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Abstract: Currently, water monitoring programs are mainly based on in situ measurements; however,
this approach is time-consuming, expensive, and may not reflect the status of the whole water body.
The availability of Multispectral Imager (MSI) and Ocean and Land Colour Instrument (OLCI) free
data with high spectral, spatial, and temporal resolution has increased the potential of adding remote
sensing techniques into monitoring programs, leading to improvement of the quality of monitoring
water. This study introduced an optical water type guided approach for boreal regions inland and
coastal waters to estimate optical water quality parameters, such as the concentration of chlorophyll-a
(Chl-a) and total suspended matter (TSM), the absorption coefficient of coloured dissolved organic
matter at a wavelength of 442 nm (aCDOM(442)), and the Secchi disk depth, from hyperspectral,
OLCI, and MSI reflectance data. This study was based on data from 51 Estonian and Finnish lakes
and from the Baltic Sea coastal area, which altogether were used in 415 in situ measurement stations
and covered a wide range of optical water quality parameters (Chl-a: 0.5–215.2 mg·m−3; TSM:
0.6–46.0 mg·L−1; aCDOM(442): 0.4–43.7 m−1; and Secchi disk depth: 0.2–12.2 m). For retrieving
optical water quality parameters from reflectance spectra, we tested 132 empirical algorithms. The
study results describe the best algorithm for each optical water type for each spectral range and for
each optical water quality parameter. The correlation was high, from 0.87 up to 0.93, between the in
situ measured optical water quality parameters and the parameters predicted by the optical water
type guided approach.

Keywords: optical water type; chlorophyll-a; total suspended matter; CDOM; Secchi disk depth;
Sentinel-3 OLCI; Sentinel-2 MSI; lakes; Baltic Sea

1. Introduction

Remote sensing offers effective ways to observe spatial and/or temporal variations in water quality,
which is vital for the comprehensive assessment and management of water bodies [1]. Currently,
water monitoring programs are mainly based on in situ measurements; however, considering that
water bodies are dynamic in nature, this method may not reflect the status of the whole water body.
Therefore, it is important to implement techniques that allow more effective monitoring of the aquatic
environment. However, remote sensing of inland and coastal waters can be challenging as they are
independently influenced by different optically significant constituents (OSC)-coloured dissolved
organic matter (CDOM), phytoplankton, and total suspended matter (TSM). All of these OSCs shape
the spectral characteristics that are measured by the remote sensor.

Phytoplankton consists of single-celled, free-floating, photosynthetic organisms that form the base
of the aquatic food web, being an important component of the carbon cycle. Seasonal phytoplankton
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blooms are natural processes in the aquatic environment [2]. However, a rise in phytoplankton biomass
may also be a sign of eutrophication, which indicates increased nutrient inputs [3,4], all of which, in
turn, leads to drastic changes in the aquatic ecosystem (e.g., altered species composition, hypoxia,
decreased water transparency, toxins, problems for fishes) [5,6]. The photosynthetic phytoplankton
pigment chlorophyll-a (Chl-a) is typically used as a proxy for phytoplankton biomass [7]. Chl-a absorbs
strongly in the blue (440–500 nm) and red (650–680 nm) regions of the visible spectrum and reflects in
the green (550 nm) [8]. Remote sensing algorithms for the retrieval of Chl-a are based on the ratios of
reflectance, such as the blue-green ratio [9], which are empirically related to the Chl-a concentration.
However, this is not valid for optically complex waters, where CDOM and TSM also affect the optical
properties of water. Several studies have suggested the use of various combinations of near-infrared
(NIR) and red band combinations instead [10–12].

TSM is used as an indicator of physical forcing, for instance, wind-driven resuspension, land runoff,
as well as dredging operations, which lead to much higher TSM concentrations in the area [13,14]. TSM is
divided into suspended particulate organic matter (SPOM) and suspended particulate inorganic matter
(SPIM). SPOM contains a mixture of planktonic organisms (e.g., phytoplankton, bacterioplankton,
etc.,) and non-living organic matter, and the optical properties are similar to those of CDOM [15].
The presence of terrigenous particles in the water often accounts for the bulk of SPIM. SPIM scatters
light, whereas the scattering depends on the size and shape of the particles—particles < 1 µm scatter
more strongly at shorter wavelengths, while in the case of larger particles, the wavelength dependence
is weak [15,16]. This limits the accuracy of algorithms for estimating TSM. The use of red and/or
NIR wavelengths is suggested to quantify the SPIM part due to strong water absorption in the NIR
wavelengths [17].

CDOM is an optically active fraction of dissolved organic matter [18]. It may have a local origin,
for instance, from degradation of phytoplankton cells, or it may be advected from a distant source,
for example, from organic-rich rivers. CDOM can be used as a proxy for assessing dissolved organic
carbon dynamics, identifying organic pollution in agricultural and urban catchments, and detecting
influences of anthropogenic activities (e.g., land-use change) [19]. Light absorption by CDOM tends to
be the strongest at shorter wavelengths (350–450 nm) of the electromagnetic spectrum. Absorbance
increases exponentially with decreasing wavelengths and diminishes to near-zero in the red wavelength
region [20]. Therefore, the water-leaving reflectance at 440 nm is often used to estimate CDOM from
remote sensing data [21,22].

Secchi disk depth (ZSD) is a measure of water transparency or of the depth of penetration of
visible light in the aquatic environment, which is relevant for primary production [23]. The lower
the Secchi disk depth value, the more turbid and less clear the water. Substances that influence the
transparency of water include phytoplankton, CDOM, and suspended matter (i.e., OSCs). Therefore,
changes in the ZSD also reflect variations in the water properties. Many regional algorithms have been
developed to estimate ZSD from remote sensing reflectance. For optically complex waters, different
spectral band combinations between blue, green, and red bands are often used [24,25].

The launches of Multispectral Imager (MSI) and Ocean and Land Colour Instrument (OLCI) on
board Sentinel-2 and Sentinel-3, respectively, have increased the potential for improved monitoring of
water quality. MSI was primarily designed to support land monitoring for Europe’s environmental
monitoring Copernicus programme, but owing to its high spatial resolution (10, 20, and 60 m),
with 13 spectral bands [26], it has opened new opportunities to investigate smaller water bodies [27]
and different phenomena in more detail (e.g., filaments and eddies of biological activity) [28,29]. OLCI,
on the other hand, is specially designed for water quality monitoring. It is a follow-up of the MERIS
(Medium Resolution Imaging Spectrometer) mission, with improved capabilities. It has a 300 m spatial
resolution with 21 spectral bands optimised to measure ocean colour over optically complex water
bodies [26].

Different approaches have been used to evaluate water quality products from these sensors [30–33].
In the case of optically complex waters, where optical properties are more diverse and can vary over
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short spans of time and space, standard remote sensing products often fail [30,34–36], which has led to
the development of regionally specific algorithms [37]. However, regional algorithms also do not show
consistency in terms of changes in their optical properties [30]. The possible solution could be to use
remote sensing algorithms based on the classification of the optical water types (OWTs). For instance,
a similar OWT-based solution was also used to interpret data from the first satellite ocean color sensor
Coastal Zone Color Scanner (CZCS) [38,39], where the classification of OWTs by Morel and Prieur [40]
was used for the separation of water masses. Using remote sensing to classify waters according to their
optical properties will help to identify relationships between different OSCs and to understand the
biogeochemical processes therein. Several studies have developed optical pre-classification schemes
to select regional algorithms for water quality parameters [41–44]. Uudeberg et al. [45] developed
an OWT classification based on reflectance spectral features for boreal inland and coastal waters.
This classification divides waters into five OWTs dominated by Chl-a, TSM, or CDOM, and the
classification is compatible with data from OLCI and MSI. This OWT classification forms the base of
this study.

