Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network
Abstract
:1. Introduction
2. Study Area and Dataset
3. Methods
3.1. Processing of Input Layer
3.1.1. NDVI and NDWI Maps
3.1.2. NDVI and NDWI Texture Maps
3.1.3. Average and Standard Deviation Canopy Height Maps
3.1.4. Mean Coherence Maps
3.2. Artificial Neural Network
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Houghton, R.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.S.; Kim, C.M.; Kim, K.M.; Ryu, J.H.; Lim, J.S.; Kim, J.C. The Change of Korean National Forest Inventory System (1971~2010); Korea Forest Institute: Seoul, Korea, 2015. [Google Scholar]
- Caicoya, A.T.; Kugler, F.; Pardini, M.; Hajnsek, I.; Papathanassiou, K. Vertical forest structure characterization for the estimation of above ground biomass: First experimental results using SAR vertical reflectivity profiles. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1045–1048. [Google Scholar]
- Mette, T.; Papathanassiou, K.P.; Hajnsek, I.; Zimmermann, R. Forest biomass estimation using polarimetric SAR interferometry. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 817–819. [Google Scholar]
- Frolking, S.; Palace, M.W.; Clark, D.; Chambers, J.Q.; Shugart, H.; Hurtt, G.C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2009, 114. [Google Scholar] [CrossRef]
- Gatti, L.; Gloor, M.; Miller, J.; Doughty, C.; Malhi, Y.; Domingues, L.; Basso, L.; Martinewski, A.; Correia, C.; Borges, V. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 2014, 506, 76. [Google Scholar] [CrossRef] [PubMed]
- Korea University. Development of Analyzing Method for Three-Dimensional Vegetation Structure and Policy Application Using Drone; Korea Environmental Industry & Technology Institute: Seoul, Korea, 2018. [Google Scholar]
- Kim, S.H.; Kim, J.C.; Ryu, J.H.; Kim, J.S.; Seo, S.A.; Cho, H.K.; Yoo, B.O.; Sim, W.B.; Seong, J.H.; Park, B.B.; et al. Guide Book for the Sixth Korean National Forest Inventory and Fieldwork for Forest Health and Vitality; Korea Forest Institute: Seoul, Korea, 2011. [Google Scholar]
- Graf, R.F.; Mathys, L.; Bollmann, K. Habitat assessment for forest dwelling species using LiDAR remote sensing: Capercaillie in the Alps. For. Ecol. Manag. 2009, 257, 160–167. [Google Scholar] [CrossRef]
- Jeon, S.W.; Kim, J.; Jung, H. A study on the forest classification for ecosystem services valuation-focused on forest type map and landcover Map. J. Korea Soc. Environ. Restor. Technol. 2013, 16, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Onaindia, M.; Dominguez, I.; Albizu, I.; Garbisu, C.; Amezaga, I. Vegetation diversity and vertical structure as indicators of forest disturbance. For. Ecol. Manag. 2004, 195, 341–354. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Mascaro, J. Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sens. Environ. 2014, 140, 614–624. [Google Scholar] [CrossRef]
- Exbrayat, J.-F.; Bloom, A.A.; Carvalhais, N.; Fischer, R.; Huth, A.; MacBean, N.; Williams, M. Understanding the land carbon cycle with space data: Current status and prospects. Surv. Geophys. 2019, 40, 735–755. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Kim, E.S.; Lee, J.-S.; Jung, J.; Lim, J.H. Detecting Phenology Using MODIS Vegetation Indices and Forest Type Map in South Korea. Korean J. Remote Sens. 2018, 34, 267–282. [Google Scholar]
