Robust Kalman Filtering Based on Chi-square Increment and Its Application
Abstract
:1. Introduction
2. Methodology
2.1. Gross Error Detection
2.2. Robust Kalman Filtering Based on Chi-Square Increment
2.3. Mathematical Model of CI-RKF in GNSS Positioning
2.4. Mathematical Model of CI-RKF in GNSS/IMU/VO Integrated Positioning
3. Data and Experiments
4. Results and Discussion
4.1. Comparison of Chi-Square Increment Robust Methods
4.2. Comparison of GNSS Positioning Schemes in a Static Experiment
4.3. Comparison of GNSS Positioning Schemes in the Kinematic Experiment
4.4. Integrated Navigation Experiment in an Occluded Urban Area
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Li, B.; Shen, Y.; Gao, Y.; Wang, M.M. Site-Specific Unmodeled Error Mitigation for GNSS Positioning in Urban Environments Using a Real-Time Adaptive Weighting Model. Remote Sens. 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Teunissen, P.J.G. Quality Control in Integrated Navigation Systems. IEEE Aerosp. Electron. Syst. Mag. 1990, 5, 35–41. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J. Adaptive Estimation of Multiple Fading Factors in Kalman Filter for Navigation Applications. GPS Solut. 2008, 12, 273–279. [Google Scholar] [CrossRef]
- Yang, Y. Robust Kalman Filter for Dynamic Systems. J. Pla Inst. Surv. Mapp. 1997, 14, 79–84. [Google Scholar]
- Yang, Y.; Ren, X.; Xu, Y. Main Progress of Adaptively Robust Filter with Applications in Navigation. J. Navig. 2013, 1, 9–15. [Google Scholar]
- Wang, Q.; Xu, T.; Xu, G. Application of Combining Method of Outlier Detection and Robust Estimation to GPS Kinematic Relative Positioning. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 476–480. [Google Scholar]
- Wang, H.; Li, H.; Zhang, W.; Zuo, J.; Wang, H. Derivative-Free Huber-Kalman Smoothing Based on Alternating Minimization. Signal Process. 2019, 163, 115–122. [Google Scholar] [CrossRef]
- Yang, Y.; Song, L.; Xu, T. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights. J. Geod. 2002, 76, 353–358. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, M.; Shum, C.; Tapley, B. Robust Estimation of Systematic Errors of Satellite Laser Range. J. Geod. 1999, 73, 345–349. [Google Scholar] [CrossRef]
- Yang, Y. Robust Bayesian Estimation. J. Geod. 1991, 65, 145–150. [Google Scholar]
- Wu, H.; Chen, S.; Zhang, Y.; Yang, B. Robust Bearings-only Tracking Algorithm Using Structured Total Least Squares-based Kalman Filter. Automatika 2015, 56, 275–280. [Google Scholar] [CrossRef]
- Koch, K.; Yang, Y. Robust Kalman Filter for Rank Deficient Observation Models. J. Geod. 1998, 72, 436–441. [Google Scholar] [CrossRef]
- Brumback, B.; Srinath, M. A Fault-Tolerant Multisensor Navigation System Design. IEEE Trans. Aerosp. Electron. Syst. 1987, 6, 738–755. [Google Scholar] [CrossRef]
- Ren, D. Failure Detection of Dynamical Systems with the State Chi-square Test. J. Guid. Control. Dyn. 1994, 17, 271–277. [Google Scholar]
- Groves, P. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House: Norwood, MA, USA, 2007; pp. 458–459. [Google Scholar]
- He, Y.; Bilgic, A. Iterative Least Squares Method for Global Positioning System. ARS 2011, 9, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhao, C.; Zhang, M.; Sun, P.; Du, X. The Analysis of Adjacent Epoch Error Related Robust Kalman Filtering Algorithm. J. Geo Inf. Sci. 2015, 17, 1506–1510. [Google Scholar]
- Dong, D.; Herring, T.A.; King, R.W. Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data. J. Geod. 1998, 72, 200–214. [Google Scholar] [CrossRef]
- Angrisano, A.; Gioia, C.; Gaglione, S.; del Core, G. GNSS Reliability Testing in Signal-Degraded Scenario. Int. J. Navig. Obs. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Zhang, G.; Wen, W.; Hsu, L. Rectification of GNSS-based Collaborative Positioning Using 3D Building Models in Urban Areas. GPS Solut. 2019, 23, 83. [Google Scholar] [CrossRef]
- Mohamed, A.; Schwarz, K. Adaptive Kalman Filtering for INS/GPS. J. Geod. 1999, 73, 193–203. [Google Scholar] [CrossRef]
- Jo, B.; Baloch, Z. Internet of Things-based Arduino Intelligent Monitoring and Cluster Analysis of Seasonal Variation in Physicochemical Parameters of Jungnangcheon, an Urban Stream. Water 2017, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Hatch, R.; Sharpe, R.; Yang, Y. An Innovative Algorithm for Carrier-Phase Navigation. In Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation, Long Beach, CA, USA, 21–24 September 2004; pp. 1431–1437. [Google Scholar]
- Dag, T.; Arsan, T. Received Signal Strength Based Least Squares Lateration Algorithm for Indoor Localization. Comput. Electr. Eng. 2018, 66, 114–126. [Google Scholar] [CrossRef]