The main aim was to find a solution for boreal region inland and coastal waters to estimate optical
water quality parameters from reflectance spectra as an alternative to standard algorithms that do
not work in this region. For this, we chose the OWT guided approach and tested various published
empirical algorithms to find the best algorithm for every OWT for different spectral ranges for different
optical water quality parameters. Our study included optical water quality parameters, such as the
concentration of Chl-a and TSM, the absorption coefficient of CDOM at a wavelength of 442 nm
(aCDOM(442)), the Secchi disk depth; and spectral ranges, such as in situ measured hyperspectral
reflectance with 1 nm steps, the OLCI, onboard the Sentinel-3 satellite, bands, and the MSI, onboard
the Sentinel-2 satellite, bands. Since there are still many problems associated with the removal of the
atmospheric influence from satellite imagery; this work is based on in situ measured reflectance spectra
and in situ measured reflectance spectra convolved into OLCI and MSI bands using sensor spectral
response functions. Furthermore, the OWT guided approach was later applied to OLCI images to map
the OWT guided approach and selected algorithms’ strengths and weaknesses.

2. Materials and Methods

2.1. Study Sites and In Situ Dataset

This study was based on data from 415 in situ measurement stations gathered from the boreal
region inland and coastal waters from April to September in 2012–2019. Data were collected from
51 different Estonian and Finnish lakes and from three coastal locations in the Baltic Sea (Figure 1).
The first area in the Baltic Sea was Pärnu Bay, located on the west coast of Estonia, where the mean
depth is 4.7 m (maximum 8 m) and the water is well mixed. Since Pärnu Bay is shallow, open to
winds, and has sandy, clayey, and muddy bottom, wind-derived resuspension can lead to quite high
and changeable TSM concentrations. The second area is located in the Gulf of Finland region, where
the mean depth is 37 m, with a maximum of 123 m (Paldiski Deep), and where the water column is
vertically stratified [16]. The area is prone to upwelling and downwelling events in the summer and
autumn [46,47]. The third area is located in the Western Gotland Basin close to the coast of Sweden.
The Baltic Sea reaches its greatest depth in the Western Gotland Basin, Landsort Deep (459 m), but in
our measurement stations, the water depth was up to 30 m. In situ lake data were mainly collected
from Estonian lakes (42 lakes), from small lakes, such as Lake Holstre (0.04 km2), to large lakes, such as
Lake Peipsi (3555 km2); from lakes with highly transparent water, such as Lake Nohipalo Valgjärv
(Secchi disk depth 5 m), to lakes with very brown-water, such as Nohipalo Mustjärv (Secchi disk depth
0.3 m) (Figure 2).
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Figure 2. Examples of the colour of water photographed in different Estonian lakes: (a) reddish-brown
water in Nohipalo Mustjärv (Secchi disk depth 0.3 m; aCDOM(442) 41.1 m−1); (b) greenish water in
Lake Tamula (Secchi disk depth 0.5 m); and (c) highly transparent water in lake Nohipalo Valgjärv
(Secchi disk depth 5 m).

The in situ dataset contains data from measurements of water-leaving reflectance (R(λ)),
concentrations of OSC (such as the concentration of Chl-a and TSM, and aCDOM(442)), Secchi



Remote Sens. 2020, 12, 931 5 of 35

disk depth, and different environment parameters, such as wind speed, waves heights, cloudiness,
and sun condition. The Secchi disk depths were measured on the shadowed side of the vessel with a
white disk with a 30 cm diameter or with a 20 cm diameter white disk with holes. The wind speed was
measured with a handheld mechanical anemometer. The wave height, cloudiness, and sun condition
were estimated by visual inspection.

2.1.1. Water-Leaving Reflectance (R(λ))

R(λ) was measured with TriOS-RAMSES hyperspectral radiometers using two different setups.
The first setup was used in 233 in situ measurement stations and the second setup was used on 182 in
situ measurement stations.

For the first setup, the above the water system consisted of three TriOS-RAMSES hyperspectral
radiometers: two radiance sensors measuring upwelling radiance (Lt(λ)) and downwelling radiance
(Lsky(λ)) in the same azimuthal plane, and one irradiance sensor measuring downwelling irradiance
(Ed(λ)) [48]. The radiance sensor’s nadir/zenith angles of 40◦ were fixed in the frame. The measured
spectral range was 350–900 nm. The recording interval was once per 10-second interval. The solar
azimuth angle was kept between 90◦ and 180◦ and was adjusted manually during measurements.
The calculation of R(λ) followed the protocol of REVAMP [48] and included the next steps. First, all
measured radiance and irradiance spectra were linearly interpolated to a 1 nm step. Secondly, R(λ)
was calculated as

R(λ) = π
Lt(λ) − ρ(w)Lsky(λ)

Ed(λ)
, (1)

where ρ(w) is the sea surface reflectance as function of wind speed (w, m·s−1) and calculated as
ρ(w) = 0.0256 + 0.00039w + 0.000034w2 [48]. Finally, the median R(λ) was calculated and used as the
representative of the measurement station.

For the second setup, the profiling system consisted of two TriOS-RAMSES hyperspectral
radiometers: one irradiance sensor measuring downwelling irradiance (Ed(λ)) and one radiance sensor
measuring upwelling radiance (Lu(λ)). Measurements were made above the water, below the water
surface, and at different depths in the water column. In this study, only above-the-water measurements
were used. The measured spectral range was 350–900 nm. At every depth, five recordings were made.
The R(λ) calculations included three steps. First, all measured spectra were linearly interpolated to a 1
nm step. Secondly, R(λ) was calculated as

R(λ) = π
Lu(λ)

Ed(λ)
. (2)

Finally, the median R(λ) was calculated and used as the representative of the in situ measurement station.
To study the implementation capacity of the OWT guided approach for retrieving water quality

parameters, the R(λ) spectra representing the in situ measurement stations were also convolved
into MSI and OLCI bands using spectral response functions (SRFs) of satellite sensor bands and
calculated according to Uudeberg et al. [45]. The SRFs for the MSI and OLCI were taken from [49]
and [50], respectively.

2.1.2. Analysis of Water Samples

Water samples for measurements of the concentrations of OSC were collected from the water
surface (up to 0.5 m depth) according to ISO 5667-3 [51] and analysed according to ISO 10260 [52].
After the samples were filtered through Whatman GF/F filters that retain fine particles down to
0.7 µm, and the pigments were extracted with 5 ml of 96% ethanol, the concentrations of Chl-a were
measured spectrophotometrically with a Hitachi U-3010 spectrophotometer and calculated according
to Jeffrey and Humphrey [53]. After the samples were filtered through a filter with a pore size
of 0.2 µm, CDOM was measured in a 5 cm optical cuvette against distilled water with a Hitachi
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U-3010 spectrophotometer and calculated according to Lindell et al. [54]. The concentrations of TSM
were measured gravimetrically after the samples were filtered through pre-washed, pre-ashed, and
pre-weighed Whatman GF/F filters.

The water samples collected during July 2018 in the Gulf of Finland had some differences in
analysis. For TSM, a fixed amount of water (0.750 L) was filtered through pre-combusted and
pre-weighted Millipore membrane filters with a pore size of 0.45 µm. For Chl-a, the Thermo Helios γ
spectrophotometer was used and the concentrations of Chl-a were calculated according to Lorenzen [55].

2.2. Classification of Optical Water Types (OWTs)

The classification of OWTs introduced by Uudeberg et al. [45] was used to determine the OWT.
The classification divides the boreal region inland and coastal waters into five OWTs, each linked
to the specific bio-optical condition in order to reflect the dominance of group OSC concentrations.
The Clear OWT corresponds to water with the highest transparency and lowest OSC concentrations.
In the Moderate OWT, the concentrations of OSC have risen, but none of them dominate. In the Turbid
OWT, the TSM is the dominant OSC and the R(λ) values are the highest. In the Very Turbid OWT,
Chl-a is the dominant OSC. The strong Chl-a peak, which is associated with blooms, occur in the red
part of spectra. The Brown OWT water is dominated by CDOM.

