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Abstract: An accurate estimation of spatially and temporally continuous latent heat flux (LE) is
essential in the assessment of surface water and energy balance. Various satellite-derived LE products
have been generated to enhance the simulation of terrestrial LE, yet each individual LE product
shows large discrepancies and uncertainties. Our study used Extremely Randomized Trees (ETR)
to fuse five satellite-derived terrestrial LE products to reduce uncertainties from the individual
products and improve terrestrial LE estimations over Europe. The validation results demonstrated
that the estimation using the ETR fusion method increased the R2 of five individual LE products
(ranging from 0.53 to 0.61) to 0.97 and decreased the RMSE (ranging from 26.37 to 33.17 W/m2) to 5.85
W/m2. Compared with three other machine learning fusion models, Gradient Boosting Regression
Tree (GBRT), Random Forest (RF), and Gaussian Process Regression (GPR), ETR exhibited the best
performance in terms of both training and validation accuracy. We also applied the ETR fusion
method to implement the mapping of average annual terrestrial LE over Europe at a resolution of
0.05 ◦ in the period from 2002 to 2005. When compared with global LE products such as the Global
Land Surface Satellite (GLASS) and the Moderate Resolution Imaging Spectroradiometer (MODIS),
the fusion LE using ETR exhibited a relatively small gap, which confirmed that it is reasonable and
reliable for the estimation of the terrestrial LE over Europe.
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1. Introduction

The latent heat flux (LE) governs the associated heat flux of the interaction between land surface
and its atmosphere [1], including vegetation transpiration, soil evaporation, and plant canopies
interception evaporation [2]. In general, LE returns approximately 60% of rain back to the atmosphere
and also helps to cool the land surface by consuming an enormous amount of heat [3]. Europe makes
up the western fifth of the Eurasian landmass. Thus, an accurate LE estimation over Europe plays
a key role in many climatic, hydrologic, and agricultural applications [4]. As a confederation of
regional observation networks, FLUXNET routinely provides long-term eddy covariance (EC) flux
measurements of carbon, water vapor, and energy exchange over America, Europe, Asia, Africa, and
Australia. About one-third of FLUXNET’s EC sites are located in Europe. However, as result of the
spatial heterogeneity, point-based measurements of terrestrial LE cannot be applied for continuous
monitoring on a large scale [5].
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Satellite-based observations can provide us with a more readily available monitoring for land
surface and atmospheric properties. Combined with well-known flux equations [6,7], we can
effectively derive spatially and temporally continuous LE estimates over large areas. Currently, various
satellite-derived LE products at moderate spatial resolution are generated, including the Moderate
Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) with a resolution of 0.5 km /

1 km and 8 days [8,9], the Global Land Evaporation Amsterdam Model (GLEAM) LE product with
a resolution of 0.25 ◦ and 1 day [10], the Global Land Surface Satellite (GLASS) LE product with a
resolution of 1 km / 5 km and 8 days [11], or the Breathing Earth System Simulator (BESS) LE product
with a resolution of 1 km and 8 days [12]. However, when intercomparing and evaluating with
long-term ground measurements from in situ flux networks, satellite-derived LE products showed
large discrepancies. Previous studies over China [13,14], Brazil [15], Spain [16], and South Africa [17]
found that in the arid and semiarid climate, MOD16 underestimated the LE of the irrigated crop in
the growing season [18]. Additionally, some reanalysis and data assimilation LE products have a
relatively high temporal resolution but a relatively coarse spatial resolution, such as the Global Land
Data Assimilation System (GLDAS) datasets with 0.25 degree spatial resolution and 3 hour temporal
resolution [19,20]. Validation against tower flux measurements indicates that LE datasets with a
relatively coarse spatial resolution tend to contain large uncertainties regarding the heterogeneous
terrestrial biosphere [2]. Therefore, deriving terrestrial LE estimates accurately with both a high spatial
resolution (e.g., 1 km) and a reasonable temporal resolution (e.g., daily) remains a central challenge.

To meet this demand, many satellite-derived algorithms are designed to implement LE terrestrial
estimates, mainly using process-based algorithms and empirical/semi-empirical algorithms, etc.
Traditional process-based algorithms, such as the Surface Energy Balance System (SEBS) [21],
the Single-Source models [21–24], the Two-Source models [25–30], the Penman–Monteith (PM)
equation [8,9], and the Priestley–Taylor (PT) algorithm [7,31–33], calculate terrestrial LE using
satellite-derived datasets related to meteorological observations based on the surface energy balance
(SEB) equation [34]. However, as a result of the uncertainties that exist in different model structures,
the simulation results of each algorithm show large discrepancies [35]. Empirical/semi-empirical
algorithms are convenient to apply but the need to determine the site-specific parameters makes
them difficult to implement accurately with variable surface conditions [36]. As the most viable
empirical algorithms, machine learning methods have demonstrated great success in predicting
complex problems and have been widely used to estimate LE. For instance, Wang [37] used artificial
neural network (ANN) combined with meteorological parameters, remote sensing variable (NDVI),
and ground-measured LE from 85 EC flux tower sites to predict LE over North America. Bodesheim
et al. [38] obtained a global half-hourly LE product using FLUXNET observations, remotely sensed
and meteorological data with the Random Forests (RF) method. Xu et al. [39] generated daily ET
from in situ flux tower sites on the Heihe River Basin scale at a spatial resolution of 1km by using
remote sensing variables (LAI, land cover), air temperature (Ta), relative humidity (RH), solar radiation
(Rs), and precipitation (P) with the RF method. However, simulation under complex heterogeneity
conditions by these data-driven methods remains questionable because of the spatial representation
limitation of sparse training data at certain sites.

