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Abstract: This work describes a proposed radiometric cross calibration between the Landsat
8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI) sensors.
The cross-calibration procedure involves (i) correction of the MSI data to account for spectral band
differences with OLI and (ii) normalization of Bidirectional Reflectance Distribution Function (BRDF)
effects in the data from both sensors using a new model accounting for the view zenith/azimuth
angles in addition to the solar zenith/view angles. Following application of the spectral and BRDF
normalization, standard least-squares linear regression is used to determine the cross-calibration gain
and offset in each band. Uncertainties related to each step in the proposed process are determined, as is
the overall uncertainty associated with the complete processing sequence. Validation of the proposed
cross-calibration gains and offsets is performed on image data acquired over the Algodones Dunes
site. The results of this work indicate that the blue band has the most significant offset, requiring use
of the estimated cross-calibration offset in addition to the estimated gain. The highest difference was
observed in the blue and red bands, which are 2.6% and 1.4%, respectively, while other bands shows
no significant difference. Overall, the net uncertainty in the proposed process was estimated to be on
the order of 6.76%, with the largest uncertainty component due to each sensor’s calibration uncertainty
on the order of 5% and 3% for the MSI and OLI, respectively. Other significant contributions to the
uncertainty include seasonal changes in solar zenith and azimuth angles, target site nonuniformity,
variability in atmospheric water vapor, and/or aerosol concentration.
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1. Introduction

Ensuring the quality and accuracy of an Earth-orbiting satellite sensor’s image data throughout
its operating lifetime [1] requires regular monitoring of its radiometric and geometric performance.
Subsequent postlaunch radiometric calibrations are performed to monitor the sensor response and
to adjust the calibration coefficients accordingly. These calibrations can either be done in an absolute
sense (i.e., deriving gains and offsets to convert raw pixel values to TOA (Top of Atmosphere)
radiance/reflectance) or in a relative sense with respect to a well-calibrated “reference” sensor (a cross
calibration). Of major concern among calibration scientists at this moment is the cross calibration of
the Sentinel 2A Multispectral Instrument (MSI) and the Landsat 8 Operational Land Imager (OLI),
which is widely considered to be the most accurately calibrated instrument.
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Many techniques have been developed to perform cross calibration between satellite sensors,
including efforts to calibrate all of the Landsat sensors to the OLI [2]. Research has focused on selection
of “invariant” calibration sites, methods to adjust for differences in spectral response between sensors,
and methods to model and correct for Bidirectional Reflectance Distribution Function (BRDF) and
other effects due to differences in viewing geometry and illumination. A critical factor in producing a
successful cross calibration involves selection of a calibration site regularly imaged by the sensors of
interest. The site should be as temporally, spatially, and spectrally invariant as possible in order to
more easily distinguish between potential changes to a sensor’s radiometric response and potential
changes to the site’s surface and/or atmospheric characteristics. Historically, these sites have been in
desert regions exhibiting a high degree of uniform surface reflectance, with minimal rainfall and cloud
cover and with minimal signs of human settlement or other activities [3].

Rao and Chen (1995) used image data acquired over the southeastern portion of the Libyan
desert (i) to identify rates of response degradation in the visible and NIR (Near Infrared) channels
of the NOAA (National Oceanic and Atmospheric Administration) Advanced Very High Resolution
Radiometer (AVHRR) and (ii) to establish “inter-satellite calibration linkages” between the NOAA 7
and 9 AVHRRs and the NOAA 9 and 11 AVHRRs [4]. Their analysis emphasized VNIR (Visible Near
Infrared) and thermal image data acquired at satellite zenith angles of 14◦ or less and solar zenith angles
of 60◦ or less to minimize BRDF and atmospheric effects. They validated their analysis results using
image data acquired over the White Sands area in New Mexico. To develop an automated technique
to find temporally and spatially stable Pseudo-Invariant Calibration Sites (PICS), Helder et al.,
used Landsat 5 TM (Thematic Mapper) image data. Six PICSs were found with spatial and temporal
uncertainties within 2% in the VNIR region and within 2%–3% in the SWIR (Short Wave Infrared)
region [3].

Cosnefroy et al. (1996) analyzed 20 desert sites in North Africa and Saudi Arabia for use in
calibration of sensors (e.g., the ADEOS POLDER, SPOT-4 Vegetation, EOS MISR, Envisat MERIS,
etc). Regions of 100 km × 100 km representing the sites were extracted from cloud-free Meteosat-4
image data where the spatial uncertainty and temporal uncertainties were 3% and 2%, repectively [5].
Many of these PICS are still considered to calibrate sensors from the recommendation of this research.
Using image data from the Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) and EO-1 Advanced
Land Imager (ALI) sensors, Chander et al. (2010) identified the useable area, data availability,
TOA reflectance, spatial uniformity, and spectral stability indicating the usefulness of a PICS for
calibration [6]. They assessed six candidate sites (Mauritania1, Mauritania2, Algeria3, Libya1, Libya4,
and Libya5), and the Committee on Earth Observation Sciences (CEOS) has since adopted them as
calibration sites.

These analysis of PICS have been done to pick the appropriate PICS for this cross-calibration work.
Among the twenty CEOS PICS, four of them (Libya1, Libya4, Niger2, and Sudan1) are considered in this
work, as they have been used in previous calibration work by the South Dakota State University Image
Processing Laboratory [7]. A new concept of extended PICS-finding methods was also developed
very recently by South Dakota State University Image Processing Lab, where all of North Africa was
analyzed as an extended PICS [8,9].

Two sensors imaging the same region on the Earth will measure different surface radiances and
reflectances. A significant reason for this difference is due to inherent differences in their spectral
responses. Correction factors applied to the uncalibrated sensor’s image data, called Spectral Band
Adjustment Factors (SBAFs), can result in greater equalization of its data to the corresponding image
data from the calibrated sensor. Research into the determination of SBAFs and their effects on cross
calibration has been performed.

