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Abstract: Within the context of precision agriculture, goods insurance, public subsidies, fire damage
assessment, etc., accurate knowledge about the plant population in crops represents valuable
information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an
alternative to traditional plant counting methods, which are laborious, time demanding and prone
to human error. Hence, a methodology for the automated detection, geolocation and counting of
crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by
UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means
of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the
elevation information contained in it and eventually identify the plants, the cloud is deterministically
interpolated, and subsequently transformed into a greyscale image. This image is processed, by
using mathematical morphology techniques, in such a way that the absolute height of the trees
with respect to their local surroundings is exploited to segment the tree pixel-regions, by global
statistical thresholding binarization. This approach makes the segmentation process robust against
surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights
lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment
representation-based algorithm to estimate the location of the trees. The methodology was tested
in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant
density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree
aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding,
it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly
identifying and geolocating 3906 plants. The generated 3D point cloud reported root-mean square
errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results
support the viability and robustness of this methodology as a phenotyping solution for the automated
plant counting and geolocation in olive orchards.

Keywords: aerial imagery; image analysis; multispectral imagery; crop tree; phenotyping; plant
population; UAV

1. Introduction

Currently, global food demands entail one of the most challenging problems addressed by society.
Indeed, as a consequence of the population growth expectations, the demand for crop production
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is estimated to increase on the order of 100% in 2050, when compared to 2005 reports [1]. This
scenario forces society to develop agricultural and food systems prone to proactively satisfy such a
demand while being capable of minimizing the environmental impact. In this sense, crop phenotyping
constitutes a crucial tool in order to achieve this balance.

Indeed, deep knowledge about observable crop trails and the way the genotype of plants expresses
in relationship with the environmental factors comprise a relevant and valuable information for
farmers [2]. Within this context, individual plant counting is a key factor, not only regarding to crop
phenotyping, but also providing valuable information, supporting farmers when planning breeding
strategies and another agricultural tasks. Thus, the plant population determines the crop density,
defined as the number of plants per cultivated hectare. This statistic is closely related to different aspects,
such as the efficiency of water and fertilizer resources, or pathogen susceptibility [3]. In addition,
it plays a key role when estimating crop yield in tree-based cultivation, and it helps farmers when
designing watering and/or fertilization schemes [4]. The importance of the plant population does not
stop here, as it is a significant indicator when applying for public subsidies [5], pricing plantations [6],
or assessing losses after any kind of extraordinary event, such as fire damage, pest infestations or
other natural disasters. However, traditional counting methods are usually based on in-field human
visual inspections, so as happens with other phenotyping activities [7,8], it implies tedious, time
consuming and prone-to-error tasks, especially when it comes to large-scale plantations [3]. Due to
these difficulties, there is a pressing need for the development of new techniques aimed at carrying out
plant counting in an accurate, efficient and automated way.

Nowadays, Unmanned Aerial Vehicles (UAVs) have popularised as part of the remote sensing
technologies incorporated into precision agriculture, and they have become widely used in crop
phenotyping research [9,10]. This is mostly due to the advantages they offer over traditional aerial
imaging systems already tested within this application, such as those based on manned airplanes or
satellites. When compared to them, UAV-based imaging implies lower operational costs, less weather
constraints and the possibility of operating under cloudy conditions [9,11–13]. Furthermore, the growth
that the market related to UAVs and remote sensing equipment is experiencing nowadays makes this
technology increasingly accessible and affordable. Hence, they are definitely promising tools within the
scope of smart farming and precision agriculture, with potential uses in crop phenotyping tasks [9,14].

In fact, when focusing on plant detection and counting, a considerable amount of research where
crop tree identification is realised from UAV-based imagery can be found already. Images acquired are
usually processed, generating representative data structures of the study sites which are subsequently
analysed in order to detect and count the plants. Hence, Malek et al. [5] approached palm tree detection,
by analysing a set of candidates, previously computed using the scale-invariant feature transform
(SIFT), with an extreme learning machine (ELM) classifier. Candidates categorised as trees were
post-processed by means of a contour method based on level sets (LS) and local binary patters (LBP), in
order to identify the shapes of their crowns. In Miserque-Castillo et al. [15], a framework for counting
oil palms was developed, where a sliding window-based technique procured a set of candidates.
After processing with LBP, they were classified by a logistic regression model. Primicerio et al. [16]
studied plant detection within vine rows. The segmentation of the plant mass was carried out on
the basis of dynamic segmentation, Hough space clustering and total least squares regression. After
individual plant identifications were estimated, a multi-logistic model for the detection of missing
plants was applied. Jiang et al. [17] introduced a GPU-accelerated scale-space filtering methodology
for detecting papaya and lemon trees in UAV images. To that end, initial captures were converted to a
Lab-based colour space, mostly exploiting the information contained in the channel a (representative
of the colour values from red to green) to differentiate the plants from the ground. Koc-San et al. [18]
undertook citrus trees location and counting from UAV multispectral imagery. To that end, they
proposed a set of procedures based on sequential thresholding and the Hough transform. In the
same vein, Csillik et al. [19] focused on citrus crops, intending the identification of trees by using
convolutional neural networks (CNNs). In addition, they used a simple linear iterative clustering (SLIC)
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algorithm for classification refinement. CNNs were also used by Ampatzidis and Partel [20] in order
to detect citrus trees. Specifically, the CNN model was trained by using a YOLOv3 object detection
algorithm. Furthermore, they implemented a normalised difference vegetation index (NDVI)-based
image segmentation method for estimating the canopy area. In Selim et al. [21], approached orange
tree detection from high-resolution images, by applying an object-based classification methodology,
using a multi-resolution segmentation of the data derived from aerial imagery. Deep learning and
CNN technology was exploited by Aparna et al. [4]. In this case, coconut palm tree detection was the
aim. Initial captures were transformed into an HSV colour representation, and then binarized and
conveniently cropped in sub-images, with which the CNN classifier was trained. In Kestur et al. [22],
an ELM methodology was proposed for detecting tree crowns from aerial images captured in the
visible spectrum. Thus, the developed ELM spectral classifier was applied in order to segment the tree
crowns-pixel areas from the rest of the image. The methodology was validated by studying banana,
mango and coconut palm trees. Marques et al. [23] focused on the detection of chestnut trees. They
considered different kinds of sensorics for acquiring aerial images. Thus, RGB and Colour Infrared
(CIR) images were used in their research, where different segmentation techniques were explored
in order to properly isolate the tree-belonging pixel-regions to subsequently carry out the eventual
identification of the trees.