Far from discouraging the development of LE simulation methods over large scales, the
discrepancies and uncertainties lie in the individual LE products, thus providing an opportunity
to foster further research. In recognition of above challenges, the approach of fusing multiple LE
products would be preferable. Aiming to develop effective fusion methods, these efforts have ranged
from the simple model averaging method (SMA) [40] to more complex approaches such as Bayesian
model averaging (BMA) [11], empirical orthogonal function (EOF) [41], or integration methodologies
considering consistency with water cycle products [42]. Yao et al. generated the GLASS LE product
by fusing of five LE products using the BMA method to enhance terrestrial daily LE estimates [11].
Zhu et al. also reported that merging ET products using the BMA method can achieve more reliable
estimations than the SMA method across north China [43]. However, a limitation associated with
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these fusion methods concerning the weight calculating efficiency of the individual products has
somewhat affected their wider application [2]. Regarding this, approaches involving multiple LE
product ensembles based on machine learning techniques have the potential to provide accurate
terrestrial LE estimates. Extremely Randomized Trees (ETR) as a new tree-based machine learning
ensemble method has shown better robustness and regression accuracy compared with other traditional
models [44]. Experiments show that ETR is generally competitive and even superior to RF in terms of
accuracy [45]. Although ETR has been substantially applied to regression approaches, there is a lack of
experiments on datasets fusion problems, especially in improving terrestrial LE estimates by merging
multiple LE products

With the aim of reducing uncertainties in individual satellite-derived LE products, in this study, we
used Extremely Randomized Trees (ETR) to enhance terrestrial LE estimations over Europe by fusing
five individual LE products. We had three major objectives: (1) to evaluate individual satellite-derived
terrestrial LE products produced by five classic LE algorithms using ground-measured EC data from
the FLUXNET; (2) to evaluate the ETR fusion method by comparing it with three other machine
learning methods using the EC observations and two other global LE products; and (3) to apply the
ETR method to map the mean annual terrestrial LE with 0.05◦ spatial resolution in the period from
2002 to 2005 based on MODIS and Modern Era Retrospective Analysis for Research and Applications
(MERRA) meteorological data over Europe.

2. Data

We produced individual satellite-derived terrestrial LE products using five traditional LE
algorithms. Table 1 describes the five LE products in detail. The forcing data included MODIS
Fraction of Absorbed Photosynthetically Active Radiation (FPAR) data with 500m spatial resolution,
MODIS NDVI and GLASS LAI data with a 0.05 degrees spatial resolution, MERRA meteorological data
with a 1/2 * 2/3 degrees spatial resolution. The daily surface net radiation (Rn), shortwave radiation (Rs),
relative humidity (RH), air temperature (Ta), vapor pressure (e), and wind speed (WS) from MERRA
were used in this study. The FPAR and MERRA meteorological data were spatially interpolated into
0.05 degrees by the bilinear method in order to be consistent with the MODIS pixel size. The individual
LE products are briefly described in the following.

2.1. Satellite-Derived Terrestrial LE Products

2.1.1. Revised Remote Sensing-Based Penman (RS-PM)- LE Product

The RS-PM-based LE product was generated by an improved Penman–Monteith equation [9]. The
total LE consisted of four components: the canopy transpiration (LEc), interception evaporation (LEi),
saturated wet soil evaporation (LEws), and unsaturated soil evaporation (LEds). FPAR was used as an
improved vegetation cover fraction. The calculations of aerodynamic, boundary-layer, and canopy
resistance were also modified compared to the beta version [11]. A more detailed description of the
RS-PM algorithm can be found from Mu et al. (2011) [9]. The input variables include Rn, Ta, Tmin, RH,
and e from the MERRA data, FPAR derived from the MOD15C2 product, and LAI derived from the
GLASS product. The daily RS-PM-based LE product has a 0.05 degrees resolution and covers Europe
from 2000 to 2006.

2.1.2. Shuttleworth–Wallace Dual-Source (SW)-Based LE Product

The SW-based LE product was generated by the Shuttleworth–Wallace dual-source (SW) model [46].
On the basis of the energy balance theory, the SW algorithm divided the total LE into two components:
the vegetation transpiration (LEv) and the soil evaporation (LEs). Assuming aerodynamic mixing
occurring at a mean canopy source height within the canopy [35], the LEv and LEs can be estimated
separately using two Penman–Monteith equations. A more detailed description of the SW algorithm
can be obtained from Shuttleworth and Wallace (1985) [46]. The input variables include WS, Rn, Ta,
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RH, and e from the MERRA data and GLASS LAI. The daily SW LE product covers Europe with a 0.05
degrees spatial resolution for the period from 2000 to 2006.