The OWT classification is based on reflectance spectra key features, such as the wavelength of the
maximum, the slopes, and the amplitude of R(λ). The maximum likelihood of individual spectra to
reference spectra using a combination of spectral correlation similarity and modified spectral angle
similarity was used to determine the OWT for measured R(λ) spectra. The OWTs were assigned on
each in situ measurement of R(λ) and the in situ measurements of R(λ) convolved into MSI and OLCI
sensor bands.

2.3. Algorithms for Retrieving Water Quality Parameters

OWT guided approach was used for finding models for retrieving water quality parameters, such
as the concentration of Chl-a, the concentration of TSM, the aCDOM(442), and Secchi disk depth, from
R(λ) spectra. Since the inland and coastal waters are optically complex and cover large variations of
OSC concentrations, the OWT guided approach allows to find the best model for different bio-optical
conditions. In this study, we used 132 previously published algorithms from manuscripts that were
available for us, including 60 for Chl-a, 39 for TSM, 21 for CDOM, and 12 for Secchi disk depth. Details
of used algorithms are shown in Appendix A Table A1.

Repeated K-fold Cross-validation [56] was the statistical method to build and select the model
using published algorithms for optical water quality parameter and the R package caret [57] by Max
Kuhn was used for implementation. The Repeated K-fold Cross-validation contains following steps:
(1) the data are divided randomly into k folds of equal size; (2) the k-1 folds are used for the model
training; (3) the hold-out fold is used for the model validation; and (4) steps (1)–(3) are repeated n times.
Finally, based on a selected statistical metric, the model with the best average score is assigned as the
final model. Ten folds, ten repeats, and the root mean squared error as metrics were used in this study.

The ranking system used a combination of scaled and threshold-based statistical metrics to select
the model for retrieving the optical water quality parameter from R(λ) per OWTs. Statistical metrics,
such as RMSE, RMSLE, MAE, MAPE, and BIAS, were scaled from 0 (maximum value) to 1 (minimum
value); the R2 was scaled from 0 (minimum value) to 1 (maximum value); and for the p-value, the
thresholds were used as 1 for p-value under 0.001, 0.5 for p-value between 0.001 and 0.05, and 0, when
p-value was over 0.05. Finally, all values were summed up and the model with the highest score was
selected as the model for future retrievals. The following statistical metrics were used in this study and
they are described in detail in R package Metrics [58].

• RMSE (Root Mean Squared Error)—represents the average difference between the measured
values and the values predicted by the model. This metric indicates the fit of the model to the
data. The lower the RMSE, the better the model.
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• RMSLE (Root Mean Squared Logarithmic Error)—represents the average difference between the
log-transformed measured values and the log-transformed values predicted by the model. This
metric does not penalize big differences when both the predicted and the measured values are big
numbers. This is useful when the measurement values are in a wide range. The lower the RMSLE,
the better the model.

• MAE (Mean Absolute Error)—represents the average absolute difference between the measured
and predicted model values. This metric measures the model prediction error and is robust against
the effect of outliers. The lower the MAE, the better the model.

• MAPE (Mean Absolute Percentage Error)—measures the average absolute percentage error from
the measured value and the values predicted by the model divided by the measured value. This
metrics shows the model prediction accuracy. The lower the MAPE, the better the model.

• R2—represents the squared correlation between the measured values and the predicted values by
the model. This metric shows the percentage of variance explained by the model. The closer to 1
the R2, the better the model.

• BIAS—represents the average amount by which the measured value is greater than predicted.
The lower the bias, the better the model.

• p-value—tests the null hypothesis and shows if the model is statistically significant or not. A low
p-value (<0.05) suggests that the model is statistically significant.

To find the best solutions also for the MSI and OLCI sensors R(λ) spectral range, all calculations
were made separately on R(λ) spectra range with a 1 nm step, R(λ) spectra convolved into OLCI sensor
bands, and R(λ) spectra convolved into MSI sensor bands. Since the OLCI and MSI band locations
were sometimes different than the band locations described in algorithms, the closest possible band
was selected in case of OLCI or MSI were lacking exact bands.

2.4. Satellite Dataset

To assess the ability of the OWT guided approach to obtain optical water quality parameters
from satellite data, the full resolution Level-1 images acquired in 2018 and 2019 by OLCI, onboard the
Sentinel-3 satellite, were used. Level-1 images were processed with the Case-2 Regional CoastColour
(C2RCC) atmospheric correction processor v1.15, based on the previous study’s recommendation [45].
Image primary processing, such as subsetting the region of interest and atmospheric correction
processing, and downloading was done using the ESTHub Processing Platform, which is the Estonian
Land Board’s national mirror site for Copernicus satellite data and processing [59]. After that, the OWT
were determined for every pixel of the satellite images. Finally, the OWT-based models described in
Tables 2–5 were used to find the optical water quality parameters.

3. Results

3.1. Description of In Situ Dataset

Our in situ dataset from 415 in situ measurement stations covers wide ranges of the OSC
concentrations and Secchi disk depth. However, datasets of all four parameters are significantly
non-Gaussian. Table 1 shows the skewness of Chl-a and CDOM are 4.3 and 4.1, respectively.
This indicates that their distributions are not symmetrical and are skewed strongly towards higher
values. Moreover, Table 1 allows us to assume based on the high maximum and median values of the
Chl-a, CDOM, and Secchi disk depth, that the dataset includes also measurements from extreme optical
conditions for the boreal region. For example, the high transparency (Secchi disk depth up to 12.2 m)
was measured in July in the Gulf of Finland during an upwelling event. Therefore, water masses with
different properties (low OSC concentrations, high transparencies, and cold temperatures (~4 ◦C)) were
present compared to the usual situations. High CDOM values around 40 m−1 were measured multiple
times through the vegetation period in dark-water small Estonian lakes. Chl-a values of 215.2 mg·m−3
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and 168.4 mg·m−3 were captured during the blooming situation in large Lake Peipsi. However, in the
dataset, there is a lack of measurement stations where the TSM was dominated by mineral particles.
For instance, the median proportion of suspended particulate organic matter in TSM is 76%.

Table 1. Descriptive statistics of the measured in situ optical water quality parameters.

Parameter No. of Stations Mean Median Range Skewness

Chl-a 1 415 19.0 13.6 0.5–215.2 4.3
TSM 2 415 7.6 5.7 0.6–46.0 1.9

aCDOM(442) 3 415 3.9 2.0 0.4–43.7 4.1
Secchi depth, m 411 1.8 1.4 0.2–12.2 2.1

1 Concentration of chlorophyll a, mg·m−3. 2 Concentration of total suspended matter, mg·L−1. 3 Absorption
coefficient of coloured dissolved organic matter at a wavelength of 442 nm, m−1.

Figure 3 shows the in situ measured R(λ) at 415 stations classified into various OWTs, and Figure 4
shows the range of the variations of the OSC concentrations and Secchi disk depth for OWTs. The OWT
for each in situ measured R(λ) was determined by the maximum likelihood of the individual spectrum
to type averages. The Clear OWT was assigned to the R(λ) of 100 measurement stations. The maxima
of R(λ) were between 540 and 580 nm and the mean maximum value was 0.012. Waters were the most
transparent (maximum Secchi disk depth 12.2 m) and with the lowest OSC concentrations. However,
in Figure 3, one Clear OWT station has a too high maximum value at 550 nm (0.06) compared to the
rest of the Clear OWT spectra, but inspection of the station OSC concentration does not confirm a
misclassification. The Moderate OWT was the most frequent in our dataset, with the R(λ) of 124 stations
being assigned to this OWT. The Turbid OWT was assigned to the R(λ) of 98 measurement stations.
This OWT is dominated by TSM and the highest TSM values were expected to be in this OWT. However,
in this dataset, the highest TSM values were in stations assigned to the Very Turbid OWT. TSM is
mainly dominated by SPOM in our dataset, and especially in these high TSM valued Very Turbid OWT
stations (88% of TSM was SPOM). These waters are generally dominated by Chl-a, and stations are
classified correctly. The Very Turbid OWT was assigned to the R(λ) of 51 measurement stations, which
were dominated by Chl-a. The Brown OWT was assigned to the R(λ) of 42 stations. These stations had
very low R(λ) values (median value 0.003), with maxima in the red part of the spectrum, and very high
aCDOM(442) values with a median at 13.6 m−1.
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Figure 4. The range of the variation of the concentrations of optically significant constituents, such
as chlorophyll-a (Chl-a), total suspended matter (TSM), absorption coefficient of coloured dissolved
organic matter at a wavelength of 442 nm (aCDOM(442)), and Secchi disk depth by optical water types.