Regarding olive plantations, which constitute the study case considered throughout the
experimentation developed here, several studies where olive tree phenotyping is approached by using
UAV-based aerial imagery can be found. Thus, Díaz-Varela et al. [24] attempted the estimation of the
height and crown diameter of olive trees by means of structure-from-motion (SfM) image reconstruction
and geographical object-based image analysis (GEOBIA). Along the same line, Torres-Sánchez et al. [25]
also proposed a methodology for the estimation of different olive tree features. Particularly, height,
crown volume and canopy area were addressed. This was accomplished by generating digital surface
models (DSMs) from aerial imagery, and object-based image analysis (OBIA). This study was extended
in [26], where different flight altitudes and overlapping degrees were tested in order to optimise
the DSM generation, in terms of computational cost. In Salamí et al. [6], olive trees counting was
approached by using a UAV equipped with a small embedded computer. This device was aimed
at processing captures on board, and to provide via cloud services, nearly real-time plant count
estimations to the end-user.

In this paper, a new methodology for the identification of crop trees located in intensive
farming-based orchards, by means of the analysis of aerial images, is proposed. To that end, we start
from a set of aerial captures acquired by a UAV equipped with a multispectral camera while flying over
the land plot under study. These multispectral images are processed in order to yield a DSM, following
standard image matching and photogrammetry techniques. The core of the novel proposal of the
methodology is comprised by an image analysis-based algorithm, aimed at identifying the trees by
exploiting the elevation information contained in this data structure. To that end, the DSM is converted
into as a greyscale image, where elevation information is approached as grey level values. Then,
this image is transformed by means of mathematical morphology, in order to individually segment
the tree-belonging pixels from the ground, by a statistical global thresholding-based binarization.
Eventually, that resulting segmentation is analysed by an ad-hoc procedure to detect intra-row tree
aggregations, consisting in studying the second central moment of the tree pixel-regions. The whole
methodology was tested in an intensive olive orchard, obtaining results that highlight its effectiveness
as a full-automated solution for crop trees detection and counting, and its robustness against complex
scenarios, as intra-row tree aggregations and a strong ground elevation variability were present in the
study plot.

Hereafter, the present manuscript is structured as follows: Section 2 focuses on the experimental
design. Thus, Section 2.1 describes the characteristics of the olive orchard in which, as study case, images
were acquired for the purpose of testing the methodology. Section 2.2 exposes all the aspects related
to how aerial image acquisition was performed. In Section 2.3, the image analysis methodology for
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trees detection, counting and geolocation is developed, addressing the stages of image pre-processing
(Section 2.3.1), the generation of a DSM as a base data structure (Section 2.3.2), and the image
segmentation and analysis (Sections 2.3.3 and 2.3.4, respectively). Then, in Section 2.4, the set of metrics
computed to assess the performance of the methodology is proposed. Section 3 presents the results
obtained, which are then discussed in Section 4. Section 5 concludes the manuscript, giving a brief
summary of the main findings achieved and identifying aspects that might be approached in further
investigations. Finally, Appendix A formally defines all the morphological operators used throughout
the developed image analysis methodology.

2. Materials and Methods

2.1. Study Case Site

The olive grove where the testing aerial imagery was acquired is located in Gibraleón, province of
Huelva (Andalusia, Southwest Spain). In particular, the area under study, centred in the coordinates
7◦02′48.44′′W and 37◦20′39.80′′N, corresponds to an orchard with an approximate extent of 17.5 ha,
where an intensive cultivation system is applied, with a plant spacing pattern of 5.5 × 7 m; the Olea
europaea L. cultivated variety is Picual. It should be noted that this orchard shows a notable variability
in terms of soil composition, crown size of the trees and altitude, varying from around 54 m to around
96 m above sea level. A third-party aerial capture of the study site, obtained by manned flight-based
imaging, is shown in Figure 1. It should be underscored that this third-party image is only offered for
the purpose of illustrating the study plot, so it was not used at all throughout the experimentation.

Figure 1. Third-party aerial capture of the case study site shown to illustrate the study plot, highlighted
in red.

2.2. Image Acquisition

2.2.1. Aerial Imaging Equipment

Aerial imaging was conducted using a DJITM Matrice 100 UAV (SZ DJITM Technology Co., Ltd.,
Shenzhen, Guangdong, China). This device is propelled by four rotors (quadcopter), enabling its
vertical take-off and landing. With a diagonal wheelbase of 650 mm and a maximum take-off weight of
3600 g, it can reach a maximum cruise speed of 22 m/s, withstanding a wind resistance up to 10 m/s. It
is controlled in an operating frequency varying from 5725 to 5825 GHz, with a maximum transmission
distance of 5 km.

Images were taken with the multispectral camera MicaSense RedEdge-MTM (MicaSense, Inc.,
Seattle, WA, USA), installed on the UAV. This sensing device is capable of capturing information in
five different spectral bands within the visible and the infrared spectrum. Table 1 summarises the most
relevant features related to these bands.
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Table 1. Features of the spectral bands captured by the multispectral camera MicaSense RedEdge-MTM.