2.1.3. Priestley-Taylor of the Jet Propulsion Laboratory (PT-JPL)-Based LE Product

The PT-JPL-based LE product was generated by a novel Priestley–Taylor equation proposed by
Fisher et al. [31]. The atmospheric constraints (RH, Vapor Pressure Deficit) and ecological constraints
(LAI, FPAR) were associated to determine dynamic coefficients to transform potential ET to actual
ET [7]. The extended empirical parameters were determined without using any ground measurements.
More formal information about the PT-JPL can be obtained from Fisher et al. (2008) [31]. The input
variables to generate the PT-JPL-based LE product include Rn, RH, Ta, and e from the MERRA data,
NDVI and FPAR derived from the MODIS product, and LAI derived from the GLASS product. The
daily PT-JPL-based LE product covers Europe during the period from 2000 to 2006 with a spatial
resolution of 0.05 degrees.

2.1.4. Modified Satellite-Based Priestley–Taylor (MS-PT)-Based LE Product

The MS-PT-based LE product was generated by a modified satellite-based PT (MS-PT) model
proposed by Yao et al. [32]. The MS-PT algorithm separated LE into four components: the canopy
transpiration (LEc), vegetation interception evaporation (LEi), unsaturated soil evaporation (LEds), and
saturated wet soil evaporation (LEws). The diurnal air temperature range (DT) was used to quantify
the apparent thermal inertia (ATI), which parameterized surface soil moisture (SM) constraints [2]. It
only requires four parameters as input: the surface net radiation, air temperature, DT, and NDVI. A
more formal introduction to the MS-PT algorithm can be obtained from Yao et al. (2013) [32]. The LE
product input variables include Rn, Ta, Tmax, and Tmin from the MERRA data and MODIS NDVI data.
The MS-PT LE product has the same spatial and temporal resolution as the PT-JPL-based LE product
from 2000 to 2006.

2.1.5. Semi-Empirical Penman Algorithm (SEMI-PM)-Based LE Product

The SEMI-PM-based LE product was generated by a Semi-empirical Penman algorithm (SEMI-PM)
equation proposed by Wang et al. [47]. The obvious difference between this algorithm and the other
four is that the SEMI-PM used wind speed to make the terrestrial LE estimation, which may influence
the annual or decadal LE variability [11]. The empirical coefficients for this algorithm were calibrated
by 64 global flux tower sites, and the average correlation coefficient of this algorithm was up to 0.94.
More formal information about SEMI-PM can be acquired from Wang et al. (2010) [47]. The SEMI-PM
LE product requires Rs, Ta, WS, and RH from the MERRA data and MODIS NDVI data. This daily LE
product with a 0.05 degrees spatial resolution is also available over Europe during the period from
2000 to 2006.

Table 1. Summary of the five satellite-derived terrestrial latent heat flux (LE) products in this study
for 2000–2006.

ID LE Product Algorithms Spatial
Resolution

Temporal
Resolution Forcing Inputs References

1 Revised remote sensing-based
Penman LE product (RS-PM) 0.05 degrees Daily Rn, Ta, Tmin, RH,

FPAR, LAI Mu et al. (2011)

2 Shuttleworth–Wallace
dual-source-based LE product (SW) 0.05 degrees Daily Rn, Ta, RH, WS, LAI Shuttleworth and

Wallace (1985)

3
Priestley–Taylor of the Jet
Propulsion Laboratory-based LE
product (PT-JPL)

0.05 degrees Daily Rn, Ta, Tmax, RH,
FPAR, NDVI, LAI Fisher et al. (2008)

4
Modified satellite-based
Priestley–Taylor LE product
(MS-PT)

0.05 degrees Daily Rn, Ta, Tmax, Tmin,
NDVI Yao et al. (2013)

5 Semi-empirical Penman-based LE
product (SEMI-PM) 0.05 degrees Daily Rs, Ta, RH, WS,

NDVI Wang et al. (2010a)
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2.2. Eddy Covariance Data

Our study used FLUXNET eddy covariance (EC) data to evaluate and validate the five
satellite-derived terrestrial LE products and four machine learning fusion methods. The ground
measurements were mainly gathered from 76 Europe flux tower sites (Figure 1) and each site spanned
more than one growing season from 2000 to 2009. These sites were covering five major plant function
types (PFTs): deciduous broadleaf forest (DBF, 12 sites), evergreen needleleaf forest (ENF, 18 sites),
grassland (GRA, 27 sites), mixed forest (MIF, 2 sites), cropland (CRO, 17 sites), and these PTFs represent
the major terrestrial biomes in Europe. Evenly distributed in space, half of the sites were uniformly
chosen to train the machine learning models, and the rest of the sites were used to validate the model
fusion performance. These ground-measured data included half-hourly or hourly Rn, ground heat flux
(G), Rs, WS, Ta, RH, e, sensible heat flux (H), and LE. Because the EC observation method suffers a
problem related with energy imbalance, the sum of obtained H and LE is generally less than the total
available energy [48]. Therefore, the measured LE can be corrected as follows [49]:

LEcor = (Rn −G)/(Huncor + LEuncor) × LEuncor

where LEcor is the corrected LE, and the Huncor and LEuncor are the uncorrected H and LE, respectively.
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3. Methods

3.1. Extremely Randomized Trees

Extremely Randomized Trees (Extra-Trees, ET) proposed by Geurts is a tree-based machine
learning ensemble model for supervised learning of classification and regression [50]. Extra-Trees
Regression (ETR) constructs an ensemble of regression trees based on a classical top-down procedure.
The obvious discrepancy with other ensemble models is that ETR constructs the trees with all the
learning sample instead of a bootstrap replica, and it selects a random cut-point for each feature under
consideration rather than computing a locally optimal one [50]. ETR has three important parameters:
the K, nmin, and M. These three parameters can be adapted to the specific case either manually or
automatically, using cross-validation for example.
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The parameter K denotes the number of random splits and its available range is 1 to n, where n
denotes the number of attributes. The smaller the K is, the stronger the randomization of the trees will
be. Experiments have shown that the optimal values of K are K =

√n for classification and K = n for
regression [50].

