yong, B.; Hong, Y.; Yang, X.; Yuan, F. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin. Geogr. Sci. 2016, 26, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Clim. 2014, 34, 265–285. [Google Scholar] [CrossRef]
- Global 30 Arc-Second Elevation (GTOPO30) | The Long Term Archive. Available online: https://lta.cr.usgs.gov/GTOPO30 (accessed on 4 August 2018).
- TRMM Data Downloads | Precipitation Measurement Missions. Available online: https://pmm.nasa.gov/data-access/downloads/TRMM (accessed on 7 August 2018).
- JAXA Global Rainfall Watch (GSMaP). Available online: http://sharaku.eorc.jaxa.jp/GSMaP/index.htm (accessed on 7 August 2018).
- CPC: Monitoring and Data-Global Precipitation Analyses. Available online: http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html (accessed on 7 August 2018).
- Data Portal. Available online: http://chrsdata.eng.uci.edu/ (accessed on 7 August 2018).
- CHG-Data-CHIRPS. Available online: http://chg.geog.ucsb.edu/data/chirps/ (accessed on 7 August 2018).
- Cold and Arid Regional Science Data Centre-Products-The air temperature and precipitation datasets in northern China regions based on the WRF model in 1979–2013. Available online: http://westdc.westgis.ac.cn/data/40895e03-f919-4721-893f-a6fee9feab81 (accessed on 7 August 2018).
- Fachgebiet Klimatologie-Institut für Ökologie-Technische Universität Berlin. Available online: https://www.klima.tu-berlin.de/index.php?show=forschung_asien_tibet_har&lan=en (accessed on 7 August 2018).
- Meng, J.; Yang, R.; Wei, H.; Ek, M.; Gayno, G.; Xie, P.; Mitchell, K. The Land Surface Analysis in the NCEP Climate Forecast System Reanalysis. J. Hydrometeorol. 2012, 13, 1621–1630. [Google Scholar] [CrossRef]
- gloh2o-Toward Locally Relevant Global Hydrological Simulations. Available online: http://gloh2o.org/ (accessed on 7 August 2018).
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 2008, 113, 1147. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Gu, H.; Jin, J.; Wu, Y.; Ek, M.B.; Subin, Z.M. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Clim. Chang. 2015, 129, 471–483. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D. Systematic anomalies over inland water bodies in satellite-based precipitation estimates. Geophys. Res. Lett. 2007, 34, 335. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, Z.; Pan, Y.; Yu, J.; Maguire, L. China’s 1 km Merged Gauge, Radar and Satellite Experimental Precipitation Dataset. Remote Sens. 2018, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.; Zhang, W.; Wang, K. Evaluation of Heavy Precipitation Simulated by the WRF Model Using 4D-Var Data Assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China. Remote Sens. 2018, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Bui, H.T.; Ishidaira, H.; Shaowei, N. Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations. Appl. Water Sci. 2019, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-l.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Joyce, R.; Wu, S.; Yoo, S.-H.; Yarosh, Y.; Sun, F.; Lin, R. Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation Estimates from 1998. J. Hydrometeorol. 2017, 18, 1617–1641. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
No. | Basin/ Region | Products with Better Performance | Evaluated Precipitation Datasets | Ref. |
---|---|---|---|---|
1. | Yellow and Yangtze River Basins | PERSIANN-CDR, GLDAS, and TRMM 3B42. | PERSIANN, PERSIANN-CDR, GLDAS, TRMM 3B42, and CMORPH. | [6,7,8] |
2. | Tibetan Plateau | EMSPD-DBMA, 3B42, and CMORPH-CRT. | ITPCAS, CN05.1, APHRO, CMORPH-CRT, PERSIANN, PERSIANN-CDR, IMERG, GSMaP-MVK, MSWEP, EMSPD-DBMA, TRMM 3B42, and TRMM 3B42 RT. | [9,10,11,12,13,14] |