Band Number Band Name Centre Wavelength (nm) Bandwidth (nm)
1 Blue 475 20
2 Green 560 20
3 Red 668 10
4 Near Infrared 840 40
5 Red Edge 717 10

The camera was mounted together with a dedicated GPS device for the purpose of georeferencing
each captured image. A downwelling light sensor (DLS) was also included into the setup, in order to
calibrate the images according to the changing conditions of ambient light. Finally, for accurate ground
reflectance calibration, a reference board (grey reference) was used by imaging it during both the
take-off and landing. In Figure 2, the UAV is shown together with all the equipment described above.

Figure 2. Equipment used to capture the aerial imagery used in this paper.

2.2.2. Flight Planning and Development

The flight mission planning was set with the DJITM Flight Planner software, by drawing the
polygon delimiting the study plot (highlighted in red in Figure 1). Within the study plot, the mission
was planned according to the criterion of minimising the number of turns to be made by the UAV
to cover it entirely. Thus, the flight was configured to be performed autonomously, at an altitude of
70 m and at a cruise speed of 15 km/h. The multispectral camera was configured with a time period
between captures of 1.5 s. With these settings, it was intended to capture images with forward and
lateral overlaps of 85% and 65% respectively, and with a desired GSD of 0.05 m/pixel. The flight took
place on June 13, 2019, approximately between 11 a.m. and 1 p.m. Litchi software (VC Technology, Ltd.
©, London, UK) was used for operating and monitoring the mission. A total of 44,325 images were
acquired during the flight, 8865 per each of the five spectral bands in which the multispectral camera
can capture information.

2.3. Image Analysis Methodology for Olive Trees Detection, Geolocation and Counting

The main objective pursued in this investigation is the development of a procedure able to perform
olive tree detection, location and counting from aerial captures by means of image analysis. To that
end, a methodology has been designed under those principles to, first, transform images acquired
into a DSM, as a representative data structure of the whole orchard under study; and then, to exploit
the information contained in it in order to carry out a binary segmentation, in which tree-belonging
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pixels could be differentiated from the rest of the image. Eventually, the result of this segmentation is
analysed to detect intra-row aggregations, thus finally yielding the individual tree locations and the
accurate plant population estimation. The flowchart shown in Figure 3 illustrates the different stages
comprising the developed methodology, which are deeply detailed throughout the next subsections.

Figure 3. Representative diagram of the methodology proposed for detecting and counting crop trees
from multispectral aerial images.

For simplicity purposes, all morphological operators involved in the methodology described
throughout this section, are formally defined in Appendix A.

2.3.1. Image Pre-Processing

As a first step, captures obtained by aerial imaging are radiometrically corrected using the
illumination information provided by the camera’s DLS sensor and the reflectance measured in
the images captured of the reference board. Then, the corrected images are processed to yield the
orthomosaics corresponding to each of the five spectral bands considered. In Figure 4, a colour image
resulting from the combination of the blue, near infrared (NIR) and red edge bands is presented. It
should be underlined that this ad-hoc image was exclusively generated for the purpose of supporting
the assessment of the methodology’s performance by a human observer, as detailed in Section 2.4.
Therefore, they were chosen so as to obtain a proper visual tree differentiation, being other combinations
of bands surely also suitable for this purpose.
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Figure 4. Colour image generated from the information provided by the orthomosaics of the Blue, Red
Edge and NIR spectral bands.

In addition, a 3D point cloud is generated as well, to later develop the representative DSM of the
overflown land plot. To that end, every point in the cloud is determined by its re-projection in at least
three images; then, it is characterised with a triplet of coordinates, where the two first ones determine
its relative location within the cloud and the third one refers to its elevation. Thus, a high-density 3D
point cloud with a total number of 205,998,922 points is reached.

The task of creating both the set of orthomosaics and the 3D point cloud was carried out using the
photogrammetry Pix4DTM Mapper software. As representative indicators of the errors committed
during the pre-processing stage, the software reported root-mean square errors (RMSE) in the X, Y and
Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. Note that these errors do not correspond to the
quality of the point cloud, but to the error between the initial and the computed image positions.

2.3.2. Digital Surface Model (DSM)

The DSM is generated by deterministic spatial analysis, from the 3D point cloud yielded above,
by applying an inverse distance weighting (IDW) interpolation [27]. According to this method, the
attribute value (the elevation in this case) of an unsampled point is decided from the attribute value of
its surrounding known points. The influence of the known sampled points decreases as their distance
from the targeted point increase, so the unsampled point value is computed on the basis of the attribute
values of the surrounding points observations, inversely weighted according to their distance. So,
being S0 a targeted point, its interpolation value Ẑ(S0) can be mathematically defined as follows:

Ẑ(S0) =
∑N

i=1
λiZ(Si). (1)

where Z(Si) is the observed value for the i-th surrounding point Si of N points; λi is the weight assigned
to Si, according to its distance di0 to S0. Hence, λi can be defined as follow:

λi =
d−p

i0∑N
i=1 d−p

i0

(2)

where p is a weighting exponent that controls the way in which weight decreases with distance; the
weights λi vary between 0 and 1 for each point and the total sum of them is the unit:

∑N
i=1 λi = 1.

For computing the DSM using this IDW spatial interpolation, ArcGisTM 10.3 (Esri, Inc., Redlands,
CA, USA) and its Geostatistical Analyst Tools extension were used. The size of the cell was matched to
the cell size of the orthomosaics computed before. In the same vain, interpolation output raster was
also restricted by the dimensions of these orthomosaics. In addition, it should be noted that, during
the analysis, it was stablished a fixed neighbourhood search, using a circular radius distance of 10 m
and a maximum number of neighbourhood points of 4, with a weighting exponent p of 2.
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2.3.3. Image Segmentation Algorithm

The DSM, obtained after processing the initial aerial captures, is used as fundamental data to
eventually perform crop trees detection and the subsequent location and counting. Every voxel (3D
pixel) in the DSM is defined by its x and y position within the map, and its altitude with respect to the
sea level. This altitude information is exploited in such a way that trees are segmented by considering
their absolute height with respect to their local neighbourhood.