Teillet et al. (2004) considered the effects of spectral band differences on cross calibration [10].
Their analysis used image data of the Railroad Valley Playa (RRV) acquired by the ETM+, ALI,
and Terra MODIS, ASTER, and MISR sensors, as their overpass times were within 45 minutes of
each other; no BRDF or other corrections were applied to the data. The results of their analysis
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indicated that, with SBAF correction, the calibration accuracy was within 3%. Based on this analysis,
they recommended, in general, that SBAFs should be used when cross calibrating between sensors.
Chander et al. (2010) used an average of 108 EO-1 Hyperion hyperspectral profiles of the Libya4
PICS, acquired from 2004 to 2009, to determine an SBAF for Terra MODIS, using the ETM+ as the
calibrated reference sensor [11]. Without SBAF correction, the observed Terra MODIS TOA reflectance
was at least 16% greater than the corresponding ETM+ TOA reflectance in all bands. With SBAF
correction, the difference was reduced to 6% or less. Greater uncertainties were found in the blue,
NIR, and SWIR1 bands. In 2013, Chander et al., looked at the effect of SBAF correction derived
from different hyperspectral data sources on the cross calibration of ETM+ and Terra MODIS using
the Libya4 PICS as their test site [12]. Specifically, they considered Hyperion and SCIAMACHY
(SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) hyperspectral data.
The Hyperion-based SBAF correction resulted in reflectance differences of approximately −5.51%,
2.04%, −0.83%, and 4.06% in the blue, green, red, and NIR bands, respectively. The differences
were even lower when SCIAMACHY-based SBAF correction was used (−0.62%, 3.26%, 0.09%, and
0.93%,respectively).

When cross calibrating between sensors, it is highly desirable for them to image a region
under similar viewing geometry and solar illumination conditions. Solar illumination and potential
atmospheric effects can be accounted for if the sensors simultaneously (or near-simultaneously) image
the region. Due to differences in sensor design and operation and depending on the imaged surface,
differences in viewing geometry will likely result in the introduction of Bidirectional Reflectance
Distribution Function (BRDF) effects. Research into the BRDF issue has resulted in a variety of models
and correction approaches.

Liu et al. (2004) used a BRDF model based on the solar zenith angle in their cross calibration
between Terra MODIS and MVIRS [13], using images acquired over the Dunhuang site in
China. Their model extended the model originally developed by Roujean et al. (1992) [14],
allowing consideration of solar zenith angles greater than 51◦. The estimated error due to BRDF
effects was found to be approximately 2% to 3%.

Schlapfer et al. (2014) proposed a novel correction method for wide field-of-view (FOV) optical
scanners based on the solar zenith, view zenith, and relative azimuth angles (i.e., the difference between
the solar and view azimuth angles) [15]. Their method requires the image dataset to contain at least four
distinct bands. It corrects surface cover-dependent BRDF effects using observed surface reflectances to
“tune” the standard Ross-Thick and Li-Sparse BRDF models. Mishra et al. (2014) derived an empirical
BRDF model based on the solar zenith and view zenith angles of Terra MODIS near-nadir images
acquired over the Libya4 PICS [16]. Scene-center TOA reflectances from approximately 160 lifetime
observations were plotted as a function of solar zenith angle for all reflective bands. As an initial “guess”
for the model form, a simple linear model was fit to the data. Their final model was implemented using
a linear function of solar zenith angle and a quadratic function of view zenith angle. They found that
reflectance decreased due to BRDF effects, with greater decrease at longer wavelengths; consequently,
the SWIR bands were found to be most affected.

Following application of SBAF and BRDF corrections, the sensors’ measured TOA reflectances
can be compared more directly. As mentioned earlier, simultaneous (or near-simultaneous) images
are acquired by the sensors in order to minimize atmospheric effects. The TOA reflectances of the
uncalibrated sensor are typically modeled as a linear function of the calibrated sensor’s reflectances.
Ideally, the plotted data lie directly on a one-to-one line, meaning that the measured reflectances
from the sensors are equal. In practice, however, some residual deviation is typically observed,
which represents a gain and/or offset in the uncalibrated sensor.

Lacherade et al. (2013) proposed a cross-calibration technique using processed MERIS and
PARASOL image data acquired over the set of 20 CEOS desert sites and retrieved from the French
remote sensing database SADE [17]. Instead of applying SBAF correction to the uncalibrated
sensor data, the uncalibrated sensor’s surface reflectances were derived from interpolated and
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sampled TOA reflectances of the calibrated reference sensor. They tested the proposed approach
on non-BRDF-corrected image data acquired over the CEOS Saharan desert sites and found an
approximate 2% difference in the red and NIR bands. Differences of approximately 4% to 6% were
observed in the green and blue bands, respectively.

Mishra et al. (2014) presented radiance- and reflectance-based cross calibration of Landsat
8 Operational Land Imager (OLI) and ETM+ [18]. Two independent datasets were used in the analysis:

• Simultaneous image pairs acquired at two Saharan desert locations during a two- day underfly
event on March 29–30, 2013. One location was near the Libya4 PICS (WRS2 path 182, rows 42–43);
the other was over the WRS2 path 198 rows 38–39.

• Time series analysis of images acquired over the Libya4 PICS

Results using both datasets indicate a cross-calibration uncertainty to within 2.5% in all bands
but NIR, which had an uncertainty of 4% in both approaches. Even with the difference in NIR-band
relative spectral responses (RSRs) between OLI and ETM+, the results were within the required 3%
uncertainty for OLI and 5% uncertainty for ETM+.

Li et al. (2017) presented a method to cross calibrate the Sentinel 2A MSI and OLI sensors [19].
Using OLI as the calibrated sensor, they used Simultaneous Nadir Overpass (SNO) scenes acquired
just east of the CEOS Algeria3 site. Their analysis included SBAF correction but no BRDF correction.
Application of the relevant SBAFs resulted in agreement to within 3% in six of the eight corresponding
bands. Overall, the MSI blue band appeared to be the best calibrated, approximately 0.08%. Calibration
differences on the order of 0.4% were obtained for the green, red, and NIR bands: They were slightly
higher in the coastal aerosol, blue, red, and SWIR1 bands; were approximately equal in the green band;
were slightly lower in the SWIR2 band; and were significantly lower in the NIR and cirrus bands.
All bands except the cirrus band improved the agreement to within 1%; the cirrus band agreement
improved to approximately 2.5%.

The whole cross calibration should incorporate uncertainty in different steps. Combining the
uncertainties in each step gives the total uncertainty of the whole process. A scientific method should
always show the uncertainty of the value, so after following all the necessary steps, the uncertainty
needs to be calculated.

Pinto et al. (2016) derived SBAFs for the OLI and CBERS 4 (China–Brazil Earth Resources Satellite
4) Multispectral Camera based on the corresponding Hyperion image data of the Algodones Dunes
and Libya4 PICS using Monte Carlo simulations [20]. The simulation dataset was arbitrarily sampled
to generate possible SBAF values, and from the sampled values, the associated uncertainties were
estimated. Assuming maximum correlation, the uncertainty was as low as 0.4% in the green band for
Libya 4 and as high as 0.87% in the NIR band for Algodones Dunes. Similarly, assuming minimum
correlation, the uncertainty was as low as 0.48% in the red band for Libya4 and as high as 1.37% in the
NIR band for Algodones Dunes.