- Brown, R.; Durbin, J.; Evans, J. Techniques for Testing the Constancy of Regression Relationships over Time. J. R. Stat. Soc. 1975, B37, 149–192. [Google Scholar] [CrossRef]
- Belsley, D.; Kuh, E.; Welsch, R. Regression Diagnostics; John Wiley: New York, NY, USA, 1980. [Google Scholar]
- Galpin, J.; Hawkins, D. The Use of Recursive Residuals in Checking Model Fit in Linear Regression. Am. Stat. 1984, 38, 94–105. [Google Scholar]
- Lawrence, R.; Paul, N. The Kalman Filter: An Introduction to the Mathematics of Linear Least Mean Square Recursive Estimation. Int. J. Math. Educ. Sci. Technol. 1986, 17, 347–366. [Google Scholar]
- Kluga, A.; Kluga, J. Dynamic Data Processing with Kalman Filter. Elektron. Elektrotech. 2011, 5, 33–36. [Google Scholar]
- Einicke, G.; White, L. Robust Extended Kalman Filtering. IEEE Signal Process. 1999, 47, 2596–2599. [Google Scholar] [CrossRef]
- Dong, D.; Chen, J.; Wang, J. Principals of GNSS High Precision Positioning; Science Press: Beijing, China, 2018; pp. 243–248. [Google Scholar]
- Xie, Y.; Wang, J.; Liang, Y.; Yu, R. Robust Kalman Filter as a Chemometric Method for Analytical Data Processing. Anal. Chim. Acta 1992, 269, 307–316. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. An Optimal Adaptive Kalman Filter. J. Geod. 2006, 80, 177–183. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X. Adaptive Robust Kalman Filtering for Precise Point Positioning. Meas. Sci. Technol. 2014, 25, 105011. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. A New Learning Statistic for Adaptive Filter Based on Predicted Residuals. Prog. Nat. Sci. 2006, 16, 833–837. [Google Scholar]
- Mehra, R.; Peschon, J. An Innovations Approach to Fault Detection and Diagnosis in Dynamic Systems. Automatica 1971, 7, 637–640. [Google Scholar] [CrossRef]
- Ding, W.; Wang, J.; Rizos, C.; Kinlyside, D. Improving Adaptive Kalman Estimation in GPS/INS Integration. J. Navig. 2007, 60, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; He, H.; Xu, G. Adaptively Robust Filtering for Kinematic Geodetic Positioning. J. Geod. 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Huang, J.; Liu, P.; Lu, M.; Xu, B.; Rao, Z.; Wan, Y.; Lu, C.; Zhang, H. Minimum Mean Square Error Estimator for Mobile Location Using the Pseudo-Range TOA Measurements; ICISMME: Chongqing, China, 2015; p. 6. [Google Scholar]
- RTKLIB: An Open Source Program Package for GNSS Positioning. Available online: http://www.rtklib.com/ (accessed on 23 January 2017).
- Cheng, C.; Tourneret, J.; Quan, P.; Vincent, C. Detecting, Estimating and Correcting Multipath Biases Affecting GNSS Signals Using a Marginalized Likelihood Ratio-based Method. Signal Process. 2015, 118, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Chun, T.; Guo, N.; Backen, S.; Akos, D. Monocular Camera/IMU/GNSS Integration for Ground Vehicle Navigation in Challenging GNSS Environments. Sensors 2012, 12, 3162–3185. [Google Scholar]
- Caron, F.; Duflos, E.; Pomorski, D.; Vanheeghe, P. GPS/IMU Data Fusion Using Multisensor Kalman Filtering: Introduction of Contextual Aspects. Inf. Fusion 2006, 7, 221–230. [Google Scholar] [CrossRef]
- Davison, A.; Reid, I.; Molton, N.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Pattern Anal. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [Green Version]
- David, N.; Naroditsky, O.; Bergen, J. Visual Odometry for Ground Vehicle Applications. J. Field Robot. 2006, 23, 3–20. [Google Scholar]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Location and Mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Luan, Y.; Fan, L. Research on GPS/INS Integrated Navigation system. Microcomput. Inf. 2009, 34, 203–204. [Google Scholar]
- Liu, Y.; Chen, Z.; Zheng, W.; Wang, H.; Liu, J. Monocular Visual-Inertial Slam: Continuous Preintegration and Reliable Initialization. Sensors 2017, 17, 2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lyou, J.; Kwak, H. Vision Coupled GPS/INS Scheme for Helicopter Navigation. J. Mech. Sci. Technol. 2010, 24, 489–496. [Google Scholar] [CrossRef]
- Liu, F. Tightly Coupled Integration of GNSS/INS/Stereo Vision/Map Matching System for Land Vehicle Navigation; UCGE Report; University of Calgary: Calgary, AB, Canada, 2018. [Google Scholar]
- Liu, Y.; Fan, X.; Chen, L.; WU, J.; Li, L.; Ding, D. An Innovative Information Fusion Method with Adaptive Kalman Filter for Integrated INS/GPS Navigation of Autonomous Vehicles. Mech. Syst. Signal Process. 2018, 100, 605–616. [Google Scholar] [CrossRef] [Green Version]
- NSL. Launches a New Free Android App as Part of FLAMINGO—Discover rinexON. Available online: https://www.flamingognss.com/rinexon (accessed on 10 September 2018).