First, the DSM is approached as a 2D greyscale image by taking the voxels’ elevation information
as the intensity values of their corresponding pixels in this greyscale image. Thus, given DSM as the
representative matrix of the DMS previously computed, the intensity matrix, GSDSM, which approaches
this model as an 8-bit greyscale image, can be defined as follows:

GSDMS(x, y) =
{

DSM(x, y), if DSM(x, y) > 0
0, in any other case

. (3)

where DSM(x, y) is the elevation value with respect to the sea level provided by the DSM for the point
(x, y). Figure 5 shows a representation of the DSM as a greyscale image.

Figure 5. Representation of the computed DSM as the intensity image GSDSM. Note in the zoomed
area, highlighted in the red square, the differences in terms of grey level between those pixel regions
which apparently belong to olive trees, and those from the surrounding ground. Then, given that each
pixel intensity value is assigned according to its elevation in the DSM, higher pixel values indicate
higher altitudes with respect to the sea level. It should be noted that, for the sake of facilitating its
visualisation, the image display range has been established between the minimum bigger-than-zero
value from the DMS, and its maximum.

Once this greyscale image is obtained, a filling operation is performed to homogenise the grey
level values of the tree crowns which, in some cases, showed darker areas potentially related to hollows
in the foliage. Mathematically, it can be defined from a morphological reconstruction as follows:

IGS1 = RεGSDMS
(GS′DMS),

GS′DMS(x, y) =

GSDMS, if (x, y) is a border pixel

255, in any other case
.

(4)

where GS′DMS is a border image of GSDMS, and Rε refers to the morphological reconstruction by erosion
(ε) of GSDMS from marker GS′DMS until idempotence. Figure 6 shows the effect of this operation on
the zoomed area of Figure 5.
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Figure 6. Filling gaps illustration: (a) same zoomed area of GSDMS shown in Figure 5; (b) result of the
filling gaps operation applied to (a).

Afterwards, a homogenisation of the grey level values of IGS1 is performed aimed at favouring
its later optimum binarization. Since IGS1 directly derives from the DSM, its pixel values represent
altitude magnitudes expressed in meters with respect to the sea level. Consequently, disturbing cases
when binarizing may appear, such as that in which ground pixels have higher grey level values
than those of tree pixels (when the former are at higher altitudes than the latter). Hence, in order
to avoid this difficulty, IGS1 is homogenised by subtracting from it an accurate background estimate.
This is calculated by iteratively opening IGS1 with a circular structuring element of increasing radius,
taking at each step the minimum value between the opening results at the i-th and the i-1-th iteration.
Mathematically:

IBEDEF = IBEn ,
being

IBEi =

 IGS1, if i = 0
MIN

(
IBEi−1 ,γβi

(
IBEi−1

))
in any other case

,

i = 1, . . . , n.

(5)

where γβi is the morphological opening operation using a disc-shaped structuring element β of radius
i × 5. For a given tree crown in the image, its optimum filtering takes place when its grey level
values are substituted with the minimum value existing in its closest background neighbourhood. It
happens when the opening operation is performed using a structuring element with the minimum
radius allowing the element to completely contain the tree crown. Therefore, note that the formulated
approach provides a flexible framework favouring the accurate filtering of every tree independently
from its size. The number of iterations has been fixed to n = 14, which corresponded to a maximum
radius value of the structuring element equal to 70. This value has been set to ensure the accurate
filtering of the greater trees, being adaptable to different image capturing conditions deriving in other
maximum tree crown sizes. Once IBEDEF is computed, the homogenisation of IGS1 is obtained by:

IGS2= IGS1 − IBEDEF . (6)

Figure 7 illustrates the described process to yield a homogenised version of IGS1. At this point,
IGS2 is a homogenised image in which its grey level values represent absolute altitudes. In other
words, the previous processing made the effect of ideally flattening the original surface and placing
its background at the sea level. In this context, tree crowns are the elements expected to be at higher
levels, so the next processing is intended for removing from the image irrelevant maxima, which were
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considered to be those pixels with altitude values lower or equal than 1 m. This effect is achieved by
applying the H-maxima transform to image IGS2:

IGS3 = HMAXh(IGS2) = RδIGS2
(IGS2 − h), h = 1. (7)

where Rδ refers to the morphological reconstruction by dilation (δ) of IGS2 from marker IGS2 − h. In this
case, artefacts with elevation values greater than 1 m were retained for being of interest; note that this
criterion can be easily modified by adjusting the h parameter.

Figure 7. (a) Greyscale image IGS1 resulting from filling gaps in the image shown in Figure 5, GSDMS;
(b) background estimation of (a), IBEDEF ; (c) resulting image IGS2 after subtracting (b) to (a).

Next, the elements surviving the previous filtering by height are segmented by binarizing image
IGS3 using the Otsu’s method [28]. This approach assumes that the population of grey level values of
the image is made up of two dominant groups or classes, corresponding to the foreground and the
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background pixels, respectively. Hence, it determines the grey value maximising the separability of
both classes, which results in the greater median distance between them, or analogously, the minimum
intra-class variance. Therefore, given the threshold thresh resulting from applying the Otsu’s method
to image IGS3, its binarization can be defined as follows:

IBIN1(x, y) =
{

255, if IGS3(x, y) > thresh
0, in any other case

. (8)

Figure 8 illustrates IBIN1, resulting from the binarization of image IGS3, shown in Figure 7c.

Figure 8. Image IBIN1 resulting from the binarization of IGS3, shown in Figure 6c. Note in the zoomed
area, in the red square, how potential plants have been accurately segmented from the background.