Chander et al. (2013) considered uncertainties due to differences in spectral resolution,
spectral filter shift, geometric misregistration, and differences in spatial resolution [21]. The spectral
uncertainty was estimated from the available Hyperion and SCIAMACHY image data. The uncertainty
due to spectral filter shift was estimated to be less than 2.5% in all bands, with the blue and green bands
exhibiting the largest uncertainties. With respect to spatial misregistration, the estimated uncertainty
was less than 0.35% in all bands. Finally, with respect to spatial resolution, the estimated uncertainty
was on the order of 0.1% for all bands.

In a rigorous analysis using Monte Carlo and MODTRAN (MODerate resolution atmospheric
TRANsmission) simulations, Gorrono et al. (2017) considered different sources of spectral, spatial,
and temporal uncertainties affecting cross calibration of the Sentinel 2A MSI [22]. Their reference
data source was hyperspectral data simulated for the upcoming Traceable Radiometry Underpinning
Terrestrial and Helio Studies (TRUTHS) sensor. Their sites focused on the La Crau, Ascension Island,
and Libya4 CEOS sites, representing grassland, oceanic, and desert landcover types, respectively;
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they also simulated snow cover. They estimated an overall uncertainty for an individual MSI overpass
of approximately 0.4% to 0.5% in the “best” bands (i.e., VNIR) and approximately 0.4% to 0.7% in the
“worst” bands (i.e., SWIR2). Averaging over multiple overpasses of a site, they estimated an overall
uncertainty on the order of 0.2% for the “best” bands and approximately 0.3% to 0.7% for the “worst”
bands. These estimates took into account both SBAF and BRDF correction.

This paper proposes a technique to perform reflectance-based cross calibration between the
Landsat 8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI) sensors
with a proposed BRDF model, using coincident pairs of OLI and MSI images acquired over the Libya 4,
Libya 1, Niger 2, and Sudan 1 North African Pseudo-Invariant Calibration Sites (PICS). This work
also uses coincident/nearly coincident OLI–MSI image pairs acquired over Lake Tahoe and a volcano
near the Libya 1 PICS as dark targets in order to incorporate a wider range of TOA reflectance values.
In addition to providing a reasonable cross calibration between OLI and MSI, this work contributes to
the ongoing process of “harmonizing” image data from current and future sensors.

The paper is structured as follows. After a brief literature review, the methodology of the
cross-calibration procedure is summarized. After that, results of the cross calibration are presented
as are estimates of the associated individual and overall uncertainties. Then, an independent site is
presented to validate the cross-calibration gains and biases. Finally, the Conclusion section summarizes
the whole work and findings.

1.1. Satellite/Sensor Comparison

Landsat 8, part of the Landsat mission that has provided continuous global imaging of the Earth’s
surface since 1972, was launched on 11 February 2013. It carries two sensors: the OLI and Thermal
Infrared Sensor (TIRS). It flies at a nominal mean altitude of approximately 705 km in a nearly polar,
sun-synchronous orbit that follows the Worldwide Reference System (WRS-2), allowing OLI and
TIRS to image locations with latitudes between 80◦ N and 80◦ S [23] in a revisit time of 16 days [23].
Unlike the previous Landsat satellites, Landsat 8 can maneuver to allow its sensors to acquire off-nadir
imaging and to acquire images of the Moon.

Sentinel 2A, part of the European Space Agency’s (ESA) Copernicus program [24], was launched
on 23 June 2015. A second satellite, Sentinel 2B, was launched on 7 March 2017. Each Sentinel 2 platform
carries the Multispectral Instrument (MSI), which images the Earth’s land and coastal areas at spatial,
spectral, and radiometric resolutions comparable to those provided by the OLI in a revisit time
of 10 days (with both Sentinel 2 satellites fully operational, the revisit time reduces to 5 days).
Both Sentinel platforms fly at a mean altitude of approximately 786 km in nearly polar, sun-synchronous
orbits phased 180◦ apart, allowing the MSIs to image locations at latitudes between 83◦ N and 56◦ S
(Sections 1.5.1 and 1.5.2, Sentinel-2 Users Handbook [25]). Given Landsat 8’s revisit time of 16 days and
Sentinel 2A’s revisit time of 10 days, opportunities for same-day, coincident acquisition by both sensors
occur approximately every 80 days.

1.2. Spectral Response

Figure 1 shows a comparison of the relative spectral response (RSR) profiles for the corresponding
OLI and MSI bands [26,27]. With the exception of the blue and red bands, the difference in band
centers between the two sensors is generally small. The major difference between the RSRs is that the
MSI bands tend to be slightly narrower.
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(a) (b)
Figure 1. Relative spectral response of Operational Land Imager (OLI; solid line) and Multispectral
Instrument (MSI; dotted line). (a) shows the RSR comparison for VNIR bands and (b) shows the RSR
comparison for SWIR bands.

2. Methodology

The proposed cross-calibration process consists of the following steps. Each step is considered in
greater detail in the following sections.

• Data Preprocessing and Site Selection
• Spectral Band Adjustment Factor (SBAF) Correction
• Bidirectional Reflectance Distribution Factor Normalization
• Gain and Offset Estimation

Finally, an uncertainty analysis on the estimated gains and offsets was performed. The procedure
will be considered in greater detail at the end of the section.

2.1. Data Preprocessing and Site Selection

All scenes used in the analysis were initially processed by the satellite operators’
ground-processing software to correct for radiometric and geometric artifacts. The pixel values
in the corrected images are 16-bit unsigned integers representing scaled TOA reflectance. For the
purposes of this work, candidate target sites were those possessing up to 3% temporal and spatial
scene uncertainties in all bands [28]. To allow better characterization across each sensor’s dynamic
range, “bright” and “dark” target sites were considered. The bright targets consisted of rectangular
regions of interest from the Libya 1, Libya 4, Niger 2, and Sudan 1 PICSs (Pseudo Invariant Calibration
Sites), which have been recommended by CNES (Centre national d’études spatiales) for bright target
calibration analysis [6]. These bright targets have been shown in Figure 2a.

The grey and dark targets were rectangular regions of interest extracted from a volcanic site near
the Libya1 PICS (shown in Figure 2(b1)) and images of Lake Tahoe (shown in Figure 2(b2)) respectively.
The ROIs (Region of Interest) from each target site were selected such that (i) the size of the region was
sufficiently large (>30 km2) to minimize geometric registration errors and (ii) the ROI was identified as
“optimal” with respect to minimum overall temporal, spatial, and spectral uncertainty [28]. The center
latitude and longitude information is provided in Table 1 for all the target sites used in this analysis.