- Groves, P. Shadow Matching: A new GNSS Positioning Technique for Urban Canyons. J. Navig. 2011, 64, 417–430. [Google Scholar] [CrossRef]
- Betaille, D.; Peyret, F.; Ortiz, M.; Miquel, S.; Fontenay, L. A new Modeling Based on Urban trenched to Improve GNSS positioning Quality of Service in Cities. IEEE Intell. Transp. Syst. Mag. 2013, 5, 59–70. [Google Scholar] [CrossRef]
Direction | Position Error (m) | Improve (%) | |||
---|---|---|---|---|---|
CKF | PRS-IGG-RKF | CI-RKF | PRS-IGG-RKF | CI-RKF | |
East | −3.012 | −2.830 | −2.147 | 6.04 | 28.72 |
North | 1.305 | 0.762 | −0.053 | 41.61 | 95.94 |
Up | 3.226 | 2.472 | 0.135 | 23.37 | 95.82 |
Position Error (m) | Improve (%) | |||||
---|---|---|---|---|---|---|
CKF | PRS-IGG-RKF | CI-RKF | PRS-IGG-RKF | CI-RKF | ||
Overall | East | 2.334 | 1.659 | 1.372 | 28.92 | 41.22 |
North | 2.860 | 1.511 | 1.297 | 47.15 | 54.65 | |
Up | 4.547 | 4.435 | 3.701 | 2.46 | 18.61 | |
Shelter Zones | East | 3.585 | 2.390 | 1.956 | 33.33 | 45.44 |
North | 3.888 | 2.024 | 1.675 | 47.94 | 56.93 | |
Up | 6.428 | 3.311 | 3.687 | 48.50 | 42.64 |
Position Error (m) | Improve (%) | |||||
---|---|---|---|---|---|---|
Fusion | Robust Fusion 1 | Robust Fusion 2 | Robust Fusion 1 | Robust Fusion 2 | ||
Shelter Zone 1 | East | 4.939 | 2.889 | 1.643 | 41.51 | 66.73 |
North | 2.029 | 1.442 | 0.820 | 28.93 | 59.59 | |
Up | 2.365 | 1.680 | 0.955 | 28.96 | 59.62 | |
Shelter Zone 2 | East | 25.782 | 16.030 | 14.944 | 37.85 | 42.04 |
North | 12.946 | 6.094 | 5.303 | 52.93 | 59.04 | |
Up | 15.089 | 9.615 | 7.181 | 36.28 | 52.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Chen, W.; Peng, Y.; Dong, D.; Wang, Z.; Xiao, T.; Yu, C.; Liu, M. Robust Kalman Filtering Based on Chi-square Increment and Its Application. Remote Sens. 2020, 12, 732. https://doi.org/10.3390/rs12040732
Li B, Chen W, Peng Y, Dong D, Wang Z, Xiao T, Yu C, Liu M. Robust Kalman Filtering Based on Chi-square Increment and Its Application. Remote Sensing. 2020; 12(4):732. https://doi.org/10.3390/rs12040732
Chicago/Turabian StyleLi, Bo, Wen Chen, Yu Peng, Danan Dong, Zhiren Wang, Tingting Xiao, Chao Yu, and Min Liu. 2020. "Robust Kalman Filtering Based on Chi-square Increment and Its Application" Remote Sensing 12, no. 4: 732. https://doi.org/10.3390/rs12040732
APA StyleLi, B., Chen, W., Peng, Y., Dong, D., Wang, Z., Xiao, T., Yu, C., & Liu, M. (2020). Robust Kalman Filtering Based on Chi-square Increment and Its Application. Remote Sensing, 12(4), 732. https://doi.org/10.3390/rs12040732