The parameter nmin denotes the sample counts to split a node. Lager nmin leads to a higher bias
and smaller of both trees and variances. Optimal default values of nmin depend, in principle, on the
output dataset noise. Fully grown trees will generate a very noisy output which always leads to an
over-fit problem.

The parameter M is the count of trees. The more trees, the better accuracy, in principle [51]. The
compromise between computational requirements and accuracy is the deciding factor for the choice of
an appropriate value of M.

The score measure in ETR is the relative variance reduction. For a sample S and a split s, the score
is defined as follows:

Score(s, S) =
var

{
y
∣∣∣S}− |Sl|

|S| var
{
y
∣∣∣Sl

}
−
|Sr |
|S| var

{
y
∣∣∣Sr

}
var

{
y
∣∣∣S} (1)

where Sl and Sr denote the two subsets of cases from S corresponding to the two outcomes of a split s.
The var

{
y
∣∣∣S} represents the variance of the output y in the sample S.

The ETR method has no need for the optimization of the discretization thresholds, so it is
competitive with other ensemble models in terms of the accuracy, computing times, and ease
of implementation.

3.2. Other Machine Learning Fusion Methods

3.2.1. Gradient Boosting Regression Tree

The Gradient Boosted Regression Tree (GBRT) model, also known as the gradient boosting decision
tree, is a boosting regression model consisting of an ensemble of decision trees [52]. GBRT builds the
model by a stage-wise way, and it generalizes them by optimizing an arbitrary loss function. The
approximation function for GBRT can be expressed as

f (x) =
N∑

n=1

βmh(x; an) (2)

where βm denotes the weight for an individual decision tree h(x; an). Each individual decision tree can
be defined as follows:

h(x; an) =
M∑

m=1

γmnI (x ∈ Rmn) (3)

where x represents the input variables, and an denotes the classifier of each decision tree. The input
dataset would be parted into M regions by the trees. The γmn represents the predicted constant for the
corresponding region.

The GBRT can generate an appropriate nonlinear relationship automatically by the ensemble
trees [53] and process skewed variables without transformations. GBRT can overcome the problem of
over-fitting by combining hundreds of weak decision trees. The computational robustness and high
scalability of GBRT make it a superior model as compared to a single decision tree [54].

3.2.2. Random Forests

Random Forests (RF) [51] as an enhancement of bagging [55] is an ensemble of single trees. The
independent tree predictor in the ensemble is generated by randomly selecting input variables using
the bootstrap [56] sampling method. The optimal split can be found either from all input variables or
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a preset-sized random subset during the construction of a single tree. The estimate variance of the
trees can be reduced by increasing the randomness. Experiments found that RF methods significantly
outperform other decision tree methods because the single trees typically generate high variance and
are prone to over-fit [50]. The randomness injected into forests when generating decision trees may
decouple prediction errors. Some errors can be cancelled out by taking an average of those predictions.
As a result of the low correlation between independent trees, the RF can avoid falling into over-fitting
problems in the process of regression [39].

3.2.3. Gaussian Process Regression

The Gaussian Process Regression (GPR) algorithm is a classical stochastic process method in
probability theory. The GPR is a combination of random variables obeying the normal distribution [57].
The kernel of GPR is the Gaussian Process (GP) learning framework which is competitive in handling
nonlinear relationships [58]. The kernel function of GPR is GP, which is a collection of finite random
variables with a Gaussian distribution that can be used to describe the distribution of functions. The
output data y and the input vector x can be expressed as

y = f (x) + ε (4)

where ε is Gaussian noise. The prior distribution of the observation y after considering the noise can
be written as

y ∼ N
(
0, M(X, X) + σ2

nIn
)

(5)

where the M(X, X) is the auto-covariance matrix of the input vector X and the σ2
n is the variance of

noise. The union prior distribution of the observation y and the prediction f∗ can be written as[
y
f∗

]
∼ N

(
0,

[
M(X, X) + σ2

nIn M(X, x∗)
M(x∗, X) m(x∗, x∗)

] )
(6)

GPR can obtain both predictive mean and predictive variance, and it can obtain the optimal
estimates through the predictive distribution of sample data.