The set of scenes from each sensor considered for analysis was determined from a maximum
estimated cloud contamination of 5%. The threshold was based on available information contained in
the OLI quality band image and the MSI-associated product quality metadata. Once the appropriate
target sites and ROIs were selected for both sensors, summary statistics of the TOA reflectances (i.e.,
mean and standard deviation) were determined for each ROI.
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(a) Bright targets.

(b1)

(b2)
(b) Grey and Dark targets.

Figure 2. Location of the bright and dark targets. (a) shows the location of 6 bright targets recommended
by CNES, (b1) shows the volcanic site and (b2) shows a Landsat True Color Image of Lake Tahoe.

Table 1. Target sites locations and ROI used.

Target Site WRS2 Path WRS2 Row Center Lattitude Center Longitude Site Length Site Width

Libya1 187 43 24.71◦ 13.49◦ 33,990 m 34,920 m

Libya4 181 40 28.55◦ 23.38◦ 21,690 m 19,980 m

Niger2 188 45 21.36◦ 10.55◦ 25,320 m 33,480 m

Sudan1 177 45 21.58◦ 27.70◦ 38,400 m 22,680 m

Lake
Tahoe 43 33 39.09◦ −120.03◦ 11,220 m 11,190 m

Volcanic
Near Libya 184 43 24.86◦ 23.77◦ 5962 m 9118 m

2.2. Spectral Band Adjustment Factor (SBAF) Correction

When comparing data acquired from two sensors, differences in their spectral responses, as
represented by their Relative Spectral Response (RSR) functions as seen in Figure 1, must be accounted
for in order to ensure a reliable analysis. Application of a Spectral Band Ajdustment Factor (SBAF)
to the data from one sensor brings its response to the level of the other sensor, which is considered
the “reference” with a known response. In other words, SBAF correction minimizes the effects of
differences in sensor RSRs. For each scene date, the mean hyperspectral reflectance profile of the
target ROI was generated from the corresponding cloud-free Hyperion image data (Figure 3a), using a
threshold of ±2.5σ around the mean TOA reflectance profile; this excluded profiles from 283 scenes
potentially affected by clouds and/or shadows (Figure 3b). For each target ROI, the SBAF for each
profile was calculated according to the process used by Chander et al., [11].

SBAFs relating the MSI spectral response to the OLI spectral response are calculated and applied
to the MSI data. For each scene date, the mean hyperspectral reflectance profile of the target ROI
is generated from the corresponding cloud-free Hyperion image data. The in-band reflectance for
each sensor is calculated by integrating the portion of the hyperspectral profile contained within
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the sensor RSR bandwidth and then by dividing that value by the integral of the sensor RSR. The
SBAF for the target is the ratio of the reference sensor in-band reflectance to the uncalibrated sensor’s
in-band reflectance:

SBAF =
ρλ,OLI

ρλ,MSI

=

∫
ρλ ·RSRλ,(OLI)dλ∫

RSRλ,(OLI)dλ∫
ρλ ·RSRλ,(MSI)dλ∫

RSRλ,(MSI)dλ

(1)

where: ρλ,OLI = in-band TOA reflectance of OLI (Unitless)
ρλ,MSI = in-band TOA reflectance of MSI (Unitless)
ρλ = hyperspectral TOA reflectance profile of the target (Unitless)
RSRλ,OLI = OLI relative spectral response
RSRλ,MSI = MSI relative spectral response

The individual SBAFs derived for each target ROI were then averaged to obtain an overall set of
site-specific SBAFs, which were then used in the final cross-calibration calculations.

(a) (b)
Figure 3. Hyperion spectral profiles for Libya 4: (a) before ±2.5σ filter application and (b) after
filter application.

Table 2 shows the calculated SBAF values and corresponding standard deviations estimated
from 343 Hyperion Libya 4 scenes (available cloud-free scenes from January, 2004 to March, 2017).
The blue and red bands exhibited the largest deviation in SBAF from unity (approximately 4% and 2%,
respectively). The green band exhibited an approximate 0.5% deviation from unity. The coastal aerosol,
NIR, SWIR1, and SWIR2 bands exhibited SBAF values very close to unity (on the order of 0.05% or
less). In general, the SBAF standard deviations were larger at shorter wavelengths than at longer
wavelengths. This is consistent with the greater differences in RSR bandwidth and center wavelength.

Table 2. Libya 4 Spectral Band Adjustment Factor (SBAF) and standard deviation by band.

Band CA Blue Green Red NIR SWIR1 SWIR2

SBAF 1.0015 0.9594 1.0066 0.9790 0.9996 0.9988 0.9989

Standard Daviation 0.0001 0.0027 0.0013 0.0010 0.0050 0.0030 0.0070

Table 3 shows a summary of the estimated SBAFs for the remaining sites. The volcano dark
site shows consistent behavior with the brighter PICS in terms of SBAF values. The Lake Tahoe
site tends to exhibit greater deviations from unity in the shorter wavelength bands; interestingly,
its SBAF in both SWIR bands is very consistent with the corresponding volcano site SBAFs. For the
remaining sites, the green band SBAF shows significant deviation from unity. From Figure 1, the blue,
green, and red bands have the least agreement in RSR between the two sensors, with the OLI RSR
bandwidths generally larger than the MSI bandwidths; the NIR, SWIR 1, and SWIR 2 bands have
the most agreement in RSR. The calculated SBAFs were applied to the MSI’s mean TOA reflectance
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for each site (assuming that the OLI was the preferred reference, as its calibration is known to a high
degree). After this correction, differences due to RSR response differences were reduced to around 1%.
Residual differences in response due to Bidirectional Reflectance Distribution Function (BRDF) effects
remained, however, and needed to be accounted for. The next section describes how these effects were
considered for both sensors.

Table 3. Target-site SBAFs by band.