The accuracies of OWT estimations, based on in situ measurements of R(λ) convolved into MSI
and OLCI sensor bands using sensor-specific SRFs, were 96% for OLCI and 91% for MSI. As the goal
was to use the OWT guided approach to retrieve optical water quality parameters, it was important
to understand the capability to assign the same OWT on in situ measurements of R(λ) regardless of
spectral scale (Ramses with 1 nm step resolution, and distinct bands for OLCI and MSI). Confusion
matrices were constructed between the OWTs assigned on in situ measurements of R(λ) (set as the true
OWT value) and those which were assigned based on in situ measurements of R(λ) convolved into
various sensor bands (set as the predicted OWT value). As shown in Figure 5, the OLCI confusion
matrix demonstrates a strong distinction for Clear and Brown OWTs (100% correct assignment) and
the highest rate of misclassification in Very Turbid OWT, with 8% of spectra being misclassified as
Brown or Turbid OWT. The MSI confusion matrix illustrates a strong distinction for Very Turbid,
and Brown OWTs (100% and 98% correct assignment respectively); however, 16% of Moderate OWT
spectra were misclassified.

3.2. Predictive Models for Concentration of Chlorophyll-a (Chl-a)

The best models to retrieve the concentration of Chl-a from the R(λ) spectra for each OWT and
each spectral ranges, such as Ramses with 1 nm step, and OLCI and MSI bands, are defined in Table 2.
We tested 60 published empirical algorithms to retrieve the Chl-a values and the best ones for all the
cases were chosen based on our model ranking system described in paragraph 2.3. As a result, the four
best models for each OWT and each spectral range are shown on radar plots in Appendix B Figure A1.
The linear regression models showed a better performance for all the cases.

For the Clear OWT, in the case of Ramses and OLCI, the model CHL69 using the Gitelson et al. [60]
algorithm had the highest score, and, for MSI, the model using the MERIS maximum chlorophyll
index by Gower et al. [61] was the most suitable. The model CHL97 using the Mishra and Mishra [62]
algorithm was the best for Moderate OWT for Ramses and in Very Turbid OWT, for all the different
spectral ranges. For Turbid OWT, all three spectral ranges were described best with different models
with different approaches: for Ramses, the model using the Kutser et al. [63] algorithm based on
two-band ratio approach; for OLCI, the model using the Gitelson et al. [64] algorithm based on a
three-band approach, and for MSI, the model using the Zimba and Gitelson [11] four-band approach.
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For Brown OWT, retrieving the concentration of Chl-a from R(λ) was the most difficult and the
coefficient of determination suggested that the regression model explained about 40% of the variance
observed in the in situ measured data. However, all models were statistically significant based on the
p-values.
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Figure 5. The accuracy of the optical water type (OWT) assignment using in situ measurements of R(λ)
convolved into Ocean and Land Colour Instrument (OLCI) and Multispectral Imager (MSI) bands by
normalized confusion matrices. The rows show the true OWTs determined from in situ measurements
of R(λ) using Ramses, and the columns show the predicted OWTs determined from the convolved R(λ).
The diagonal elements represent the situation where the predicted OWT is the same as the true OWT
(i.e., the correct classification).

The correlations shown in Figure 6, between the concentration of Chl-a predicted using OWT
based models and in situ measured concentration of Chl-a, were strong, such as 0.93 for Ramses
and OLCI, and 0.92 for MSI. Overall, the predicted concentrations of Chl-a were the most accurate
compared to other optical water quality parameters explored in this study.
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Figure 6. Comparison of concentrations of Chl-a estimated from in situ measured R(λ) spectra using the
optical water type (OWT) guided approach and in situ measured concentrations of Chl-a for different
spectral scales: (left to right) Ramses with 1 nm resolution, OLCI, and MSI. OWTs are indicated by
colours and the line shows 1:1 relationship.
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Table 2. The best published chlorophyll-a (Chl-a) predictive models tested in this study for each optical
water types (OWT) and for sensors with different spectral scales. Descriptions of the algorithms used
for these models are found in Table A1, and the acronyms and abbreviations are in Table A2. The band
central wavelength is used to mark the Ocean and Land Colour Instrument (OLCI) and Multispectral
Imager (MSI) models bands.

OWT Model Model Formula ST 1 R2 p-value

Ramses

Clear CHL69 Chla = 5956.0·
(
R709− R665+R754

2

)
+ 3.84 LR 0.79 < 2.2E-16

Moderate CHL97 Chla = −84.42·
((

1
R705 −

1
R665

)
/
(

1
R705 + 1

R665

))
+ 18.69 LR 0.62 < 2.2E-16

Turbid CHL88 Chla = 55.85·
(

R702
R674

)
− 43.08 LR 0.79 < 2.2E-16

Very Turbid CHL97 Chla = −180.6·
((

1
R705 −

1
R665

)
/
(

1
R705 + 1

R665

))
+ 19.89 LR 0.88 < 2.2E-16

Brown CHL67 Chla = 46.56·
(

R748
R667

)
− 8.310 LR 0.41 4.3E-06

OLCI

Clear CHL69 Chla = 6097.2·
(
R708.75− R665+R753.75

2

)
+ 3.998 LR 0.78 < 2.2E-16

Moderate CHL65 Chla = −33.91·
(

R673.75
R708.75

)
+ 54.07 LR 0.67 < 2.2E-16

Turbid CHL98 Chla = 177.4·
(

1
R673.75 −

1
R708.75

)
·R753.75 + 20.68 LR 0.79 < 2.2E-16

Very Turbid CHL97 Chla = −173.6·
((

1
R708.75 −

1
R665

)
/
(

1
R708.75 + 1

R665

))
+ 25.6 LR 0.89 < 2.2E-16

Brown CHL67 Chla = 42.96·
(

R753.75
R665

)
− 5.470 LR 0.38 5.9E-06

MSI

Clear CHL101 Chla = 4367.1·
(
R705−R665− 705−665

740−665 ·(R740−R665)
)
+ 2.658 LR 0.61 < 2.2E-16

Moderate CHL65 Chla = −40.83·
(

R665
R705

)
+ 61.71 LR 0.60 < 2.2E-16

Turbid CHL57 Chla = −184.1·
(

R740
R705 −

R740
R665

)
+ 21.20 LR 0.63 < 2.2E-16

Very Turbid CHL65 Chla = −171.4·
(

R665
R705

)
+ 183.6 LR 0.89 < 2.2E-16

Brown CHL67 Chla = 46.98·
(

R740
R665

)
− 9.360 LR 0.40 6.0E-06

1 Statistical technique.

3.3. Predictive Models for Concentration of Total Suspended Matter (TSM)

The best models to retrieve the concentrations of TSM from R(λ) spectra for each OWT and for
each spectral range are defined in Table 3. We tested 39 published empirical algorithms to retrieve the
concentrations of TSM. The model TSM18 using the Kutser et al. [65] algorithm based on the reflectance
spectra peak at 810 nm was the most well represented based on our models ranking system results.
This model suited well for the MSI sensor, where it had the highest score for Turbid, Very Turbid,
and Brown OWTs and according to Figure A2, for the Moderate OWT, it had the second place due to
its low bias contribution. Model TSM18 had high scores for Ramses and the OLCI spectral scale for
Turbid, Very Turbid, and Brown OWTs. For the Clear OWT, the model TSM39 using Zhang et al. [66]
developed log-transformed multiple linear regression algorithm, based on a combination of 488, 555,
and 645 nm information, was the best for all sensors. The Moderate OWT had the lowest coefficient
of determination for all the spectral ranges from all the OWTs; however, all models were statistically
significant based on p-values.