3.3. Evaluation Metrics

To evaluate the accuracy of individual satellite-derived LE products and the four machine learning
fusion methods, the R2, Bias, and RMSE were selected as the evaluation metrics. R2 is the square of
correlation coefficient R and it is a metric to assess the agreement between estimates and observations.
Bias is the average value of the differences between the estimates and ground measurements. Bias can
be written as

Bias =
1
N

N∑
i=1

(Ei − Oi)
2 (7)

where N denotes the number of samples, Ei and Oi denote the ith estimates and ground-measured LE,
respectively. The RMSE is the root mean square error between estimates and observations; it measures
the predictive skill and the closeness with the target. RMSE is calculated as

RMSE =

√√√
1
N

N∑
i=1

(Ei − Oi)
2 (8)

3.4. Experimental Setup

Before fusion model construction, we produced five individual LE products using the RS-PM,
SW, PT-JPL, MS-PT, and SEMI-PM algorithms based on the remote sensing variables (NDVI, LAI and
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FPAR) and MERRA meteorological data. EC ground measurements at all 76 flux tower sites were
collected to evaluate the accuracy of these LE products.

Our study constructed the ETR, GBRT, and RF model by using the Ensemble modules on the
Python platform. The main parameters to fit these three modules included n_estimators, max_features,
max_depth, learning_rate, and subsample. These optimal parameters can be adapted to the specific
case either manually or automatically using cross-validation for example. The GPR was implemented
using the Gaussian Processes for Machine Learning (GPML) toolbox in MATLAB, developed by Carl
Edward Rasmussen and Hannes Nickisch. Different mean functions and covariance functions were
evaluated and the one with lowest error was used. For all four machine learning models, ten-fold
cross-validation was used to find the optimal parameter.

To compare the fusion methods, we trained and validated ETR and three other machine learning
models using the same EC flux site data. Considering the influences of the representation of multiple
PFTs on the model construction, for each PFT, our study chose half of the sites for training and the
rest sites for inversion. As for DBF/ ENF/GRA/MIF /CRO, there were 6/9/14/1/9 sites for training and
6/9/13/1/8 sites for inversion. Finally, we trained the ETR model using all 76 available EC flux tower
sites and enhanced the terrestrial LE estimates over Europe by the fusion of the five satellite-derived
LE products.

4. Results

4.1. Evaluation of Satellite-Derived Terrestrial LE Products

To evaluate the five satellite-derived LE products, the corresponding estimates extracted from the
individual products were directly compared with ground measurements from the 76 EC flux tower
sites. Figure 2 shows the scatter plots for the daily LE observations and estimates of different LE
products. The results show that the SEMI-PM product demonstrated the best performance with the
highest R2 (0.61) and a small RMSE (26.42 W/m2) among the five LE products. The R2 of the SW is the
smallest at 0.53, and the R2 of three other LE products vary from 0.55 to 0.57. The MS-PT obtained the
smallest RMSE of 26.37 W/m2; the ascending RMSE order of the four other algorithms is SEMI-PM
(26.42 W/m2), PT-JPL (27.91 W/m2) RS-PM (30.34 W/m2), and SW (33.17 W/m2).
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models using the same EC flux site data. Considering the influences of the representation of multiple 287 
PFTs on the model construction, for each PFT, our study chose half of the sites for training and the 288 
rest sites for inversion. As for DBF/ ENF/GRA/MIF /CRO, there were 6/9/14/1/9 sites for training and 289 
6/9/13/1/8 sites for inversion. Finally, we trained the ETR model using all 76 available EC flux tower 290 
sites and enhanced the terrestrial LE estimates over Europe by the fusion of the five satellite-derived 291 
LE products. 292 

4. Results 293 

4.1. Evaluation of satellite-derived terrestrial LE products 294 

To evaluate the five satellite-derived LE products, the corresponding estimates extracted from 295 
the individual products were directly compared with ground measurements from the 76 EC flux 296 
tower sites. Figure 2 shows the scatter plots for the daily LE observations and estimates of different 297 
LE products. The results show that the SEMI-PM product demonstrated the best performance with 298 
the highest R2 (0.61) and a small RMSE (26.42 W/m2) among the five LE products. The R2 of the SW is 299 
the smallest at 0.53, and the R2 of three other LE products vary from 0.55 to 0.57. The MS-PT obtained 300 
the smallest RMSE of 26.37 W/m2; the ascending RMSE order of the four other algorithms is SEMI-301 
PM (26.42 W/m2), PT-JPL (27.91 W/m2) RS-PM (30.34 W/m2), and SW (33.17 W/m2). 302 
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Figure 2. The scatter plots for daily LE observations at 76 flux tower sites and the estimates from the
five LE products during the period from 2000 to 2006.

The five LE products showed large discrepancies and uncertainties for different PFTs. Figure 3
shows the statistical summary of the evaluation parameters of the five satellite-derived products for
each PFT. The results show that the MIF sites have the highest R2 which varies from 0.64 to 0.70, and
the CRO sites have the smallest RMSE (22.89 W/m2 to 25.10 W/m2) and Bias (-6.54 W/m2 to 7.74 W/m2)
for the different LE products. For the CRO, ENF, and GRA sites, the SEMI-PM performs better with the
highest R2 (0.61 to 0.64) and the smallest RMSE (22.89 to 26.08 W/m2). For the DBF and MIF sites, the
MS-PT performs better with a high R2 (0.62 to 0.66) and the smallest RMSE (26.98 and 24.35 W/m2)
compared with other four LE products.
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Figure 3. The evaluation parameters (R2, RMSE, and Bias) comparison between the five satellite-derived
LE products for different plant function types (PFTs).