Site Hyperion Scenes
Used

Bands

CA Blue Green Red NIR SWIR1 SWIR2

Libya 1 81 1.0017 0.9603 1.0217 0.9777 0.9990 0.9988 1.0010
Niger 2 12 1.0016 0.9681 1.0112 0.9794 1.0003 0.9989 1.0002
Sudan 1 152 1.0015 0.9643 1.0131 0.9793 1.0001 0.9991 1.0003

Lake Tahoe 25 1.0201 1.0801 0.9820 1.0180 1.0050 0.9980 0.9980
Volcanic near Libya 4 1.0015 0.9659 1.0058 0.9800 1.0001 0.9990 0.9981

2.3. BRDF Modeling and Normalization

BRDF normalization in previous cross-calibration efforts has typically emphasized the solar zenith
angle [16]. This section describes a four-angle, site-specific BRDF model derived for each band where
the wavelength dependence is considered minimal. From the set of acquisition solar zenith/azimuth
and view zenith/azimuth angles in the spherical coordinate system (designated here as SZA, SAA,
VZA, and VAA), a new set of variables (x1, y1, x2, andy2) were generated through transformation of the
angles to plane Cartesian coordinates using Equations (2)–(5) [29].

y1 = sin(SZA) ∗ cos(SAA) (2)

x1 = sin(SZA) ∗ sin(SAA) (3)

y2 = sin(VZA) ∗ cos(VAA) (4)

x2 = sin(VZA) ∗ sin(VAA) (5)

Figure 4a shows the NIR band TOA reflectance plotted with respect to the original solar zenith
and azimuth angles, with the data mirror into each quadrant. From an South Dakota State University
Iplab experience, where the range and possible solar angles is not limited, practical experience tells us
that the data should be asymmetric about the axis. This is needed in order to reduce the modeling
errors and to reduce edge effects due to the limited operational variability in the view geometries.
The next issue is the conversion of data from spherical coordinated system to Cartesian. This is a
necessary step due to the modeling that is being applied to the data; modeling on an evenly spaced
grid of data allows for simple mathematical models and tighter fits to the data. This can be seen
by looking at Figure 4b, where, when the data is converted to Cartesian and plotted on a Cartesian
coordinates, the data can be seen as continuous data.

The transformed coordinates are inputs to a multi-linear least-squares model assuming no
interaction between the various angles.

ρmodel = β0 + β1x1 + β2y1 + β3x2 + β4y2 (6)
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(a) Before conversion. (b) After conversion.
Figure 4. TOA reflectance vs. spherical coordinate solar angles for NIR band before and after
angular conversion.

Once the models were generated, “reference” solar and sensor view zenith/azimuth angles were
selected by identifying a common set of solar and sensor view angles measured at all of the selected
sites. A reference TOA reflectance is calculated from Equation (6) and then scaled by the ratio of the
observed and model predicted TOA reflectances to obtain the TOA reflectance applicable to the site
ROI as seen in SZA = 30◦, VZA = 0◦, SAA = 125◦, and VAA = 10◦:

ρsite =
ρobs

ρmodel
∗ ρRe f (7)

For the cross-calibration analysis, each sensor’s TOA reflectance was normalized assuming the
four-angle linear model as described in Equations (2)–(5) and (6). However, the observed TOA
reflectance response in the OLI NIR band suggested quadratic behavior with respect to Cartesian
coordinate x1 (i.e., sin(SZA)*sin(SAA)), as shown in Figure 4b.

Figure 5a,b shows the amount of normalization achieved by the proposed four-angle linear BRDF
model in the coastal aerosol and SWIR1 lifetime TOA reflectance trends. More normalization is evident
in the SWIR1 band than in the Coastal Aerosol (CA) band. This is because of the fact that the SWIR1
band has a more pronounced seasonal effect than other bands.

ρmodel = β0 + β1 ∗ SZA (8)

ρmodel = β0 + β1 ∗ SZA + β2 ∗ SZA2 (9)

ρmodel = β0 + β1x1 + β2y1 + β3x2 + β4y2 + β5x2
1 + β6y2

1 + β7x2
2 + β8y2

2 + interaction terms (10)

To compare uncertainties relating to selection of a linear vs quadratic BRDF model,
TOA reflectances normalized with the proposed four-angle linear model in Equation (6) were
compared to the corresponding results obtained from (i) linear and quadratic models based
on the spherical SZA alone (Figure 5a,b respectively) which is obtained from Reference [16]
and (ii) a multi-linear four-angle model based on the Cartesian coordinates that accounted for
second-order effects and allowed interactions between all angles as in Equation (8) and Equation
(9). The BRDF-normalized TOA reflectances for all models were normalized using Equation (7).
The pre- and post-normalization reflectance uncertainties associated with each model are presented
in Table 4. Clearly, all models provided significant correction at longer wavelengths, as indicated by
the reduction in post-normalization uncertainties. The proposed four-angle linear model provided
comparable normalization to the quadratic SZA model, and both account for more BRDF effect than
the linear SZA model, consistent with the quadratic characteristic shown in Figure 4b. The multi-linear
four-angle interaction model provided the best BRDF model characterization and thus the best
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after-normalization uncertainty. At shorter wavelengths, none of the tested models provided significant
(the difference between before and after normalization uncertainty is within 0.3%) BRDF normalization;
the proposed four-angle model provided essentially the same reduction in uncertainty as the linear
SZA model. Again, the linear four-angle interaction model provided the best BRDF characterization
and normalization; the quadratic and interaction terms appear to better represent the BRDF response.
For future cross-calibration analyses, the multi-linear four-angle interaction model is recommended.

(a) CA band. (b) SWIR1 band.
Figure 5. Before and after Bidirectional Reflectance Distribution Function (BRDF)-normalized TOA
eeflectance of OLI over the Sudan1 site for the CA and SWIR1 bands with the proposed multi-linear
4-angle BRDF model.

Table 4. Percentage temporal uncertainty in OLI TOA reflectance of Libya4 Pseudo-Invariant
Calibration Site (PICS) data before and after BRDF normalization.

Bands Before
Correction

Normalization
with Linear
SZA based

Model
(Spherical

Coordinate)

Normalization
with Quadratic

SZA based Model
(Spherical

Coordinate)

Normalization with
Multi-linear 4 Angle

BRDF Model
(Plane Cartesian

Coordinate)

Normalization
with Quadratic

Multi-linear 4-angle
BRDF Model

with Interactions
(Plane Cartesian

Coordinate)

CA 1.5 1.19 1.08 1.19 0.98
Blue 1.25 1.19 1.12 1.15 0.85

Green 1.08 0.93 0.93 0.89 0.78
Red 1.23 0.85 0.84 0.81 0.74
NIR 1.28 0.73 0.69 0.65 0.65

SWIR1 2.08 0.61 0.60 0.58 0.53
SWIR2 2.48 1.91 1.80 1.76 1.52

One of the reasons behind why the BRDF models should account for more precise BRDF effects
is that Landsat collection 1 data provides pixel-by-pixel view and solar angle information while,
before providing collection 1 data, Landsat metadata only used to provide a scene center angle
information. Sentinel MSI image data products also provide pixel-based angle information but at a
resolution of 5000 m. To obtain more representative pixel-based angle information, the MSI angle data
were resampled to a 10-m spatial resolution. Levels of BRDF normalization similar to the Landsat
correction were obtained with the resampled Sentinel angle information. Once MSI and OLI data are
BRDF normalized, they are ready to do a one-to-one comparison so that the level of TOA of MSI can be
moved to the level of TOA of the reference sensor OLI. The following subsection discuss the process of
calculation of gain and bias for the cross calibration.