The correlations between concentrations of TSM predicted using OWT based models and in situ
measured concentrations of TSM values were strong: 0.87, 0.89, 0.88 for Ramses, OLCI, and MSI
respectively. However, Figure 7 shows that model tends to underestimate strongly points with high
TSM values (from 15 to 25 mg·L−1), present in Moderate OWT.

3.4. Predictive Models for Absorption Coefficient of Coloured Dissolved Organic Matter (CDOM)

The best models to retrieve the aCDOM(442) from the R(λ) spectra for each OWT and for each
spectral range, are defined in Table 4. We tested 21 published empirical algorithms to retrieve the
CDOM values. The power regression models (referred also as a log–log regression model) of the
reflectance ratio showed better performance for all the spectral ranges in Clear, Moderate, and Turbid
OWTs. For instance, the reflectance ratio 665/560 nm described by Menken et al. [67] was the best
for OLCI and MSI; however, for Ramses, the model using the ratio 560/660 nm had the highest score.
For the Very turbid OWT, the linear regression model CDOM119, using the Ammenberg et al. [68]
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algorithm, was the best for all spectral ranges. Furthermore, this model received high scores also in
Clear, Moderate, and Turbid OWTs for OLCI and MSI, as shown in Figure A3. For the Brown OWT, the
log-transformed multiple linear regression models had the best performance; however, this time the
model for MSI used different reflectances compared to other spectral ranges. The p-value showed that
all models were statistically significant, but only the Clear OWT coefficient of determination suggested
that the regression model explained 74% of the variance observed in the in situ measured data.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 36 
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Figure 7. Comparison of concentrations of TSM estimated from in situ measured reflectance spectra
using the optical water type (OWT) guided approach and in situ measured concentrations of TSM for
sensors with different spectral scales: (from left) Ramses with 1 nm resolution, OLCI, and MSI. OWTs
are indicated by colours and the line shows 1:1 relationship.

Table 3. The best published total suspended matter (TSM) predictive models tested in this study
for each optical water type (OWT) and for sensors with different spectral scales. Descriptions of the
algorithms used for these models are found in Table A1, and acronyms and abbreviations, in Table A2.
The band central wavelength is used to mark the Ocean and Land Colour Instrument (OLCI) and
Multispectral Imager (MSI) models bands.

OWT Model Model Formula ST 1 R2 p-value

Ramses

Clear TSM39 log TSM = −30.20·R555 + 74.14·R645− 0.991·R488
R555 + 0.784 LT-MLR 0.47 5.7E-13

Moderate TSM38 log TSM = 0.264· log R555 + 14.71·R645− 0.189· log R488
R555 + 0.941 LT-MLR 0.36 1.5E-11

Turbid TSM20 ln TSM = 0.685· ln R620·R681
R510 + 4.852 LLR 0.69 < 2.2E-16

Very Turbid TSM18 TSM = 3748.6·
(
R810− R770+R840

2

)
+ 5.515 LR 0.68 9.8E-14

Brown TSM18 TSM = 5673.9·
(
R810− R770+R840

2

)
+ 2.178 LR 0.61 8.4E-10

OLCI

Clear TSM39 log TSM = −24.36·R560 + 80.66·R665− 1.096·R490
R560 + 0.840 LT-MLR 0.47 3.5E-13

Moderate TSM18 TSM = −8090.1·
(
R865− R778.75+R865

2

)
+ 1.825 LR 0.45 < 2.2E-16

Turbid TSM18 TSM = −7664.9·
(
R865− R778.75+R865

2

)
+ 3.250 LR 0.69 < 2.2E-16

Very Turbid TSM38 log TSM = −0.249· log R560 + 26.20·R665− 0.483· log R490
R560 + 0.095 LLR 0.60 4.0E-09

Brown TSM31 ln TSM = 311.8·
(
R708.75− R753.75+R665

2

)
+ 1.165 LT-LR 0.49 2.0E-07

MSI

Clear TSM39 log TSM = −24.0·R560 + 79.02·R665− 1.152·R490
R560 + 0.892 LT-MLR 0.49 4.0E-14

Moderate TSM38 log TSM = 0.279· log R560 + 16.24·R665− 0.215· log R490
R560 + 0.958 LT-MLR 0.36 3.4E-10

Turbid TSM18 TSM = 7037.6·
(
R783− R783+R865

2

)
+ 3.464 LR 0.64 < 2.2E-16

Very Turbid TSM18 TSM = 5416.1·
(
R783− R783+R865

2

)
+ 6.259 LR 0.68 < 2.2E-16

Brown TSM18 TSM = 7573.5·
(
R783− R783+R865

2

)
+ 2.748 LR 0.54 1.8E-08

1 Statistical technique.

The correlations between the predicted aCDOM(442), using OWT based models, and the in situ
measured aCDOM(442) were strong, 0.88 for Ramses and 0.87 for both OLCI and MSI. Still, as shown in
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Figure 8, the capability to estimate the Brown OWT high CDOM values over 20 m−1 was non-existent
and needs future investigation.

Table 4. The best published coloured dissolved organic matter (CDOM) predictive models tested in
this study for each optical water type (OWT) and for sensors with different spectral scales. Descriptions
of the algorithms used for these models are found in Table A1, and the acronyms and abbreviations, in
Table A2. The band central wavelength is used to mark the Ocean and Land Colour Instrument (OLCI)
and Multispectral Imager (MSI) models bands.

OWT Model Model Formula ST 1 R2 p-value

Ramses

Clear CDOM131 ln CDOM = −1.4124· ln
(

R560
R660

)
+ 1.042 LLR 0.74 < 2.2E-16

Moderate CDOM124 ln CDOM = −1.470· ln
(

R570
R655

)
+ 1.111 LLR 0.36 1.4E-13

Turbid CDOM124 ln CDOM = −2.187· ln
(

R570
R655

)
+ 1.225 LLR 0.45 4.2E-14

Very Turbid CDOM119 CDOM = 3.063·R664
R550 + 1.096 LR 0.42 2.3E-07

Brown CDOM117 ln CDOM = −107.8·R485− 0.245·R485
830 + 3.371 LT-MLR 0.38 8.1E-05

OLCI

Clear CDOM122 ln CDOM = 1.352· ln
(

R665
R560

)
+ 1.070 LLR 0.74 < 2.2E-16

Moderate CDOM122 ln CDOM = 1.108· ln
(

R665
R560

)
+ 1.070 LLR 0.33 7.1E-12

Turbid CDOM122 ln CDOM = 1.490· ln
(

R665
R560

)
+ 1.265 LLR 0.32 6.8E-10

Very Turbid CDOM119 CDOM = 3.128·R665
R560 + 1.266 LR 0.38 2.3E-06

Brown CDOM117 ln CDOM = −127.6·R485− 0.140·R485
830 + 3.377 LT-MLR 0.41 1.6E-05

MSI

Clear CDOM122 ln CDOM = 1.429· ln R665
R560 + 1.059 LLR 0.74 < 2.2E-16

Moderate CDOM122 ln CDOM = 1.330· ln R665
R560 + 1.086 LLR 0.42 1.6E-14

Turbid CDOM122 ln CDOM = 1.338· ln R665
R560 + 1.151 LLR 0.31 1.9E-09

Very Turbid CDOM119 CDOM = 3.292·R665
R560 + 0.947 LR 0.39 8.7E-08

Brown CDOM133 ln CDOM = −62.93·R665− 0.020·R560
R490 + 3.107 LT-MLR 0.41 2.2E-05

1 Statistical technique.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 36 

 

OLCI      
Clear CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.352 · ln ൬𝑅665𝑅560൰ + 1.070 LLR 0.74 < 2.2E-16 