- Na, S.-I.; Park, C.-W.; So, K.-H.; Ahn, H.-Y.; Lee, K.-D. Development of biomass evaluation model of winter crop using RGB imagery based on unmanned aerial vehicle. Korean J. Remote Sens. 2018, 34, 709–720. [Google Scholar]
- Caicoya, A.T.; Kugler, F.; Papathanassiou, K.; Biber, P.; Pretzsch, H. Biomass estimation as a function of vertical forest structure and forest height-Potential and limitations for Radar Remote Sensing. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Treuhaft, R.N.; Law, B.E.; Asner, G.P. Forest attributes from radar interferometric structure and its fusion with optical remote sensing. BioScience 2004, 54, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Gould, W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol. Appl. 2000, 10, 1861–1870. [Google Scholar] [CrossRef]
- Sanches, I.D.A.; Souza Filho, C.R.; Kokaly, R.F. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J. Photogramm. Remote Sens. 2014, 97, 111–122. [Google Scholar] [CrossRef]
- Chae, S.-H.; Park, S.-H.; Lee, M.-J. A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image. Korean J. Remote Sens. 2017, 33, 931–946. [Google Scholar]
- Kwon, S.-K.; Lee, Y.-S.; Jung, H.-S.; Kim, D. Classification of Forest Vertical Structure Using Machine Learning Analysis. Korean J. Remote Sens. 2019, 35, 229–239. [Google Scholar]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Park, S.-H.; Jung, H.-S.; Baek, W.-K. Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Artificial Neural Network. Korean J. Remote Sens. 2018, 34, 1399–1414. [Google Scholar]
- Murai, T.; Andrews, J.W. Interactions of dietary α-tocopherol, oxidized menhaden oil and ethoxyquin on channel catfish (Ictalurus punctatus). J. Nutr. 1974, 104, 1416–1431. [Google Scholar] [CrossRef]
- Hay, G.; Niemann, K.; McLean, G. An object-specific image-texture analysis of H-resolution forest imagery. Remote Sens. Environ. 1996, 55, 108–122. [Google Scholar] [CrossRef]
- Hwang, J.-I.; Jung, H.-S. Automatic ship detection using the artificial neural network and support vector machine from X-band SAR satellite images. Remote Sens. 2018, 10, 1799. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.-K.; Jung, H.-S.; Baek, W.-K.; Kim, D. Classification of forest vertical structure in south Korea from aerial orthophoto and lidar data using an artificial neural network. Appl. Sci. 2017, 7, 1046. [Google Scholar] [CrossRef] [Green Version]
- Mund, J.-P.; Wilke, R.; Körner, M.; Schultz, A. Detecting multi-layered forest stands using high density airborne LiDAR data. J. Geogr. Inf. Sci 2015, 1, 178–188. [Google Scholar] [CrossRef]
- Beaudoin, A.; Le Toan, T.; Goze, S.; Nezry, E.; Lopes, A.; Mougin, E.; Hsu, C.; Han, H.; Kong, J.; Shin, R. Retrieval of forest biomass from SAR data. Int. J. Remote Sens. 1994, 15, 2777–2796. [Google Scholar] [CrossRef]
- Baek, W.-K.; Jung, H.-S.; Jo, M.-J.; Lee, W.-J.; Zhang, L. Ground subsidence observation of solid waste landfill park using multi-temporal radar interferometry. Int. J. Urban Sci. 2019, 23, 406–421. [Google Scholar] [CrossRef]
- Park, S.-H.; Jung, H.-S.; Choi, J.; Jeon, S. A quantitative method to evaluate the performance of topographic correction models used to improve land cover identification. Adv. Space Res. 2017, 60, 1488–1503. [Google Scholar] [CrossRef]
- Kwon, S.-K. Classification of Natural Forest/Artificial Forest from Sentinel-2 Images Using Artificial Neural Network; University of Seoul: Seoul, Korea, 2018. [Google Scholar]