The results show that the accuracies of each LE product for different PFTs vary greatly and there
are significant uncertainties between individual LE products. Moreover, we found that none of the
individual satellite-derived terrestrial LE products can provide the most accurate LE estimates for
all PFTs.

4.2. Fusion of Five Satellite-Derived Terrestrial LE Products Using Extremely Randomized Trees

4.2.1. Model Development Using 39 Training Flux Tower Sites

To implement the fusion of five satellite-derived LE products using ETR and other three machine
learning methods, the ground measurements collected at the 39 training sites were used to train the
models. Figure 4 presents the scatter plots for the observations and LE training results using ETR and
three other fusion models. ETR yields the best training performance with the highest R2 of 0.98 and
the lowest RMSE of 4.93 W/m2 among the four fusion methods, followed by RF with an R2 of 0.97 and
RMSE of 5.94 W/m2. The descending training performance order of the four algorithms is ETR, RT,
GBRT, and GPR.
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Figure 4. The scatter plots for daily LE observations at 39 training flux tower sites and LE estimates
from the four fusion models during the period from 2000 to 2006.

Figure 5 presents the statistical summary of the evaluation parameters of the four fusion methods
at the 39 training sites for each PFT. One can notice that the fusion estimates using ETR for different
PFTs have the highest R2 and lowest RMSE compared to the three other methods. For all the PFTs of
the 39 training sites, the performance of the RF method is lower than ETR, but behaves better than the
other two models, and GPR yields the lowest simulation accuracy.
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Figure 5. The evaluation parameters (R2, RMSE, and Bias) comparison between the four LE fusion
methods at 39 training tower sites for different PFTs.

4.2.2. Model Evaluation against 37 Validation Flux Tower Sites

Figure 6 presents the scatter plots for the LE observations at the 37 validation sites and the LE
inversion results using ETR and the three other fusion models. The results show that ETR yields the
best training performance with the highest R2 (0.76) and the lowest RMSE (16.87 W/m2) among the
four fusion models. At the specific site scale, the performance of the ETR fusion method is significantly
superior to the best performance any individual LE product (SEMI-PM with an R2 of 0.61 and RMSE of
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26.42 W/m2). The accuracy of the GPR fusion method is lower than ETR but much higher than RF
and GBRT with an R2 of 0.76 and RMSE of 16.88 W/m2. The GBRT yields the lowest R2 (0.72) and the
highest RMSE (18.25 W/m2) compared with the three other machine learning fusion methods, but it is
still superior to the best performance of any individual LE product (SEMI-PM). The results show that
the machine learning fusion estimates are superior to the five individual LE products, and among the
four machine learning fusion methods, the ETR exhibits the best fusion performance.
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Figure 6. The scatter plots for daily LE observations at 37 validation flux tower sites and the LE
estimates from the four fusion models during the period from 2000 to 2006.

Figure 7 shows the R2, Bias, and RMSE statistics of ETR and the three other fusion models for
different PFTs at the 37 validation sites. Overall, whether it is R2 (varying from 0.74 to 0.84), Bias
(varying from -1.71 to 7.53 W/m2), or RMSE (varying from 13.56 to 18.27 W/m2), ETR is superior to the
other three fusion models at most PFTs. The performance of the GPR method is lower than ETR, but
better than RF and GBRT. GBRT yields the lowest validation accuracy with an R2 ranging from 0.69
to 0.80, and RMSE ranging from 14.90 W/m2 to 19.87 W/m2. For all the PFTs, MIF has the highest R2

from 0.80 to 0.84 and the lowest RMSE from 13.35 to 14.90 W/m2, but yields the highest Bias, ranging
from 6.93 to 7.53 W/m2. This may be affected by the original individual LE products, which have the
same estimate tendency. The evaluation results of satellite-derived terrestrial LE products are shown
in Figure 3. The DBF validation sites behave better than the three other PFTs with an R2 ranging from
0.77 to 0.82 and RMSE ranging from 16.43 to 18.02 W/m2. CRO, ENF, and GRA with lower R2, varying
from 0.69 to 0.75 compared with other PTFs, are also superior to the individual LE products which
obtained R2 varying from 0.53 to 0.64.

Overall, compared to the other three machine learning fusion methods, ETR exhibits a relatively
high validation accuracy and stability. The enhanced accuracy of the ETR fusion method makes it a
reasonable option for improving LE terrestrial estimates over Europe.
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Figure 7. The evaluation parameters (R2, RMSE, and Bias) comparison between the four LE fusion
methods at 37 validation tower sites for different PFTs.