Moderate CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.108 · ln ൬𝑅665𝑅560൰ + 1.070 LLR 0.33 7.1E-12 

Turbid CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.490 · ln ൬𝑅665𝑅560൰ + 1.265 LLR 0.32 6.8E-10 

Very Turbid CDOM119 𝐶𝐷𝑂𝑀 = 3.128 · 𝑅665𝑅560 + 1.266 LR 0.38 2.3E-06 

Brown CDOM117 ln 𝐶𝐷𝑂𝑀 = −127.6 · 𝑅485 − 0.140 · 𝑅485830 + 3.377 LT-MLR 0.41 1.6E-05 

MSI      
Clear CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.429 · ln 𝑅665𝑅560+1.059 LLR 0.74 < 2.2E-16 

Moderate CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.330 · ln 𝑅665𝑅560+1.086 LLR 0.42 1.6E-14 

Turbid CDOM122 ln 𝐶𝐷𝑂𝑀 = 1.338 · ln 𝑅665𝑅560 + 1.151 LLR 0.31 1.9E-09 

Very Turbid CDOM119 𝐶𝐷𝑂𝑀 = 3.292 · 𝑅665𝑅560 + 0.947 LR 0.39 8.7E-08 

Brown CDOM133 ln 𝐶𝐷𝑂𝑀 = −62.93 · 𝑅665 − 0.020 · 𝑅560𝑅490 + 3.107 LT-MLR 0.41 2.2E-05 

1 Statistical technique. 

 
Figure 8. Comparison of the absorption coefficients of coloured dissolved organic matter (CDOM) at 
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water type (OWT) guided approach and in situ measured absorption coefficients of CDOM at a 
wavelength of 442 nm, for sensors with different spectral scales: (from left) Ramses with 1 nm 
resolution, OLCI, and MSI. OWTs are indicated by colours and the line shows a 1:1 relationship. 
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each sensor with different spectral ranges are defined in Table 5. We tested 12 published empirical 
algorithms to retrieve the Secchi disk depth. The model ZSD104, using the Kloiber et al. [69] algorithm 
based on log-transformed multiple regression of form 485/660 nm ratio and the additional 485 nm, 
had the best performance based on our ranking system. In all spectral ranges, the ZSD104 model was 
the best for Clear, Moderate, and Turbid OWTs and was also in the top four models for Very Turbid 
and Brown OWTs, as shown in Figure A4. For Very Turbid OWT, the model ZSD112 using Wu et al. 
[70] algorithm, based on multiple linear regression of five variables, had the highest score for all 
spectral ranges. For the Brown OWT, retrieving the Secchi disk depth from R(λ) was the most difficult 
and the highest correlation of all tested models was with ZSD109 using Hellweger et al. [71] 
algorithm, based on the reflectance at 660 nm. However, the coefficient of determination was around 
0.28, but a p-value lower than 0.0005 shows that the model is still statistically significant. 

Correlations between the Secchi disk depth predicted using OWT based models and the in situ 
measured Secchi disk depth values were strong, 0.91 for all the tested spectral ranges. However, as 

Figure 8. Comparison of the absorption coefficients of coloured dissolved organic matter (CDOM) at a
wavelength of 442 nm estimated from the in situ measured reflectance spectra using the optical water
type (OWT) guided approach and in situ measured absorption coefficients of CDOM at a wavelength
of 442 nm, for sensors with different spectral scales: (from left) Ramses with 1 nm resolution, OLCI,
and MSI. OWTs are indicated by colours and the line shows a 1:1 relationship.

3.5. Predictive Models for Secchi Disk Depth

The best models to retrieve the Secchi disk depth value from R(λ) spectra for each OWT and for
each sensor with different spectral ranges are defined in Table 5. We tested 12 published empirical
algorithms to retrieve the Secchi disk depth. The model ZSD104, using the Kloiber et al. [69] algorithm
based on log-transformed multiple regression of form 485/660 nm ratio and the additional 485 nm, had
the best performance based on our ranking system. In all spectral ranges, the ZSD104 model was the
best for Clear, Moderate, and Turbid OWTs and was also in the top four models for Very Turbid and
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Brown OWTs, as shown in Figure A4. For Very Turbid OWT, the model ZSD112 using Wu et al. [70]
algorithm, based on multiple linear regression of five variables, had the highest score for all spectral
ranges. For the Brown OWT, retrieving the Secchi disk depth from R(λ) was the most difficult and the
highest correlation of all tested models was with ZSD109 using Hellweger et al. [71] algorithm, based
on the reflectance at 660 nm. However, the coefficient of determination was around 0.28, but a p-value
lower than 0.0005 shows that the model is still statistically significant.

Correlations between the Secchi disk depth predicted using OWT based models and the in situ
measured Secchi disk depth values were strong, 0.91 for all the tested spectral ranges. However, as
shown in Figure 9, some higher Clear OWT Secchi disk depth estimations from the R(λ) spectra had
a lower accuracy. These in situ measurements were made during an upwelling event in the Gulf
of Finland.

Table 5. The best Secchi disk depth predictive models using published algorithms tested in this study
for each optical water types (OWT) and for sensors with different spectral scales. Descriptions of the
algorithms used for building models are found in Table A1, and the acronyms and abbreviations, in
Table A2. The band central wavelength is used to mark the Ocean and Land Colour Instrument (OLCI)
and Multispectral Imager (MSI) models bands.

OWT Model Model Formula ST 1 R2 p-value

Ramses

Clear ZSD104 ln SDD = 0.617·R485
R660 − 43.58·R485 + 0.759 LT-MLR 0.60 < 2.2E-16

Moderate ZSD104 ln SDD = 1.685·R485
R660 − 63.01·R485− 0.265 LT-MLR 0.64 < 2.2E-16

Turbid ZSD104 ln SDD = 2.98·R485
R660 − 41.32·R485− 1.294 LT-MLR 0.74 < 2.2E-16

Very Turbid ZSD112 SDD = −5.63e−07
·
ln R555

R488 − 0.018·R645+R858
R469 − 15.57·R555 + 1.07 MLR 0.48 9.6E-07

Brown ZSD109 ln SDD = 0.268· ln R660 + 1.024 LLR 0.27 0.0005

OLCI

Clear ZSD104 ln SDD = 0.573·R490
R665 − 42.89·R490 + 0.742 LT-MLR 0.62 < 2.2E-16

Moderate ZSD104 ln SDD = 1.801·R490
R665 − 60.42·R490− 0.510 LT-MLR 0.65 < 2.2E-16

Turbid ZSD104 ln SDD = 2.960·R490
R665 − 39.95·R490− 1.451 LT-MLR 0.69 < 2.2E-16

Very Turbid ZSD112 SDD = −7.03e−06
·
ln R560

R490 − 0.027·R645+R858
R469 − 14.63·R555 + 1.08 MLR 0.48 1.6E-06

Brown ZSD109 ln SDD = 0.269· ln R665 + 1.037 LLR 0.28 0.0003

MSI

Clear ZSD104 ln SDD = 0.602·R490
R665 − 45.09·R490 + 0.728 LT-MLR 0.64 < 2.2E-16

Moderate ZSD104 ln SDD = 1.821·R490
R665 − 63.25·R490− 0.478 LT-MLR 0.68 < 2.2E-16

Turbid ZSD104 ln SDD = 2.784·R490
R665 − 38.22·R490− 1.367 LT-MLR 0.63 < 2.2E-16

Very Turbid ZSD112 SDD = −6.81e−06
·
ln R560

R490 − 0.030·R645+R858
R469 − 17.11·R555 + 1.14 MLR 0.51 9.7E-09

Brown ZSD109 ln SDD = 0.271· ln R665 + 1.033 LLR 0.29 0.0002
1 Statistical technique.
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are indicated by colours and the line shows a 1:1 relationship. 

