Robust Mosaicking of Lightweight UAV Images Using Hybrid Image Transformation Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Proposed Method
2.3. Evaluation indicators
3. Results and Discussion
3.1. Criterion Determination for Hybrid Transformation Modeling
3.2. Mosaicking Performance Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SFM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Jhan, J.; Rau, J.; Huang, C. Band-to-band registration and ortho-rectification of multilens/multispectral imagery: A case study of MiniMCA-12 acquired by a fixed-wing UAS. ISPRS J. Photogramm. Remote Sens. 2016, 114, 66–77. [Google Scholar] [CrossRef]
- Kim, T.; Im, Y. Automatic satellite image registration by combination of matching and random sample consensus. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1111–1117. [Google Scholar]
- Toutin, T. Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Wolfe, R.E. Automated registration and orthorectification package for Landsat and Landsat-like data processing. J. Appl. Remote Sens. 2009, 3, 033515. [Google Scholar]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Raksuntorn, N.; Orduyilmaz, A.; Bruce, L.M. Automatic registration and mosaicking for airborne multispectral image sequences. Photogramm. Eng. Remote Sens. 2008, 74, 169–181. [Google Scholar] [CrossRef]
- Xu, Y.; Ou, J.; He, H.; Zhang, X.; Mills, J. Mosaicking of unmanned aerial vehicle imagery in the absence of camera poses. Remote Sens. 2016, 8, 204. [Google Scholar] [CrossRef]
- Ren, X.; Sun, M.; Zhang, X.; Liu, L. A Simplified method for UAV multispectral images mosaicking. Remote Sens. 2017, 9, 962. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Ambrosia, V.; Gasiewski, A.J.; Bland, G. Foreword to the special issue on unmanned airborne vehicle (UAV) sensing systems for earth observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 687–689. [Google Scholar] [CrossRef]
- Yahyanejad, S.; Rinner, B. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs. ISPRS J. Photogramm. Remote Sens. 2015, 104, 189–202. [Google Scholar] [CrossRef]
- Moussa, A.; El-Sheimy, N. A fast approach for stitching of aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 769–774. [Google Scholar] [CrossRef]
- Mehrdad, S.; Safdary, M.; Moallem, P. Toward real time UAVs’ image mosaicking. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 941–946. [Google Scholar] [CrossRef]
- Faraji, M.R.; Qi, X.; Jensen, A. Computer vision–based orthorectification and georeferencing of aerial image sets. J. Appl. Remote Sens. 2016, 10, 036027. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, Z.; Liu, F. Stable imaging and accuracy issues of low-altitude unmanned aerial vehicle photogrammetry systems. Remote Sens. 2016, 8, 316. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Guo, B.; Li, D.; Li, L.; Yang, N.; Liu, J.; Zhang, P.; Peng, Z. Multi-view stereo matching based on self-adaptive patch and image grouping for multiple unmanned aerial vehicle imagery. Remote Sens. 2016, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, T.; Shin, D.; Kim, S. Fast and robust geometric correction for mosaicking UAV images with narrow overlaps. Int. J. Remote Sens. 2017, 38, 2557–2576. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T. Development of a robust image mosaicking method for small unmanned aerial vehicle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 183. [Google Scholar] [CrossRef] [Green Version]
- Xiang, R.; Min, S.; Cheng, J.; Lei, L.; Hui, Z.; Xiaodong, L. A method of fast mosaic for massive UAV images. In Proceedings of the SPIE 9260, Land Surface Remote Sensing II, Beijing, China, 8 November 2014; p. 92603W. [Google Scholar]
- Xia, M.; Yao, J.; Xie, R.; Li, L.; Zhang, W. Globally consistent alignment for planar mosaicking via topology analysis. Pattern Recognit. 2017, 66, 239–252. [Google Scholar] [CrossRef]
- Alexandre, A.; Ortiz, R.; Vandergheynst, P. Freak: Fast retina keypoint. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, Providence, RI, USA, 16–21 June 2012; pp. 510–517. [Google Scholar]
- Marzotto, R.; Fusiello, A.; Murino, V. High resolution video mosaicing with global alignment. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004; pp. 692–698. [Google Scholar]
- Zaragoza, J.; Chin, T.; Brown, M.S.; Suter, D. As-projective-as-possible image stitching with moving DLT. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1285–1298. [Google Scholar] [PubMed] [Green Version]
- Kekec, T.; Yildirim, A.; Unel, M. A new approach to real-time mosaicing of aerial images. Robot. Auton. Syst. 2014, 62, 1755–1767. [Google Scholar] [CrossRef]