As a result of this binarization, image pixels are segmented into two classes, background (black
pixels) and foreground (white pixels); this latter being potentially formed by pixels belonging to olive
trees. Next, in order to remove the spurious connected components (set of neighbour foreground
pixels) abnormally small, a morphological opening is applied on the binary image IBIN1:

IBIN2 = γβ(IBIN1). (9)

where γβ stands for the morphological opening performed by using a disk-shaped structuring element
β of 5 pixels in radius. To exactly recover the shape of the connected components surviving to this
noise filtering, IBIN1 is morphologically reconstructed by dilation (Rδ) from marker IBIN2, which leads
to IBIN3:

IBIN3 = RδIBIN1
(IBIN2). (10)

After noise removal, the polygon drawn to delimit the region of interest (ROI) for flight planning
(Section 2.2.2) is used as a mask image, IROI, to constrain the area of interest within the image for the
rest of the analysis. Figure 9 illustrates IROI, together with the result of its application to IBIN3, which
can be mathematically formulated as:

IBINdef(x, y) =
{

IBIN3(x, y), if IROI(x, y) > 0
0 in any other case

. (11)
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Figure 9. (a) ROI mask image IROI; (b) image IBINdef resulting from filtering the binary image IBIN3

(visually very similar to IBIN3, shown in Figure 8), with image IROI.

2.3.4. Image Analysis Algorithm for Tree Counting and for the Estimation of Tree Locations

As it can be seen in Figure 9, IBINdef provides a segmentation of the olive trees from the background.
A first approach to count the number of plants might just consider the number of connected components
in that binary image. Nevertheless, the possibility of existing connected components not exactly
corresponding to a sole olive tree has to be considered. Indeed, because of the variability in terms of
crown size shown by the trees of the plot under study, their foliage may appear overlapped within the
same row, thus resulting in wrongly merged connected components in the binary image; overlapping
of tree crowns from different rows is not expected as it is prevented by pruning; Figure 10 illustrates
this phenomenon. Therefore, the image analysis procedure described below has been developed
intended to accurately provide plant population, despite intra-row tree aggregations.

Figure 10. (a) Sub-image of the study plot orthomosaic represented in Figure 4, where it can be
observed a couple of trees with overlapping foliage; (b) sub-image of the binary image resulted from
the segmentation performed, IBINdef, corresponding to the area represented in (a). Note how the two
olive trees share the same connected component.
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The procedure is based on analysing the morphology of the segmented connected components
of IBINde f , in order to determine the estimated number of trees contained in them. To that end, the
components of the binary image are firstly approached with the ellipses that share the same normalised
second central moment [29]. Thus, for a given connected component cci, its representing ellipse Ei is
defined by the following set of elements:

Ei =
{
cxEi, cyEi, d1Ei, d2Ei,αEi

}
. (12)

being cxEi and cyEi the coordinates of its centre, d1Ei and d2Ei the length in pixels of its two axes and
αEi the angle formed by its longer axis and a horizontal imaginary axis. Consequently, the length of
the major and minor axes of the ellipse can be defined as:

MajAx(cci) = MAX{d1Ei, d2Ei},
MinAx(cci) = MIN{d1Ei, d2Ei}.

(13)

As can be seen in Figure 11, whilst the minor axes keep comparable length values throughout
the whole population of ellipses, regardless of the number of plants contained in the corresponding
components, the length of the major axes show a strong dependence with this number. To exploit this
feature, next, the maximum length value of all the computed minor axes was calculated as a reference
to subsequently be used throughout the rest of the analysis. Thus:

MAXMinAX = MAX
{
MinAx(cci)

}
. (14)

Figure 11. (a) Sub-image of the study plot orthomosaic represented in Figure 4; (b) sub-image of the
binary image resulted from the segmentation performed, corresponding to the area represented in (a);
(c) representation of the ellipses (in red) computed for each connected component in the image (b),
with their corresponding major (in blue) and minor (in green) axes.

Then, counting of trees was conducted by comparing MAXMinAX to the length of the major axis of
each connected component cci, by computing:

TreeNumber(cci) =

{
1, if MajAx(cci) ≤MAXMinAX × 1.20
~MajAx(cci)/MAXMinAX�, in any other case

. (15)

As the shapes of tree crowns are irregular, the MAXMinAX value, computed on the population
of minor axes, might be slightly lower than the length of the major axis of an eventual connected
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component representing a sole tree. Additionally, we note that tree spacing in agricultural plantations,
such as that considered in this study, is ideally regular, so the potential for overlapping trees are greater.
Therefore, as Equation (15) shows, increasing MAXMinAX by 20% provides flexibility to the former
situation while it respects the latter assumption, as the aggregation of great tree crowns is not expected
to enlarge the resulting object by only a 20%. The concrete value has been decided empirically, being
not critical, as values moderately higher and lower were also found to provide comparable results.
Finally, once the number of plants per connected component is estimated, the total number of trees is
calculated by the addition of these partial results:

TotalTreePopulation =
∑n

i=1
TreeNumber(cci), (16)

being n the number of connected components.
Finally, once trees are counted, a representative location for each of them within the image is

attempted. Hence, the following definition was established:

TreeLocationcci =

(xi j, yi j
)∣∣∣∣∣∣ (xi1, yi1) =

(
cxEi, cyEi

)
, TreeNumber(cci) = 1∨

(xik, yik), TreeNumber(cci) = t, k = 1, . . . , t

. (17)

This is, for a given connected component cci containing a sole tree, the location of the latter
is decided as the location of the centre of the ellipse Ei representing the former. Conversely, for
aggregated components, the location of the contained multiples trees is estimated by equally spacing
them throughout the major axis of its representing ellipse, taking as reference the centre of this last.
With this approach, two situations must be considered. The first case refers to when cci contains an odd
number of trees. In this scenario, the location of the central tree matches with the centre of its ellipse,
being the resting locations estimated by displacements to the left and to the right of this reference.
Mathematically:

xik =


cxEi + k× jumpi × cos(αEi + π), i f k < t/2

cxEi, i f k = t/2
cxEi + (k− t/2) × jumpi × cos(αEi), i f k > t/2

,

yik =


cyEi + k× jumpi × sin(αEi + π), i f k < t/2

cyEi, i f k = t/2
cyEi + (k− t/2) × jumpi × sin(αEi), i f k > t/2

,

k = 1, . . . , t, t = TreeNumber(cci),
jumpi = MajAx(cci)/(t + 1).