4. Discussion 

Figure 9. Comparison of the Secchi disk depth estimated from in situ measured reflectance spectra
using the optical water type (OWT) guided approach and in situ measured Secchi disk depth for
sensors with different spectral scales: (from left) Ramses with 1 nm resolution, OLCI, and MSI. OWTs
are indicated by colours and the line shows a 1:1 relationship.
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4. Discussion

Our OWT guided approach to estimate optical water quality parameters, such as Chl-a, TSM,
CDOM, and Secchi disk depth, from R(λ) spectra, can be the solution to monitor boreal region inland
and coastal waters health operatively. Water bodies can vary in shape, size, depth, and also by water
colour. As shown in Table 1, our in situ dataset from 52 different water bodies demonstrates that the
optical water quality parameters can vary largely. For example, the concentration of the Chl-a range
was from 0.5 to 215.2 mg·m−3, the TSM range was from 0.6 to 46.0 mg·L−1, the range for aCDOM(442)
was 0.4 to 43.7 m−1, and for the Secchi disk depth the range was from 0.2 to 12.2 m. Therefore, to assume
to find one algorithm per optical water quality parameter to fit with a good accuracy for all the water
bodies may be a bit too optimistic.

Optically complex waters are independently influenced by Chl-a, TSM, and CDOM [8]. Therefore,
these can be the reasons why standard remote sensing algorithms often fail in optically complex
waters [72,73], and there are many regional or waterbody based [25,65,70,74,75] empirical algorithms.
However, optical properties can vary strongly even inside one waterbody, for instance, during the
one day in Lake Peipsi the concentration of Chl-a varied from 16.8 to 215.2 mg·m−3, and in addition
there is seasonal and interannual variability; therefore, studies have suggested, that more detailed
approach would be beneficial [76,77]. The use of OWT guided approach, which first classifies water
into different OWTs, reflecting different bio-optical conditions, and then applies that OWT specific
algorithm to estimate the optical water quality parameters, may be one of the possible solutions.

In the context of selecting the best empirical algorithm for predicting the optical water quality
parameter from R(λ) spectra, this study showed, as expected, that the choice depends on the OWT
and also the sensor spectral range. As the R(λ) spectra are the basis for all the future calculations and
developments, the error in R(λ) may multiply in the final product or lead to incorrect conclusions [78].
Moreover, it is known that atmospheric correction over inland and coastal areas is difficult [79–81]
and the result still can contain large errors [30,45,77,82,83]. Therefore, in this study, to eliminate as
many errors as possible and focus on finding the best algorithm, we used in situ measured R(λ)
spectra with 1 nm step and for OLCI and MSI we recalculated in situ measured R(λ) using SRFs into
OLCI and MSI bands. The same approach has been used before [65]. However, it is still important
to remember that in situ measured R(λ) is not the absolute truth and can contain large errors for
example due to variable weather conditions [45,84–86]. For example, R(λ) measurements are difficult
to perform well in CDOM-rich waters, which often leads to strong overestimation in the blue region of
the spectrum [45,65]. Moreover, the presence of sunlight increases the R(λ) values in the blue part of
the spectrum.

Linear regression models were used for predicting the concentration of Chl-a. Compared to
other optical water quality parameter model selections, Chl-a varies the most between OWTs and
the spectral range. The widely used [10,63,68,87–92] ratio 700/670 nm with a high correlation for
high-biomass waters, was the best model only for Turbid OWT with a Ramses spectral range. However,
the two variables ratio approach was the best for all the spectral ranges in Brown OWT, OLCI and MSI
Moderate OWT, Ramses Turbid OWT, and MSI Very Turbid OWT. Matthews [93] suggests for lower
Chl-a concentrations to use the ratio of the blue and green. In our best-performing models, all variables
were selected from the red and NIR spectral range, with different combinations. Moreover, broadly
used [10,30,61,87,94,95] algorithms that include chlorophyll fluorescence information using values of
reflectance spectra around 681 nm were not the best for any cases. The Brown OWT retrieving models
coefficients of determination were about 40%, thus needing future investigation and improvement.

From the 39 tested empirical algorithms to retrieve the concentration of TSM, the model TSM18
using the Kutser et al. [65] algorithm based on a reflectance peak at 810 nm was the best for MSI for
Turbid, Very Turbid, and Brown OWTs. It also suited well for Ramses and OLCI Turbid, Very Turbid,
and Brown OWTs. The authors of the algorithm pointed out the usefulness of NIR spectral part for
retrieving the TSM in turbid waters was already known from previous studies [96,97]. Similarly,
Matthews [93] discussed the potential of NIR spectral part for retrieving the concentration of TSM in
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the empirical algorithms overview article. However, despite being developed in waters with high
mineral particles, Kutser et al. [65] showed the usefulness of NIR part of the spectra in waters, where
the majority of TSM was organic, as in our dataset. Often, algorithms use the knowledge that near
560 nm is the phytoplankton absorption minimum; therefore, the reflectance is sensitive to changes
in the TSM [93]. However, Zhang et al. [66] demonstrated that reflectance at 550 nm is sensitive to
TSM changes in less turbid waters and reflectance at 645 nm is sensitive in turbid waters. For Clear
OWT, the model TSM39 using Zhang et al.’s [66] developed log-transformed multiple linear regression
algorithm, based on a combination of 488,555, and 645 nm information, was the best for all sensors.

For the aCDOM(442) the power regression predictive models of the reflectance ratio showed
better performances for all the spectral ranges in Clear, Moderate, and Turbid OWTs. For instance,
the reflectance ratio of 665/560 nm was the best for OLCI and MSI; however, for Ramses, the model
using the ratio of 560/660 nm was preferred. These ratios are quite commonly used for predictions;
however, as shown in Table A1, they are used with different statistical techniques, such as linear
regression [67,68,91,98,99], and power regression [67,75,98,99]. For Brown OWT, the log-transformed
multiple linear regression model using the Brezonik et al. [100] algorithm, using 488 nm and 830 nm,
showed the highest results for all spectral ranges. However, Figure 8 shows that the Brown OWT
model is not sensitive for higher than 20 m−1 values and strongly underestimates in situ measured
values in that region. Details of the algorithm in Table A1 also show that the algorithm development
range was up to 19.7 m−1. Overall, none of these tested CDOM algorithms’ data ranges were up to
42 m−1 as were the in situ measurements present in our dataset. Therefore, future work is needed to
find or develop algorithms that are suitable for these kinds of humic lakes. Additionally, reflectance
measurements, both in situ and satellite, are difficult to perform well for these very dark lakes. Since
uncertainties are higher in the blue part, the longer wavelengths are preferred for algorithms from the
reflectance measurement side.

The predictive models for the Secchi disk depth analysis showed that the model ZSD104, using
the Kloiber et al. [69] algorithm based on log-transformed multiple regression of form 485/660 nm ratio
and the additional 485 nm, was the best model for all spectral ranges in Clear, Moderate, and Turbid
OWTs. As shown in Table A1, this algorithm was developed for data ranges up to 5 m; and from
Clear, Moderate, and Turbid OWTs, 96% of measurements fit within the limits. Furthermore, in the
Clear OWT the maximum measured Secchi disk depth is 12.2 m and Figure 9 shows a lower accuracy
predicting high Secchi disk depths. However, studies using the same algorithm have demonstrated
that this can be used up to 15 m [101,102]. Therefore, it may be that upwelling and optically extreme
conditions are the main reason for the lower prediction accuracy. For the Very Turbid OWT, the model
ZSD112 using Wu et al. [70] algorithm, based on multiple linear regression of five variables, was the
best. For the Brown OWT, the best model was based on reflectance at 660 nm. Matthews [93] also
suggested, that for humic lakes, a single band algorithm may work; however, the blue part of spectrum
was suggested. Overall, the Brown OWT best model was not good enough and needs future work.