2.4. Gain and Offset Calculation

Cross-calibration gains and offsets were calculated from 35 SBAF- and BRDF-corrected scene pairs
from the Saharan PICS and Lake Tahoe sites. The PICS and Lake Tahoe scene pairs were effectively
coincident (i.e., acquired within 30 min of each other), while the scene pairs from the Libyan volcanic
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site were nearly coincident (acquired within 3 days of each other). Table 5 gives the number of scene
pairs selected for each target site.

Table 5. Scene pairs used for cross calibration.

Site WRS2 Path/Row Number of Scene Pairs Coincident/Near Coincident

Libya 1 187/043 4 Coincident
Libya 4 181/040 8 Coincident
Niger 2 188/045 7 Coincident
Sudan 1 177/045 9 Coincident

Lake Tahoe 043/033 2 Coincident
Libya

Volcano 184/043 5 Near Coincident

Least-squares linear regression was performed on the scene pair data to determine the
cross-calibration gain and offset for each band. The regression data were plotted with the estimated
regression line and a 1-to-1 line representing equality between the OLI and MSI TOA reflectances.
Example plots for the blue and SWIR1 bands are shown in Figure 6. With the exception of the blue
band, the estimated offsets from the 1-to-1 line were generally quite small, less than 0.002 reflectance
units in magnitude. The estimated offset from the 1-to-1 line in the blue band was approximately
0.0092 reflectance units.

(a) Blue band. (b) SWIR1 band.
Figure 6. Regression line for the cross calibration of OLI and MSI.

Table 6 presents the results of hypothesis tests on the regression slopes and intercepts (gains
and offsets, respectively) at the 95% significance level. The hypothesis tested here is as follows: null
hypothesis: slope = 0 and bias = 0; alternative hypothesis: slope 6= 0 and bias 6= 0 (forced zero
regression). There is sufficient statistical evidence to conclude that the cross-calibration gains differ
from 1.0 and insufficient statistical evidence to conclude that the offsets are different from 0, with the
exception of the blue band, of which the estimated p-value was approximately 0.0145. As there was
insufficient statistical evidence in general to justify assuming a nonzero offset, alternative regressions
were performed such that the intercepts were forced to pass through 0. The slope hypothesis tests were
rerun at the 95% significance level. Table 7 presents the results of the updated tests. Clearly, as noted
with the full regression hypothesis tests, there is sufficient statistical evidence to conclude that the
cross-calibration gains in all bands differ from 1.0.

2.5. Uncertainty Analysis

Measurement of any physical quantity has an associated level of uncertainty due to inherent
variability in the measured data itself and/or uncertainties related to the techniques and equipment
used to perform the measurement. For this analysis, the uncertainties in the individual sensor
calibrations, RSR response, site variability, and SBAF and BRDF normalizations are the primary
factors determining the overall cross-calibration uncertainty. This section describes these component
uncertainties and the determination of the final cross-calibration uncertainty in greater detail.
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Table 6. Cross-calibration gain statistics with nonzero offset.

Bands Coefficient Estimate Standard Error t-Stat p-Value Null Hypothesis

CA Bias 0.0002 0.0065 0.024 0.981 Failed to Reject

Gain 1.0012 0.0326 30.668 4.31× 10−23 Reject

Blue Bias 0.0092 0.0035 2.605 0.0145 Reject

Gain 0.9741 0.0176 55.384 3.69× 10−30 Reject

Green Bias 0.0011 0.0020 0.509 0.6147 Fail to Reject

Gain 1.0046 0.0075 133.598 8.00× 10−41 Reject

Red Bias 0.0031 0.0019 1.621 0.1161 Fail to Reject

Gain 0.9856 0.0048 206.628 4.03× 10−46 Reject

NIR Bias 0.0016 0.0015 1.031 0.311 Fail to Reject

Gain 0.9923 0.0031 315.917 2.79× 10−51 Reject

SWIR1 Bias 0.0018 0.0019 0.962 0.3442 Fail to Reject

Gain 0.9922 0.0031 315.498 2.89× 10−51 Reject

SWIR 2 Bias 0.0011 0.0017 0.635 0.5301 Fail to Reject

Gain 1.0051 0.0034 297.390 1.51× 10−50 Reject

Table 7. Cross-calibration gain statistics with forced 0 offset.

Bands Estimate of Gain SE t-Stat p-Value Null Hypothesis

CA 1.0020 0.0052 193.63 1.11× 10−46 Reject

Blue 1.0186 0.0044 231.05 6.62× 10−49 Reject

Green 1.0083 0.0024 415.29 2.74× 10−56 Reject

Red 0.9928 0.0019 528.78 2.49× 10−59 Reject

NIR 0.9952 0.0013 770.69 4.49× 10−64 Reject

SWIR1 0.9949 0.0013 741.21 1.39× 10−63 Reject

SWIR2 1.0070 0.0014 711.25 4.60× 10−63 Reject

2.5.1. Uncertainty Due to Sensor Calibration

The cross-calibration procedure described earlier depends on TOA reflectances derived from
radiometrically calibrated sensor image data. Consequently, uncertainty associated with the individual
sensor calibrations is a component in the final cross-calibration uncertainty. To date, the currently
accepted uncertainties in the OLI and MSI calibrations are approximately 3% and 5%, respectively,
as determined by the sensor vendor prelaunchs and confirmed through multiple postlaunch
analyses [30].

2.5.2. Uncertainty Due to Changes in Prelaunch RSR

To achieve various ranges of spectral bands, sensor designers typically install spectral filters over
the focal plane detectors. The relative spectral response of these filters are typically measured for each
band and each detector prior to launch. Due to launch stresses and inevitable component aging during
postlaunch operation, the filter’s passband responses can change in overall magnitude, become less
uniform across the detector array, or allow “cross-talk” between bands (i.e., include a nonzero response
from other bands) and its nominal center wavelength can shift. As a result, the uncertainty in the RSR
can increase over time.

In the OLI, observed RSR uncertainty due to cross-talk effects has been as high as 0.35% in the
VNIR bands and as high as 0.15% in the SWIR bands [27,31]. In the MSI, observed RSR changes are
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primarily due to a spectral nonuniformity manifesting as stripes near detector module boundaries;
the corresponding uncertainty has been found to be between 1% and 2% [30].