- Teillet, P.; Guindon, B.; Goodenough, D. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Kim, D.; Jung, H.-S. Mapping oil spills from dual-polarized SAR images using an artificial neural network: Application to oil spill in the Kerch Strait in November 2007. Sensors 2018, 18, 2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouaraba, A.; Belhadj-Aissa, A.; Closson, D. Man-Made Change Detection Using High-Resolution Cosmo-SkyMed SAR Interferometry. Arab. J. Sci. Eng. 2016, 41, 201–208. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-S.; Baek, W.-K.; Jung, H.-S. Forest Vertical Structure Classification in Gongju City, Korea from Optic and RADAR Satellite Images Using Artificial Neural Network. Korean J. Remote Sens. 2019, 35, 447–455. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 95), Montreal, QC, Canda, 20–25 August 1995; pp. 1137–1145. [Google Scholar]
Parameters | Kompsat-3 |
---|---|
Multispectral | |
Date (YYYY.MM.DD) | 2017.04.29 |
Ground sample distance (m) | 2.8 |
Sun altitude angle (deg.) | 65.64 |
Sun azimuth angle (deg.) | 127.23 |
Interferometric Pair | Temporal Baseline (Days) | Perpendicular Baseline (m) | Incidence Angle (deg.) | Range Pixel Spacing (m) | Azimuth Pixel Spacing (m) |
---|---|---|---|---|---|
20071024_20071209 | 46 | 114.8615 | 38.7 | 4.68 | 3.15 |
20071024_20080124 | 92 | 485.7195 | 38.7 | 4.68 | 3.15 |
20071024_20091214 | 782 | −898.2806 | 38.7 | 4.68 | 3.15 |
20071024_20100129 | 828 | −228.1115 | 38.7 | 4.68 | 3.15 |
20071209_20080124 | 46 | 370.8854 | 38.7 | 4.68 | 3.15 |
20071209_20100129 | 782 | −342.9631 | 38.7 | 4.68 | 3.15 |
20080124_20100129 | 736 | −713.9710 | 38.7 | 4.68 | 3.15 |
20081211_20090126 | 46 | 286.0561 | 38.7 | 4.68 | 3.15 |
20091214_20100129 | 46 | 270.1388 | 38.7 | 4.68 | 3.15 |
20100129_20101101 | 276 | 857.1810 | 38.7 | 4.68 | 3.15 |
20100129_20101217 | 322 | 1148.4430 | 38.7 | 4.68 | 3.15 |
20101101_20101217 | 46 | 291.3401 | 38.7 | 4.68 | 3.15 |
Reference | Single Layer | Double Layer | Triple Layer | Total | User Accuracy (%) | |
---|---|---|---|---|---|---|
ANN | ||||||
Single Layer | 25 | 474 | 87 | 586 | 4.27% | |
Double Layer | 539 | 49,975 | 13,508 | 64,022 | 78.06% | |
Triple Layer | 113 | 20,005 | 16,610 | 36,728 | 45.22% | |
Total | 677 | 70,454 | 30,205 | 101,336 | ||
Producer accuracy (%) | 3.69% | 70.93% | 54.99% | |||
Overall accuracy (%) | 65.73% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-S.; Lee, S.; Baek, W.-K.; Jung, H.-S.; Park, S.-H.; Lee, M.-J. Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network. Remote Sens. 2020, 12, 797. https://doi.org/10.3390/rs12050797
Lee Y-S, Lee S, Baek W-K, Jung H-S, Park S-H, Lee M-J. Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network. Remote Sensing. 2020; 12(5):797. https://doi.org/10.3390/rs12050797
Chicago/Turabian StyleLee, Yong-Suk, Sunmin Lee, Won-Kyung Baek, Hyung-Sup Jung, Sung-Hwan Park, and Moung-Jin Lee. 2020. "Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network" Remote Sensing 12, no. 5: 797. https://doi.org/10.3390/rs12050797
APA StyleLee, Y. -S., Lee, S., Baek, W. -K., Jung, H. -S., Park, S. -H., & Lee, M. -J. (2020). Mapping Forest Vertical Structure in Jeju Island from Optical and Radar Satellite Images Using Artificial Neural Network. Remote Sensing, 12(5), 797. https://doi.org/10.3390/rs12050797