4.2.3. Implementation of Fusing Five LE Products Using Extremely Randomized Trees

To implement the fusion of five satellite-derived terrestrial LE products using ETR over Europe,
we retrained the ETR model based on the EC ground measurements at all 76 sites from 2000 to 2006
and the corresponding LE estimates extracted from five individual LE products. Figure 8 shows the
statistics (R2, RMSE, and Bias) of the comparison between multiple individual LE products and the
fusion LE estimates using ETR for different PFTs. In general, whether it is the R2 (0.97), RMSE (5.85
W/m2), or the Bias (approximately equal to 0 W/m2), the fusion LE estimates are superior to the five
satellite-derived terrestrial LE products. For all five PFTs, fusion LE estimates reduced the RMSE by
20.52 to 27.31 W/m2, representing 77.80% to 82.35% of the corresponding RMSE of the individual
LE products. The Bias of individual LE products vary from 3.08 to 16.55 W/m2, and the fusion LE
estimates reduced the Bias to about 0 W/m2. Therefore, the accuracy of the individual LE products
was significantly improved by the fusion of multiple satellite-derived terrestrial LE products using the
ETR method. The results showed that the ETR fusion method in this study could be implemented to
generate a reasonable and stable regional terrestrial LE product.
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Figure 8. The comparison of evaluation parameters (R2, RMSE, and Bias) for the five individual LE
products and fusion LE estimates using Extremely Randomized Trees (ETR) for different PFTs.

4.3. Mapping of Terrestrial LE Products over Europe

Figure 9 shows the maps of annual terrestrial LE averaged from 2002 to 2005 for the RS-PM-,
SW-, PT-JPL-, MS-PT-, and SEMI-PM-based LE product over Europe. All of the five products yielded
lower LE estimates over the northern portion of Europe. In the high latitudes, the highest annual LE
was approximately less than 20 W/m2, appearing on the area with latitudes higher than 65◦N. As the
latitude decreases, LE shows a trend from low to high. The most prominent difference between the
five LE products was the RS-PM- and SW-based LE products estimated higher LE values in the central
and southern portions of Europe. Compared with SEMI-PM-based LE product, the PT-JPL and MS-PT
yielded higher LE estimation in Austria and Bulgaria. These discrepancies maybe caused by the spatial
heterogeneity and the uncertainty existing in the structures of different LE product algorithms.
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Figure 9. Maps of average annual terrestrial LE in the period from 2002 to 2005 for Revised remote
sensing-based Penman LE product (RS-PM), Shuttleworth–Wallace dual-source-based LE product (SW),
Priestley–Taylor of the Jet Propulsion Laboratory-based LE product (PT-JPL), Modified satellite-based
Priestley–Taylor LE product (MS-PT), and Semi-empirical Penman-based LE product (SEMI-PM) with
a resolution of 0.05◦ over Europe.

We applied the fusion of five individual terrestrial LE products using ETR, GBRT, RF, and GPR
to estimate the mean annual LE in the period from 2002 to 2005 with a resolution of 0.05◦ over
Europe, respectively (Figure 10). Four fusion products showed highly consistent spatial characteristics
over Europe.
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When compared with the fusion terrestrial LE product using ETR, the three other fusion products
generate some spatial differences (Figure 11). The GBRT yields a higher annual LE than ETR over
northern Europe. As the latitude increases, the discrepancy reaches up to 6 W/m2. The fusion LE
product generated by RF shows consistent spatial characteristics with ETR. The difference between the
two fusion LE products was within 1 W/m2 in most parts of Europe. The GPR fusion product yields
lower annual terrestrial LE in Spain, Austria, Romania, Belarus, and a higher LE in Norway, Poland,
Hungary, and Italy. The difference between the two LE products was approximately within 4 W/m2 in
most areas. This is possibly caused by the uncertainty existing in the structures of different machine
learning fusion methods.
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5. Discussion

5.1. The Performance of the Extremely Randomized Trees Fusion Method

Figure 12 shows the seasonal variation both of ground-measured LE and the estimate LE by the
four fusion methods for different PFTs. For each PFT, we randomly selected a site which completely
contains at least one year of ground measurements, and the corresponding estimate LE data was
compared to this. The daily observed data and estimate LE were replaced by the eight-day average
value. The five sites were BE-Lon (CRO), FR-Hes (DBF), DE-Har (ENF), DE-Gri (GRA), and BE-Bra
(MIF).

Figure 12 illustrates that all the four machine learning fusion methods’ LE values showed great
consistency with the observations for each PFT in 2005. For the DE-Har (ENF) and DE-Gri (GRA)
sites, the GBRT, RF, and the GPR estimations were lower than the observations on most days of 2005.
However, for the BE-Bra (MIF) and FR-Hes (DBF) sites, the three fusion models overestimated the LE
with the same trend. In comparison with the GBRT, RF, and GPR methods, the seasonal LE variations
generated by ETR were closest to the observations. Moreover, the RF estimate performed closely
to ETR.

Of all the five sites in different PFTs, the BE-Lon (CRO) site showed a poor performance in the
growing season. Studies showed that differences in crop types, and irrigation and fertilization practices
may lead to noticeable influence on the accurate estimation of LE [59]. For the FR-Hes (DBF) and
DE-Har (ENF) sites, a greater overlap of leaves resulting in a lower bare soil exposure ratio [60], NDVI
saturates, and clouds cover [61] all contributed to the inaccurate LE estimates in these two PFTs. All
four machine learning methods yielded poor performance in the BE-Bra (MIF) site, mainly because
there were fewer samples available (only two sites, one for training and one for validation), which
lowered the learning performance of the fusion models. In addition, all the four models presented
significantly higher estimations with the same trend in BE-Bra (MIF). This may be caused by the original
higher estimation of the five individual LE products at the MIF sites, which can be seen in Figure 3.
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Figure 13 illustrates the probability density distributions of estimate errors in the five
satellite-derived LE products and four machine learning fusion LE products, respectively. For
the single LE products, the error distributions of the MS-PT are more closely centered on zero, and
compared with MS-PT, the other four LE products show the same trend of overestimation. The
SEMI-PM showed relatively small errors maybe because the regression coefficients of this product
algorithm were calibrated using 64 global flux tower sites [47]. Overall, MS-PT and SEMI-PM yield
better performance than the other products, which is also consistent with the global validation result
from Yao [11].