3. | Western China | TRMM 3B42 and TRMM 3B43. | CMORPH, PERSIANN, TRMM 3B42, and TRMM 3B43. | [15] |
4. | Eastern China | EMSIP, CMORPH, TRMM 3B42, and TRMM 3B43. | EMSIP, TRMM 3B42, TRMM 3B43, TRMM 3B42 RT, CMORPH, PERSIANN, GSMaP MWR+, and GSMaP MVK+ | [4,16,17,18] |
5. | Northern China | MSWEP. | MSWEP, CHIRPS, CMORPH, TRMM 3B42 V7, and PERSIANN-CDR | [19,20] |
6. | Southern China | TRMM 3B42, PERSIANN. | TRMM 3B42, TRMM 3B42 RT, GCMs, and CMORPH. | [21,22] |
7. | Northeastern China | GSMAP-MVK+, Fengyun-2, and CMORPH_BLD. | TRMM 3B42, TRMM 3B42 RT, GLDAS, APHRO, PERSIANN, CMORPH_BLD, CMORPH_RAW, Fengyun-2, and GSMAP-MVK+. | [23,24] |
8. | China | GPM IMERG, GSMaP_REANALYSIS, and BMEP. | GPM IMERG, GSMaP_REANALYSIS, CMORPH_RAW, PERSIANN_CDR, CMORPH_BLD, BMEP, NCEP-2, and GPCP. | [25,26,27,28] |
No | Name | Temporal and Spatial Resolution | Temporal Coverage | Domain | Main Technique | Download Website |
---|---|---|---|---|---|---|
1 | TRMM_3B42 V7 | 0.25°/3 h | 1998–2015 | 50°S–50°N | MW+IR + GPCP | [62] |
2 | GSMaP_anl_gauged | 0.10°/1 d | 2000–2017 | 60°S–60°N | MW+IR + EnKF + CPC | [63] |
3 | CMORPH_ADJ | 0.07°/1 h | 1998–2017 | 60°S–60°N | MORPHing + CPC | [64] |
4 | CMORPH_RAW | 0.07°/1 h | 1998–2017 | 60°S–60°N | MORPHing | [64] |
5 | CMORPH_SUN | 0.0625°/1 h | 1998–2017 | 0°–65°N | CMORPH + STMAS | [41] |
6 | PERSIANN_CDR | 0.25°/1 d | 1983–2017 | 60°S–60°N | IR + ANN + GPCP | [65] |
7 | PERSIANN_CCS | 0.04°/1 h | 2003–2017 | 60°S–60°N | IR + ANN | [65] |
8 | CHIRPS | 0.05°/1 d | 1981–2017 | 50°S–50°N | IR + gauges | [66] |
9 | WCR | 0.11°/3 h | 1979–2013 | Western China | WRF3.5.1 + NCEP2 | [67] |
10 | HAR | 0.09°/3 h | 2000–2014 | Tibet Plateau | WRF3.3.1 + Lake model+FNL | [68] |
11 | CFSR (CFSR-LAND) | 0.313°/1 h | 1979–2010 | Global | CFSR + CMAP | [69] |
12 | MSWEP V1 | 0.25°/3 h | 1979–2015 | Global | Multi sources | [70] |
No. | Product | Winter | Spring | Summer | Autumn | Annual |
---|---|---|---|---|---|---|
1 | TRMM_3B42 | 20.4 | 99.4 | 314.2 | 101.7 | 535.6 |
2 | GSMAP_GAUGE | 15.1 | 77.5 | 277.6 | 88.5 | 458.8 |
3 | CMORPH_ADJ | 12.0 | 62.9 | 262.9 | 83.7 | 421.5 |
4 | CMORPH_RAW | 74.6 | 135.9 | 377.7 | 177.4 | 765.7 |
5 | CMORPH_SUN | 13.9 | 67.1 | 272.8 | 74.1 | 428.0 |
6 | PERSIANN_CDR | 18.9 | 118.1 | 400.7 | 122.5 | 660.2 |
7 | PERSIANN_CCS | 266.1 | 310.5 | 402.7 | 138.1 | 1117.3 |
8 | CHIRPS | 11.3 | 79.7 | 304.5 | 96.2 | 491.7 |
9 | WCR | 98.8 | 207.5 | 462.9 | 220.1 | 989.4 |
10 | HAR, | 24.4 | 103.0 | 296.4 | 108.7 | 532.5 |
11 | CFSR | 47.2 | 141.3 | 298.3 | 138.7 | 625.6 |
12 | MSWEP | 25.7 | 115.0 | 336.2 | 114.0 | 590.8 |
13 | Observation | 15.4 | 82.4 | 269.4 | 90.5 | 457.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Wen, Y.; Shi, C.; Yang, Y.; Zhang, F.; Wu, J.; Gu, J.; Pan, Y.; Sun, S.; Meng, J. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sens. 2020, 12, 683. https://doi.org/10.3390/rs12040683
Bai L, Wen Y, Shi C, Yang Y, Zhang F, Wu J, Gu J, Pan Y, Sun S, Meng J. Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sensing. 2020; 12(4):683. https://doi.org/10.3390/rs12040683
Chicago/Turabian StyleBai, Lei, Yuanqiao Wen, Chunxiang Shi, Yanfen Yang, Fan Zhang, Jing Wu, Junxia Gu, Yang Pan, Shuai Sun, and Junyao Meng. 2020. "Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data?" Remote Sensing 12, no. 4: 683. https://doi.org/10.3390/rs12040683
APA StyleBai, L., Wen, Y., Shi, C., Yang, Y., Zhang, F., Wu, J., Gu, J., Pan, Y., Sun, S., & Meng, J. (2020). Which Precipitation Product Works Best in the Qinghai-Tibet Plateau, Multi-Source Blended Data, Global/Regional Reanalysis Data, or Satellite Retrieved Precipitation Data? Remote Sensing, 12(4), 683. https://doi.org/10.3390/rs12040683