(18)

where jumpi represents the magnitude of the displacements among the estimated tree centres. Note
that the first case models the estimated locations placed at the left of the central tree, the third case
models those placed at the right, and the second one defines the case of the central tree. The second
scenario occurs when cci contains an even number of trees. For this case, the centre of its representing
ellipse does not match with the expected centre of a tree, but with the overlapping zone of two of them.
Hence, this location is not assigned to any tree, but it is only taken as a reference:

xik =

{
cxEi + (k− 0.5) × jumpi × cos(αEi + π), i f k ≤ t/2

cxEi + (k− t/2− 0.5) × jumpi × cos(αEi), i f k > t/2
,

yik

{
cyEi + (k− 0.5) × jumpi × sin(αEi + π), i f k ≤ t/2

cyEi + (k− t/2− 0.5) × jumpi × sin(αEi), i f k > t/2
,

k = 1, . . . , t, t = TreeNumber(cci),
jumpi = MajAx(cci)/(t + 1).

(19)

The first case models the estimated locations at the left of the centre of the ellipse Ei, while the
second case models those placed at its right. Figure 12 graphically describes the formulated procedure
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to estimate tree locations. In Figure 13, the result of computing the tree potential location points is
illustrated. The yielded locations are marked in red in the binary sub-image shown in Figure 11.

Figure 12. Illustration of the process to estimate a representative location for aggregated trees,
formulated in Equations (17)–(19). Examples for odd (a) and even (b) number of aggregated trees
are given.

Figure 13. Result of the estimation of the individual tree location points.

2.4. Performance Evaluation of the Image Analysis Methodology

In order to assess the performance of the methodology proposed, it was firstly necessary to locate
and determine the exact number of olive trees in the land plot under study. This was carried out
by a human observer, by inspecting, labelling and counting the tree crowns appearing in the ad-hoc
orthomosaic of the study site proposed in Figure 4.

The performance assessment of the methodology was approached by comparing the actual
number of plants, and their distribution, to the estimations yielded by the image analysis algorithm.

In order to quantitatively evaluate this comparison, the set of metrics defined here below
are proposed:

• Precision: it gives the hit ratio for the trees found by the algorithm. Mathematically:

Precision =
TP

TP + FP
. (20)

where TP (true positives) is the number of trees correctly identified, and conversely, FP (false
positives) refers to the number of instances wrongly proposed by the algorithm as potential olive
trees. A tree is considered to be correctly identified only when the algorithm placed its estimated
location within its crown.
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• Sensitivity: it provides the ratio of actual trees found by the algorithm:

Sensitivity =
TP

TP + FN
. (21)

where FN (false negatives) is defined as the number of actual olive trees not detected by
the algorithm.

• F1score: it is the harmonic mean of the two metrics described above, being mathematically
defined as:

F1score = 2×
(Precision× Sensitivity)
(Precision + Sensitivity)

(22)

3. Results

According to the metrics proposed, the results provided by the presented methodology for crop
trees detection, location and counting are exposed in Table 2. As it can be observed, 99.92% of tree
proposals were correct, and 99.67% of the actual trees were found.

Table 2. Performance assessment of the automated trees detection and counting methodology, expressed
in terms of the metrics defined to that purpose.

Actual Tree
Population

Estimated Tree
Population TP FP FN Precision Sensitivity F1score

3919 3909 3906 3 13 0.9992 0.9967 0.9975

Regarding the failures detected, and focusing on the false positives (FP) reported, each of them
can be justified by a different reason. Thus, one of them was caused by a car that was parked very
close to the study site. Because of its height, it could not be discarded during image processing, neither
filtered when the image was cropped according to the specified region of interest. As a result, a very
small residual connected component, corresponding to this vehicle, was inevitably considered when
analysing the ultimate binary image. A second false positive resulted from a tree with an anomalously
damaged crown, so it was detected by the algorithm as two different plants. Finally, a last false tree
detection was obtained when processing a large connected component containing seven aggregated
olive trees. Due to the morphology and disposition of the overlapped tree pixel regions, the number
of plants contained was overestimated in one unit. The different issues related to the false positives
detected during the assessment of the methodology are illustrated in Figure 14.

Figure 14. False positives detected during performance assessment: (a) case related to a car parked
next to the study site; (b) case consequence of wrongly splitting one tree into two different connected
components because of its damaged condition; (c) case obtained after overestimating the number of
trees contained in an aggregated connected component.
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With respect to false negatives (FN), one of them was detected to come from the absence of
information in the DSM, this probably due to not having enough matching points from different
captures when reconstructing this part of the image. As a result, the elevation information in those
corresponding points, provided by the DSM, was not significant enough to enable the discrimination
of this plant (the phenomenon is illustrated in Figure 15).

Figure 15. False negative resulting from a lack of information in the point cloud: (a) aerial
sub-image where the tree wrongly discarded by the algorithm is represented; (b) 3D point cloud-based
representation of the area shown in (a); (c) elevation information provided by the DSM, represented as
a greyscale image, corresponding to the area shown in (a).

In this respect, it should be noted that the density and quality of the 3D point cloud used to
generate the DSM, is directly related to the overlapping with which aerial imagery is captured [25].
As commented in Section 2.2.2, the image acquisition flight and the multispectral camera setup were
planned for the purpose of achieving a forward overlap of 85%. By increasing this overlapping, results
could be virtually improved. However, since 99.97% of the trees were properly reconstructed, i.e., 3918
among 3919, it seems plausible to consider the setup proposed for image capture as valid. Being
discarded defects in flight and image capture parametrisation, it is difficult to determine the reasons
that provoked this issue, but it might be probably related to problems when capturing the aerial
images, either due to weather conditions that could occasionally affect the stability of the UAV, or due
to problems with the operability of the camera. Meanwhile, the rest of false negative cases detected
were related to small trees, most of them in growth stage, which did not reach the minimum height
(1 m) to be properly segmented from the background.