2.5.3. Uncertainty Due to Site Nonuniformity

Once the summary TOA reflectance statistics were determined for the ROI from each cloud-free
scene, the corresponding spatial uncertainty was estimated as the ratio of the standard deviation to the
mean (usually known as coefficient of variation). The overall uncertainty due to site nonuniformity
was then obtained from the mean of the scene uncertainties. Table 8 gives the estimated uncertainties
for each site across all bands.

In general, the estimated uncertainties related to site nonuniformity are on the order of
approximately 2% or less, with greater uncertainties estimated at shorter wavelengths. The estimated
site nonuniformity uncertainties for the green band at Libya 1 and Libya 4 are greater than others,
at approximately 1.8%. These results are not surprising, given the 3% or less temporal and spatial
uncertainty constraints used to select the optimal ROI for each site.

Table 8. Uncertainty due to site nonuniformity.

Band Libya4 Libya1 Niger2 Sudan1

CA 1.56 1.77 0.86 0.96
Blue 1.35 1.75 1.13 1.23
Green 1.80 1.79 1.30 1.22
Red 1.36 1.25 1.43 1.29
NIR 1.54 1.26 1.39 1.26
SWIR1 1.35 1.26 0.95 0.88
SWIR2 1.32 1.07 1.07 1.01

2.5.4. Uncertainty due to Solar Position (Overpass Time Differences)

To estimate the uncertainty related to overpass time differences, the TOA reflectance of Libya 4
was simulated in MODTRAN over varying solar elevation and azimuth angles. Summer and winter
overpass dates of 22 June 2017 (DOY 173) and 31 December 2017 (DOY 365) were selected as the
simulation dates, as these dates had the most extreme solar positions. The range of overpass times on
both dates was set at 30 minutes, starting at 09:00 AM UTC (app. 5 minutes after the OLI overpass) and
ending at 09:30 AM UTC (app. 12 minutes after the MSI overpass). Solar position during this interval
was estimated in increments of 30 seconds. The overall uncertainty due to changes in solar position
tended to be larger in the longer wavelength bands, which is 2.27% in the worst case. The degree
of uncertainty is consistent with the degree of uncertainty estimated for the non-BRDF-corrected
reflectances. In addition, there is a seasonal component to the uncertainty: the green, red, and SWIR2
bands have the largest uncertainties during the summer (in that order), while during the winter,
the largest uncertainties are in the red, SWIR2, and green bands (in that order).

2.5.5. Uncertainty due to Atmospheric Effects

To estimate the uncertainty due to changes in atmospheric characteristics, additional MODTRAN
simulations were performed to generate TOA reflectances of Libya 4. For these simulations,
the overpass time was kept constant at 09:30 AM UTC but the water vapor content and aerosol
optical depth were varied. One thousand normally distributed random samples of water vapor content
were generated from a baseline mean value of 2.8 ± 0.7 g/cm2; similarly, one thousand normally
distributed random samples representing aerosol optical depth were generated with respect to a
baseline value of 0.11 at 550 nm with a standard deviation of 0.06. These values of mean and standard
deviation were selected based on the usual variation of AOD (Aerosol Optical Depth) and water
vapor in the site. The largest uncertainty was observed in the SWIR2 band (1.25%), as it tends to be
more sensitive to atmospheric water vapor. The uncertainties in the shorter wavelength bands are
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generally lower; the coastal aerosol band uncertainty is significantly higher (0.45%) than the blue band
uncertainty, as it (i) measures lower signal levels overall and (ii) is more sensitive to atmospheric
aerosol content. For the green, red, NIR, and SWIR1 bands, the estimated uncertainties are between
approx. 0.49% and 0.82%.

2.5.6. Summary of Uncertainty Analysis

Table 9 summarizes the worst-case uncertainties of all sources. The final uncertainty estimate
was calculated using the root sum-of-squares method under the assumption that all sources are
independent of one another using Equation (11). The calibration uncertainties of the OLI and MSI are
3% [27] and 5% [24,32], respectively, and are the most significant contributor to the overall uncertainty.
Uncertainties due to atmospheric variability, target site nonuniformity, and differences in the measured
sensor RSR also contributed significantly to the overall uncertainty. Uncertainties due to spatial
registration errors and spatial resolution mismatch contributed little to the overall uncertainty. Finally,
the uncertainty calculated using the abovementioned method of cross calibration between OLI and
MSI is 6.76%.

Total Uncertainty =
√

Spectral Uncertainty2 + Spatial Uncertainty2 + Temporal Uncertainty2 (11)

Table 9. Summary of all the uncertainties.

Domain Source
of Uncertainty Uncertainty (%%%)

Spectral

Measured
RSR 1.000

Spectral
Filter shift 0.820

Spectral
Bandwidth Change 0.280

Spatial

Registration
Error 0.026

Spatial
resolution Mismatch 0.002

Site 1.800

Temporal

Overpass
Time Difference 2.270

Atmospheric
Variation 1.290

Sensor

MSI
Calibration 5.000

OLI
Calibration 3.000

Total Uncertainty 6.768

3. Validation

Validation of the estimated cross-calibration gains and biases was performed using 61 cloud-free
OLI and 37 cloud-free MSI scenes of the Algodones Dunes target site in southeastern California, USA
(WRS2 path 039, row 037). Summary statistics of the TOA reflectances from the site’s optimal ROI (as
identified with the SDSU algorithm in Reference [28]) were analyzed with the nonparametric Wilcoxon
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Rank Sum test. A nonparametric analysis was used to account for potential non-normality of the
reflectance data distribution.

Figure 7a,b shows boxplots of the blue and NIR band TOA reflectances for both sensors,
respectively. In each figure, the first two boxplots show the OLI and MSI reflectances after SBAF
correction alone. The next two plots show the OLI and MSI reflectances after SBAF and BRDF
normalization. The final two plots show the MSI reflectances after application of gain only and
application of gain and a nonzero bias, respectively. Boxplots of the observed reflectance distribution
were analyzed because the temporal sampling frequency for both sensors was not the same,
especially due to exclusion of cloudy scenes; the difference in the resulting number of usable scenes
for the analysis would adversely bias the estimated mean reflectances towards a lower uncertainty for
the sensor with fewer scenes. The boxplots also suggest the occurrence of band-dependent skewing in
the TOA reflectance distributions away from a normal distribution, providing support for selection of
a nonparametric validation analysis.

(a)

(b)
Figure 7. Boxplots of OLI and MSI TOA before and after BRDF normalization and of MSI TOA after
applying both sets of gain in the Algodones Dunes: (a) blue band and (b) NIR band.