- Shum, H.; Szeliski, R. Construction and refinement of panoramic mosaics with global and local alignment. In Proceedings of the International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 953–958. [Google Scholar]
- Sawhney, H.S.; Kumar, R. True multi-image alignment and its application to mosaicing and lens distortion correction. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 235–243. [Google Scholar] [CrossRef]
- Fang, X.; Luo, B.; Zhao, H.; Tang, J.; Zhai, S. New multi-resolution image stitching with local and global alignment. IET Comput. Vis. 2010, 4, 231–246. [Google Scholar] [CrossRef]
- Elibol, A.; Gracias, N.; Garcia, R. Fast topology estimation for image mosaicing using adaptive information thresholding. Robot. Auton. Syst. 2013, 61, 125–136. [Google Scholar] [CrossRef]
- Heiner, B.; Taylor, C.N. Creation of geo-referenced mosaics from mav video and telemetry using constrained optimization bundle adjustment. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 5173–5178. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Zhu, Z.; Zhao, W. An automatic panoramic image mosaic method based on graph model. Multimed. Tools Appl. 2015, 75, 2725–2740. [Google Scholar] [CrossRef]
Name | Location | No. of Images | Image Sensor | Focal Length | Pixel Size | Image Size | Overlap | Flight Height |
---|---|---|---|---|---|---|---|---|
Dataset-1A | Incheon, Korea | 11 | Sony EOS 60D | 40 mm | 4.3 µm | 5184 × 3456 | 64–80% | 250 m |
Dataset-1B | Daegu, Korea | 7 | Sony ILCE-7R | 35 mm | 4.9 µm | 4800 × 3200 | 63–78% | 187 m |
Name. | Target Area | Strips/Images | Sensor | Focal Length | Pixel Size | Image Size | Overlaps | Flight Height |
---|---|---|---|---|---|---|---|---|
Dataset-2 | Incheon, Korea | 6/57 | Ricoh GR II | 18 mm | 4.8 µm | 4928 × 3264 | 64–96% | 158 m |
Number of Tiepoints | Model Tiepoints | Check Tiepoints | ||
---|---|---|---|---|
Dataset-1A | Dataset-1B | Dataset-1A | Dataset-1B | |
Minimum | 108 | 142 | 187 | 169 |
Mean | 137 | 187 | 327 | 235 |
Maximum | 215 | 259 | 459 | 270 |
Models | NoT | OAR | TAR | |
---|---|---|---|---|
Dataset-1A | Affine Transformation | |||
Homography | ||||
Dataset-1B | Affine Transformation | |||
Homography |
Number of Tiepoints for Image Pairs | Number of Image Pairs | ||||
---|---|---|---|---|---|
Minimum | Mean | Maximum | Total | ||
Model points | 7 | 208 | 1486 | 132,054 | 684 |
Check points | 10 | 24 | 77 | 6101 | 251 |
Pairwise Modeling | Global Modeling | NoT | OAR | TAR | Reprojection Errors (Pixels) | Distort. (deg.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MST Weight | Base Plane | Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Pairwise | Global | ||
Affine | NoT | NoT | 187 | 742 | 1486 | 0.54 | 0.72 | 0.96 | 0.32 | 0.56 | 0.85 | 51.80 | 475.60 | 6.70 |
Homo. | NoT | NoT | 187 | 742 | 1486 | 0.50 | 0.72 | 0.96 | 0.32 | 0.56 | 0.85 | 15.73 | 59.88 | 5.08 |
Affine | OAR | OAR | 6 | 543 | 1486 | 0.66 | 0.78 | 0.98 | 0.07 | 0.55 | 0.85 | 51.80 | 191.85 | 5.34 |
Homo. | OAR | OAR | 34 | 545 | 1486 | 0.64 | 0.78 | 0.96 | 0.26 | 0.55 | 0.85 | 15.73 | 35.16 | 6.06 |
Hybrid | TAR | Ortho | 143 | 661 | 1486 | 0.61 | 0.76 | 0.96 | 0.38 | 0.60 | 0.85 | 42.68 | 18.78 | 4.01 |
Pairwise Modeling | Global Modeling | NoT | OAR | TAR | Reprojection Errors (Pixels) | Distort. (deg.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MST Weight | Base Plane | Min. | Mean | Max. | Min. | Mean | Max. | Min. | Mean | Max. | Pairwise | Global | ||
Affine | NoT | NoT | 12 | 157 | 290 | 0.09 | 0.37 | 0.61 | 0.01 | 0.24 | 0.48 | 27.87 | 37.57 | 10.12 |
Homo. | NoT | NoT | 12 | 157 | 290 | 0.14 | 0.41 | 0.63 | 0.01 | 0.24 | 0.48 | 40.24 | 43.38 | 25.61 |
Affine | OAR | OAR | 12 | 157 | 290 | 0.09 | 0.37 | 0.61 | 0.01 | 0.24 | 0.48 | 27.87 | 37.57 | 10.12 |
Homo. | OAR | OAR | 12 | 157 | 290 | 0.14 | 0.41 | 0.63 | 0.01 | 0.24 | 0.48 | 40.24 | 43.38 | 25.61 |
Hybrid | TAR | Ortho. | 12 | 157 | 290 | 0.09 | 0.37 | 0.63 | 0.01 | 0.24 | 0.48 | 22.39 | 19.56 | 9.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-I.; Kim, H.-c.; Kim, T. Robust Mosaicking of Lightweight UAV Images Using Hybrid Image Transformation Modeling. Remote Sens. 2020, 12, 1002. https://doi.org/10.3390/rs12061002
Kim J-I, Kim H-c, Kim T. Robust Mosaicking of Lightweight UAV Images Using Hybrid Image Transformation Modeling. Remote Sensing. 2020; 12(6):1002. https://doi.org/10.3390/rs12061002
Chicago/Turabian StyleKim, Jae-In, Hyun-cheol Kim, and Taejung Kim. 2020. "Robust Mosaicking of Lightweight UAV Images Using Hybrid Image Transformation Modeling" Remote Sensing 12, no. 6: 1002. https://doi.org/10.3390/rs12061002
APA StyleKim, J. -I., Kim, H. -c., & Kim, T. (2020). Robust Mosaicking of Lightweight UAV Images Using Hybrid Image Transformation Modeling. Remote Sensing, 12(6), 1002. https://doi.org/10.3390/rs12061002