4. Discussion

Table 3 compares the results of the methodology presented in this paper to those of the main
published works also aimed at automated crop tree detection in orchards. A first aspect to be
highlighted is that the present work outperforms the other proposals, despite the fact it was tested on a
considerably greater plant population when compared to most of the reported research. Consequently,
this surely included a wider variability in terms of the individual characteristics of the trees, and the
way they are disposed throughout the land plot under study. Also, it should be underscored that,
contrary to most of those works, this study considered challenging conditions related to overlapping
intra-row tree crowns, aspect with a special impact on the accuracy with which plant population can
be estimated in intensive orchards.
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Table 3. Comparison of performance of different methods for crop trees counting published in the
bibliography, and the present work.

Method Actual Tree Population Precision Sensitivity F1score

Torres-Sánchez et al., 2015 [25] 135 – 0.945–0.969 –
Torres-Sánchez et al., 2018 [26] – – 0.970 –

Salamí et al., 2019 [6] 332 0.9939 0.9909 0.9924
Malek et al. [5] 617 0.9009 0.9440 0.9219

Csillik et al. [19] 2912 0.9459 0.9794 0.9624
Ampatzidis and Partel [20] 4931 0.9990 0.9970 0.9980

Selim et al. [21] 105 – 0.8286 –
Marques et al. [23] 1092 0.9944 0.9780 0.9861

This work 3918 0.9992 0.9967 0.9975

Thus, focusing on the case of the olive, a crop around which the proposed methodology was
validated, counting of trees based on aerial imagery was attempted in Salamí et al. [6], obtaining a
remarkable average precision of 99.84%. Nevertheless, plant detection was approached by using a
circular template, imposing the prerequisite of only considering isolated trees, thus preventing that
their crowns could appear overlapped in aerial captures. Contrary, the methodology presented here
was able to deal with the individual location and counting of 385 trees configuring 293 aggregated
connected components. Only in the case shown in Figure 14, the number of trees contained in such a
component was not properly estimated. Moreover, the replicability of the methodology presented
in [6] is questionable, as trees segmentation was attempted by colour discrimination. Indeed, it is
very probable that any kind of natural or artificial artefact with similar colour to that of the olive tree
canopies, could generate false positives. In this case, the precision of the colour segmentation approach,
and consequently of the subsequent trees detection and counting, is compromised. A segmentation also
based in pixel reflectance, although not only in the visible bands, followed by OBIA analysis was used in
Torres-Sánchez et al. [25]. Concretely, a multi-resolution segmentation was firstly performed using the
DSM and the green and NIR bands, considering colour, shape, smoothness and compactness, for which
threshold values were manually adjusted. The manual decision of such key segmentation parameters
questions concerns about its replicability in different situations. Furthermore, the approach requires
a subsequent OBIA analysis to filter the first segmentation results. Conversely, the methodology
described here proposes an analytical solution to the segmentation problem, only making use of the h
parameter (equation (7)) in the segmentation step. In addition, this is a comprehensible parameter as it
represents the minimum desired height in meters for the trees to be segmented. Then, h is more likely
to be seen as a configuration parameter rather than a performance one. On a set of 135 olive trees, the
study presented in Torres-Sánchez et al. [25] yielded sensitivity values ranging from 0.945 to 0.969,
not considering the case of overlapping tree crowns. Later, the same main author and others assessed
the influence of image overlap in the quality of the resulting DSM [26]. The methodology described
in [25] was slightly modified and tested on an indeterminate number of trees, corroborating in the best
scenario of those tested a sensibility of 0.97 in olive trees counting. The case of overlapping trees was
not faced either.

Beyond the olive case, in Malek et al. [5], an overall precision of 0.9009 when detecting palm
trees was achieved. They proposed a method based on training an ELM classifier on a set of key
points, potentially representative of the occurrences of the trees, extracted from the initial captures.
Csillik et al. [19] made also use of machine learning, concretely CNNs, for detecting citrus trees.
Ampatzidis and Partel [20] also focused their research on citrus orchards, and also using CNN-based
tree location. Despite the fact all these studies reported solid results, it should be noted that these kinds
of machine learning solution tend to be strongly linked to the visual features of the crown trees with
which they are trained. This fact makes their direct application to different kinds of crops difficult, but
it surely implies the generation of new training sets and models. Contrary, the method proposed in
this paper comprises an analytical solution, based on the morphological analysis and characterisation
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of the general features of trees within the frame of an intensive cultivation, thus not being linked to a
concrete type of crop. In Selim et al. [21], it was proposed a method for detecting orange trees from
aerial imagery. The problem was undertaken in this case by means of object-based image analysis,
correctly detecting 87 out of the 105 trees visible in the orthomosaic of the study case. Nevertheless, as
with other researches previously referenced, difficulties were reported when dealing with overlapping
tree crowns. In Kestur et al. [22], tree detection was faced on the basis of ELM- spectral and spatial
classification. Despite promising results were reported about identifying trees belonging to different
crops, it was not clearly specified how the training set was generated, hindering the replicability of the
methodology. Marques et al. [23] proposed an effective method for detecting chestnut trees, clustering
the plants by exploiting elevation data and vegetation indices (VI) information. About this latter, it
should be noted that VI-based segmentations are strongly dependent of the spectral reflectivity features
of the vegetation cover present in the study sites. Indeed, depending of its nature, the coverage may
be confused with the plants aimed to be identified, thus potentially increasing the number of false
positives yielded. This phenomenon may affect the generality of the proposed solution.

5. Conclusions

This investigation was undertaken in order to design and evaluate a framework for the automated
identification, geolocation and counting of crop trees in intensive cultivation areas by means of
UAV-based aerial imagery, multispectral sensing and image analysis techniques. The results reported
support the viability of the methodology proposed as a valuable tool in phenotyping tasks, within the
scope of the precision agriculture.