For the fusion LE products, all the four fusion predictive errors are closely centered on zero and
even the GPR method, which got the largest biases, performs better than the MS-PT and SEMI-PM. The



Remote Sens. 2020, 12, 687 18 of 23

ETR method decreased the substantial positive and negative biases. Consistent with the experiments
from Geurts [50], the ETR method showed a competitive and even superior fusion performance to RF.
This may be due to the ETR method having the advantage of removing the need for the optimization
of the discretization thresholds which leads to its efficient implementation [45]. Therefore, the ETR
strategy can accurately capture the LE variance and exhibits the best prediction performance.
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5.2. Spatial Discrepancy with Global LE Products

Figure 14 shows the mean annual spatial differences between the GLASS LE product and the
fusion LE estimates using ETR from 2002 to 2005. As indicated in Figure 14, relative to the GLASS
LE product, the fusion result yielded lower LE (-15 ~ 10 W/m2) in most southern portions of Europe,
and higher LE (0 ~ 5 W/m2) in northern Europe. This may be caused by insufficient site data and
representation, as well as the characteristics of the ETR algorithm. The discrepancies between the two
LE products were within 15 W/m2 in most portions of Europe.
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Satellite (GLASS) LE product and LE estimates using ETR over Europe from 2002 to 2005.



Remote Sens. 2020, 12, 687 19 of 23

As indicated in Figure 15, when compared with the MODIS LE product (MOD16), the fusion LE
using ETR had lower estimates in central and northeast Europe and higher estimates in most parts of
Spain, Portugal, United Kingdom, and Iceland. This may be caused by land surface heterogeneity and
spatial continuity underrepresentation of MOD16. The difference between the two products was small
and no more than 15 W/m2 in most areas.
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Given the accuracy of the GLASS and MOD16 LE products, we can conclude that the fusion LE
using ETR exhibits a relatively small gap compared with them, and it proved to be reasonable and
reliable for the terrestrial LE estimation using the ETR fusion method over Europe.

5.3. Uncertainties of the Merged LE Estimates

Several studies have shown that the uncertainties in the MERRA meteorology data and
satellite-based observations (e.g., LAI, NDVI, or FPAR), errors in tower EC observations, and
mismatched spatial scales between different data sources, as well as structural differences between
machine learning models all lead to the inaccuracy of LE estimates [8,9].

Firstly, studies showed that there are large biases in the MERRA data and satellite-based vegetation
parameter products when validated by ground measurements at flux tower sites [62,63]. Therefore,
the uncertainty of the satellite-derived LE estimates would be inherited through errors from both the
MERRA and satellite-based data inputs [2]. Secondly, Foken found that large eddies cannot be measured
with the EC method, which leads to the energy imbalance [48]. Although we corrected the measured
LE using the method proposed by Twine [49], the corrections based on the limited understanding of
the nature of the energy imbalance still result in large errors in EC measurements [64]. In addition,
Hui found that gap filling of EC measurements from hourly and half-hourly data to daily averages
also generates uncertainties for LE estimations [65]. Thirdly, the spatial scale mismatch among the
different data sources may have introduced errors into the LE estimations. As a result of the limitation
of the spatial representation of ground observation technology, no effective means exist of evaluating
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spatially distributed regional LE products at scales greater than a few kilometers—particularly over
nonhomogeneous surfaces [66]. Finally, all machine learning methods may fall into local optimization,
which results in a poor generalization performance [35]. Moreover, the fitting performance of the
machine learning methods is also closely dependent on the representativeness of the training data.

6. Conclusions

We applied the Extremely Randomized Trees method to implement the fusion of five
satellite-derived terrestrial LE products (RS-PM, SW, PT-JPL, MS-PT, and SEMI-PM) based on flux
tower observations. By evaluating against ground measurements, we found that there are substantial
uncertainty and discrepancies in the individual LE products.

On the basis of five satellite-derived terrestrial LE products, we trained and validated ETR and
three other machine learning models at 76 EC flux tower sites to compare the model prediction
performance. We found the ETR algorithm achieved the best fusion accuracy with the highest R2

(0.98 and 0.76) and the lowest Bias (0 W/m2 and -0.55 W/m2) and RMSE (4.93 W/m2 and 16.87 W/m2)
for training and validation, respectively. Furthermore, the performance of the ETR fusion method is
significantly superior to the best performance of an individual LE product at the specific site scale.
When compared with moderate spatial resolution satellite-derived global LE products, such as GLASS
and MOD16, the fusion LE using ETR exhibits relatively small spatial differences.

Overall, we conclude that the ETR method improved daily LE estimates over Europe by fusing
five satellite-derived terrestrial LE products driven by MERRA meteorology and MODIS products.
The improved accuracy of the ETR fusion method makes it a reasonable and reliable option for the
estimation of terrestrial LE over Europe.
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