As seen in Figure 7a, the OLI TOA reflectance after BRDF normalization was slightly higher
than the corresponding MSI TOA reflectance after SBAF correction and BRDF normalization.
After application of either set of gains to the MSI reflectances, the differences were decreased by
essentially the same amount. Although the relative difference between the OLI and MSI reflectance
distributions was small, application of the cross-calibration gains and offsets observably improved
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inter-sensor agreement across all bands. Application of either set of cross-calibration gain improved
agreement in all bands except the NIR band (Figure 7b). The Wilcoxon rank sum analysis was
performed assuming a null hypothesis of zero gain or bias vs. the alternative hypothesis of nonzero
gain or bias; the significance level was set to 0.05. The resulting p-values and null hypothesis
rejection/failure to reject decisions for the tests in each band are shown in Table 10.

Based on the test results shown in Table 10, the following observations can be made:

• There was insufficient evidence to indicate differences between OLI and MSI mean TOA
reflectances in the coastal aerosol, red, and SWIR2 bands when either set of gains was applied.
The offsets were not statistically significant, and the gains were essentially equal.

• There was sufficient evidence to indicate differences between OLI and MSI mean TOA reflectances
in the NIR band. Using the gain with offset, the difference was less statistically significant, perhaps
not surprising given the observed outliers in the OLI reflectances.

• There was sufficient evidence to indicate differences in the green band.
• Both tests found sufficient evidence to indicate differences in TOA reflectance in the blue band

when gain with offset was applied. This is likely due to the apparent non-normality observed
in the OLI reflectances. The disagreement with the Wilcoxon test results when gain only was
considered should be expected, as the cross-calibration offset was found to be significant in this
band.

• Both tests found insufficient evidence to indicate differences in reflectance in the SWIR1 band
when gain with offset was considered but sufficient evidence to indicate differences when gain
only was considered. However, the strength of evidence in the gain-only case was very “weak”,
as the p-value was close to 0.05. This may be due to the fact that the variance in MSI reflectance
was slightly larger than the corresponding OLI reflectance variance, which would violate the
assumption of equal variance required in the two-sample t test.

Table 10. Wilcoxon rank sum test results for cross calibration gain applied to MSI reflectances.

Bands Set of Gain Wilcoxon Rank Sum Test

Null Hypothesis p-Value

CA
Gain Failed to Reject 0.2846

Gain and Bias Failed to Reject 0.2529

Blue
Gain Reject 0.0030

Gain and Bias Failed to Reject 0.1410

Green
Gain Failed to Reject 0.0933

Gain and Bias Failed to Reject 0.1007

Red
Gain Failed to Reject 0.4076

Gain and Bias Failed to Reject 0.8719

NIR
Gain Reject 0.0015

Gain and Bias Reject 0.0080

SWIR1
Gain Reject 0.0312

Gain and Bias Failed to Reject 0.1007

SWIR2
Gain Failed to Reject 0.0877

Gain and Bias Failed to Reject 0.1069

With the exception of the SWIR1 band, the OLI reflectance variances were larger than the
corresponding MSI reflectance variances due to the much larger amount of available OLI data.
There is also a noticeable temporal inconsistency in the available MSI reflectance data, which may be
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accounted for by the various changes to the Sentinel 2A data processing flow creating different baseline
versions throughout the lifetime [33]. An additional consideration is that the Algodones Dunes site
is not considered an appropriate PICS for sensor calibration due to its more highly variable surface
characteristics and weather conditions. However, better calibration results were obtained for this site
using the set of cross-calibration gains with offsets in all bands.

Overall, both sets of estimated gains were shown to improve the agreement between sensors for
both PICS and sites such as Algodones Dunes in all bands, with the possible exception of the NIR band.
Based on this analysis, the full gain + offset calibration model yielded “better” agreement between the
MSI and OLI, especially in the blue band given its more significant offset. Table 11 shows the final
cross calibration gains and offsets recommended for each MSI band.

Table 11. Recommended cross calibration gain and bias.

Bands CA Blue Green Red NIR SWIR1 SWIR2

Gain 1.0012 0.9740 1.0046 0.9856 0.9923 0.9922 1.0051

Offset 0.0002 0.0092 0.0010 0.0030 0.0016 0.0018 0.0011

4. Conclusions

A new cross-calibration technique was developed for the Sentinel 2A MSI and Landsat 8 OLI
sensors with the object of increasing data harmonization between them. The cross calibration was
developed using reflectance data from Saharan Desert PICS and dark targets such as Lake Tahoe and
the Libyan volcano. Specific uncertainties associated with each step of the proposed cross calibration
were estimated, as was the overall uncertainty associated with the entire process. Finally, the proposed
cross calibration was validated using image data acquired over the Algodones Dunes site.

For the blue band, the SBAF values for the desert PICS and Libyan volcanic site were within 3%
to 4% of unity and within 8% of unity for Lake Tahoe for the blue band. For the other bands, the SBAF
values were generally within 1% to 2% of unity.

The proposed 4-angle BRDF normalization model demonstrated good potential for normalization
in the longer wavelength bands but less potential for normalization in the coastal aerosol and blue
bands. This can be explained by the fact that these bands are more sensitive to changes in atmospheric
characteristics than direct changes in solar position. Though the relation of reflectance with respect to
SZA and VZA is quadratic to maintain model and correction simplicity, the relationship was assumed
to be linear. Not surprisingly, an extended version of the proposed four-angle model accounting for
quadratic and interaction terms in SZA and VZA provided additional normalization, particularly in
the shorter wavelength bands. Hence, researchers can use this model for a better understanding of the
BRDF property of a surface.

When cross-calibration gains and nonzero offsets are considered, the blue and red bands exhibited
the largest deviations from unity gain, on the orders of −2.6% and −1.44%, respectively. The coastal
aerosol band was found to have the largest regression standard error (0.0326) and lowest corresponding
R-square value (approximately 97%) for this parameter. With the exception of the blue band, the offset
was not found to be statistically significant. When cross-calibration gains were considered with forced
zero offsets, the blue band again exhibited the largest deviation from unity gain, on the order of 1.86%.

Overall, the total uncertainty in the proposed cross calibration is approximately 6.8%. The largest
contribution is due to the uncertainty in each sensor’s calibration (on the order of 3% for OLI and of 5%
for MSI). The next most significant sources contributing to the overall uncertainty were (i) differences
in solar zenith and azimuth angles caused by the difference in local overpass times (on the order of
2.27%); (ii) site nonuniformity (on the order of 1.8%); (iii) differences in the sensor RSR measurement
(on the order of 1% for MSI); (iv) potential shifts in spectral filter center wavelength and/or bandwidth
(on the order of the 0.82% in the SWIR2 band); and (v) uncertainties in image registration error (on
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the order of 0.55% across all bands). Uncertainties due to differences in sensor spatial resolution
contributed much smaller levels to the overall uncertainty.
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