After testing in an olive orchard with 3919 trees, 99.67% of the plants were rightly identified,
outperforming the results given by previous published work. Indeed, the algorithm designed for
segmenting and analysing the data structure obtained from aerial captures, based on morphological
image processing principles and the statistical analysis of the moments of tree-corresponding pixel
artefacts, showed a remarkable performance in terms of tree discrimination, achieving very high
detection rates. In addition, the solution also showed to be solid when dealing with multiple intra-row
overlapping tree crowns. These findings should also be framed within the context of the complexity
of the considered scenario, since the study plot was outstandingly larger than those used in most of
previous studies, and it presented a remarkable variability in terms of soil composition, elevation and
amount of weed.

Future work will test the application of the presented methodology to other types of orchards.
In addition, it would be interesting to assess the performance of the algorithms when dealing with
different plant spacing patterns, all of this for the sake of increasing confidence in the generality of the
proposed solution.
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Appendix A

Mathematical morphology is a non-linear image processing technique, built from the basis of the
set theory, essentially aimed at analysing the relevant structures in the image by proving this with a set
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called structuring element (SE), which has an a-priori known shape and size. This appendix briefly
defines the morphological operators employed in this paper, suggesting the reader to consult [30,31]
for a deeper study.

Let f be a greyscale image representing a mapping from a subset D f of Z2, which defines de
domain of the image, into a bounded subset of nonnegative integers N0:

f : D f ⊂ Z2
→ N0 = {0, . . . , tmax} ⊂ Z. (A1)

where tmax is the maximum value allowing to reach the data type used (e.g., 1 for binary images, 256
for 8-bit images, etc.). Thus, f maps the correspondence element by element between two sets, the first
being composed of spatially ordered elements ρ (pixels), ρ ∈ D f and denoted by a pair of coordinates
(x, y), while the second is built with an ordered set of possible values.

With the previous definitions, the intersection of two greyscale images, f and g, is defined as:

f (ρ)∧ g(ρ) = min[ f (ρ), g(ρ)]. (A2)

where min refers to the minimum operation. Conversely, the union of those two images responds to
the following equation:

f (ρ)∨ g(ρ) = max[ f (ρ), g(ρ)], (A3)

being max the maximum operation.
The SE is an essential tool in mathematical morphology, used to study the shape of the objects

contained in an image. Mathematically, an SE element can be seen as a binary image β, defining a
mapping of a subset Dβ of Z2 to the subset of integer binary values B0:

β : Dβ ⊂ Z2
→ B0 = {0, 1} ⊂ Z. (A4)

With this definition, β maps the correspondence between the spatially ordered pixels ρ, ρ ∈ Dβ

and referenced by a pair of coordinates (x, y), and their values. This mapping must be designed
so as to morphologically describe the object to be analysed, being necessary for its application that
#
(
Dβ

)
< #

(
D f

)
. Common shapes implemented with SEs include circles, lines, diamonds, etc. In practice,

the SE is used as a kernel, with its origin in its central pixel. Hence, an image is proven pixel by pixel
to this kernel, modifying at every step the pixel in the image matching with the central pixel of the
kernel, according to a given operation.

The morphological erosion of image f by an SE β, this last being centred in pixel ρ, is given by the
expression: [

εβ( f )
]
(ρ) = min

{
f (ρ+ b)

∣∣∣b ∈ Dβ

}
. (A5)

Therefore, pixel ρ in image f is modified with the minimum value of its neighbourhood according
to the filter implemented by SE β. The effect of erosion is the expansion of darker regions, conditioned
by the shape defined in SE.

The dual operator of erosion is dilation. The morphological dilation of image f by a SE β centred
in pixel ρ, is formulated as: [

δβ( f )
]
(ρ) = max

{
f (ρ+ b)

∣∣∣b ∈ Dβ

}
. (A6)

By duality, dilation expands brighter regions in f according to the morphology of SE.
Combining erosion and dilation, two new operators called opening (γ) and closing (ϕ) are

obtained:
γβ( f ) = δβ

(
εβ( f )

)
, (A7)

ϕβ( f ) = εβ
(
δβ( f )

)
. (A8)

Opening removes those brighter objects in the image that can be completely covered by β. Dually,
closing removes the darker objects in the image completely covered by the SE.



Remote Sens. 2020, 12, 748 21 of 23

The operators described are complemented by geodesic transformations. The geodesic dilation
is the iterative dilation of an image f , called marker, using a unitary SE, with respect to the mask g.
Marker f must be contained within mask g. Mathematically, the operator is defined as:

δ
(n)
g ( f ) = δ

(1)
g

[
δ
(n−1)
g ( f )

]
, being δ(1)g ( f ) = δ( f )∧ g,

where :
#
(
D f

)
= #

(
Dg

)
, and f (ρ) ≤ g(ρ), ∀ρ ∈ D f , Dg.

(A9)

Based on (9), the geodesic erosion of marker f constrained by mask g is:

ε
(n)
g ( f ) = ε

(1)
g

[
ε
(n−1)
g ( f )

]
, being ε(1)g ( f ) = ε( f )∨ g,

where :
#
(
D f

)
= #

(
Dg

)
, and f (ρ) ≥ g(ρ), ∀ρ ∈ D f , Dg.

(A10)

Geodesic dilation and erosion are the basis for building morphological reconstructions. Indeed,
the morphological reconstruction by dilation of mask g by marker f , is the geodesic dilation of f
constrained by g until idempotence. It is denoted by:

Rδg( f ) = δ
(i)
g ( f ),

where : i is such that :

δ
(i)
g ( f ) = δ

(i+1)
g ( f ).

(A11)

Consequently, the dual morphological reconstruction by erosion of mask g by marker f , is the
geodesic erosion of f constrained by g until idempotence:

Rεg( f ) = ε
(i)
g ( f ),

where : i is such that :

ε
(i)
g ( f ) = ε

(i+1)
g ( f ).

(A12)
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