The presented OWT guided approach to estimate optical water quality parameters was applied to
OLCI images acquired in the Pärnu Bay region to investigate ecosystem seasonal and spatial changes
and responses to weather effects. As shown in Figure 10, the left column includes OWT estimations
and optical water quality parameters derived images during the most common situations, when higher
values were present close to coast; however, the bay was mainly classified into Clear OWT. There was
a storm event with a daily average wind speed of 11.2 m·s−1 and the gusts over 21 m·s−1 at 22th June
2018. The image captured the day after the storm showed the changes in the bay. As the bay is shallow
with a soft bottom, the wind caused resuspension of sediments into the water column and as a result
the bay was then classified into Turbid or Moderate OWTs. Derived images (Figure 10) showed an
increase of TSM concentration (due to both inorganic and organic part) and drastic decrease in Secchi
disk depth. This indicates changes in the underwater light field. The Chl-a values rose, but we do not
have a reason to believe that this was actually true in this case, and we assume the overprediction
of the Chl-a due to TSM side-effect. Firstly, finding empirical algorithms that effectively separate the
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signals from TSM and Chl-a can be challenging [93], and secondly, our datasets mainly include TSM
dominated by SPOM in situ measurements. In the future, it is necessary to add more SPIM dominated
in situ measurements to train our Turbid OWT models. Five days later (right column of Figure 10)
conditions had returned to near those on the 17th, though with higher Chl-a values, possibly due to the
added nutrients from the sediments. These changes are quick in nature and remain often uncaptured
by traditional monitoring programs, adding more value to remote sensing possibilities.

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 36 

 

secondly, our datasets mainly include TSM dominated by SPOM in situ measurements. In the future, 
it is necessary to add more SPIM dominated in situ measurements to train our Turbid OWT models. 
Five days later (right column of Figure 10) conditions had returned to near those on the 17th, though 
with higher Chl-a values, possibly due to the added nutrients from the sediments. These changes are 
quick in nature and remain often uncaptured by traditional monitoring programs, adding more value 
to remote sensing possibilities. 

 
Figure 10. Changing the optical water types (OWTs) and optical water quality parameters (such as 
the Chl-a, TSM, CDOM, and Secchi disk depth) before and after a strong wind (day average wind 
speed 11.2 m·s−1 and the gust over 21 m·s−1) event on 22 June 2018 in Pärnu Bay captured by OLCI 

Figure 10. Changing the optical water types (OWTs) and optical water quality parameters (such as the
Chl-a, TSM, CDOM, and Secchi disk depth) before and after a strong wind (day average wind speed
11.2 m·s−1 and the gust over 21 m·s−1) event on 22 June 2018 in Pärnu Bay captured by OLCI images
processed with the C2RCC AC processor. Water quality parameters are estimated from R(λ) using
OWT based algorithms.

Additionally, exploring our OWT guided approach applied to OLCI images, we discovered
that sometimes artificial lines emerged as a transition from one OWT model to another OWT model.
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As changes in natural water are usually continuous, but we are trying to push these into very strict
limits, then these lines are expected to happen. In another study, fuzzy logic is often used to blend
algorithms for optical water quality parameter algorithms [41,103,104]. Since the OWT classification
we used uses similarity calculations, each pixel had a similarity assessment for every OWT. For the
purpose of blending OWT models, the combination of similarities as weights and the threshold for the
selection of when to add another OWT’s model in blending calculations was giving promising results,
but are in need of more detailed studies in the future.

5. Conclusions

Currently, water monitoring programs are mainly based on in situ measurements; however,
considering that water bodies are dynamic in nature, this method may not reflect the status of the
entire water body. Remote sensing offers effective ways to observe the spatial and temporal variations
in water quality. Moreover, the launch of MSI and OLCI, and the free availability of their data with
high spectral, spatial, and temporal resolution, have increased the potential to add remote sensing
techniques into monitoring programs and to improve the quality of monitoring water. However,
remote sensing of inland and coastal waters can be challenging as they are independently influenced by
Chl-a, TSM, and CDOM. In this study, we introduce an OWT guided approach to estimate the optical
water quality parameters, such as the concentration of Chl-a and TSM, the aCDOM(442), and the
Secchi disk depth from the R(λ) spectra with different spectral ranges. We focused our study on the
boreal region inland and coastal waters; however, we showed the large variation of optical water
quality parameters.

We tested 132 previously published empirical algorithms to find the best existing solution for
each OWT (Clear, Moderate, Turbid, Very Turbid, and Brown) and for different spectral ranges, such as
Ramses with a 1 nm step, OLCI bands, and MSI bands. We demonstrated that the suitability of the
algorithm depends on the OWTs and spectral ranges. It is necessary to select an appropriate algorithm
for the region of interest; therefore, using only one algorithm for optically complex waterbodies does
not work, and we suggest using the OWT guided approach as the possible of pre-selection method
for choosing right algorithm. The OWT guided approach can provide a basis for understanding
the seasonal and spatial variabilities of water bodies and can be an additional technique in water
monitoring programs to improve the quality of monitoring the optical water quality parameters.
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Appendix A

Table A1. The algorithms used to retrieve the optical water quality parameters, such as chlorophyll-a (Chl-a), total suspended matter (TSM), absorption coefficient of
coloured dissolved organic matter (CDOM), and Secchi disk depth (ZSD). In algorithms that were designed for satellite sensors, the central wavelength is used to the
mark sensor band. Descriptions of acronyms and abbreviations are found in Appendix C Table A2. The data range is given in parametric units: for Chl-a mg·m3, for
TSM mg·L−1, for the absorption coefficient of CDOM at wavelength shown in brackets m−1, and for Secchi disk dept m.

Model Algorithm Stat. Tech. Sensor Data Range Waterbody Country Reference

TSM1 R858 P2R MODIS 0.3–145.6 Bay of Biscay France Petus et al. (2010) [105]

TSM2 R858/R645 LR MODIS 77–2182 Gironde Estuary France Chavula et al. (2009) [106]

TSM3 R645 LR MODIS 1–55 Gulf of Mexico USA Miller, McKee (2004) [107]

TSM4 R850/R550 P3R Radiometric 13–985 Gironde Estuary France Doxaran et al. (2002) [108]

TSM5 (R485-R830)/(R660-R830) LT-LR LS TM 0.7–23 Southern Finland lakes Finland Härmä et al. (2001) [109]

TSM6 R702 LR AISA 0.7–32 Finnish lakes Finland Kallio et al. (2001) [110]

TSM7 R709.5) LR AISA 0.7–32 Finnish lakes Finland Kallio et al. (2001) [110]

TSM8 R551 LR MODIS 1.2–110.3 Southern North Sea Nechad et al. (2010) [111]

TSM9 R850/R550 LR Radiometric 13–985 Gironde Estuary France Doxaran et al. (2002) [108]

TSM10 R702-R751 LR AISA 0.7–32 Finnish lakes Finland Kallio et al. (2001) [110]

TSM11 (R560-R520)/(R560+R520) LLR Radiometric 1–66 Hungarian, Bulgarian, Germany lakes Gitelson et al. (1993) [112]

TSM12 R709-R779 LR MERIS 0.7–23 Finnish lakes Finland Härmä et al. (2001) [109]

TSM13 R490/R645 LLR Radiometric Baltic Sea - southern Poland Woźniak (2014) [113]

TSM14 R555/R645 LLR Radiometric Baltic Sea - southern Poland Woźniak (2014) [113]

TSM15 (R545+R645)/2 LLR SPOT, LS TM Frisian lakes Netherlands Dekker et al. (2002) [114]

TSM16 (R545+R645)/2 LR SPOT, LS TM Frisian lakes Netherlands Dekker et al. (2002) [114]

TSM17 max(R700–R720)-(R646+R770)/2 LR Radiometric 0.75–63.33 Estonian lakes Estonia Kutser et al. (2016) [65]

TSM18 R810-(R770+R840)/2 LR Radiometric 0.75–63.33 Estonian lakes Estonia Kutser et al. (2016) [65]

TSM19 R635 LR SEVIRI 2–100 North Sea – Belgian coast Belgium Neukermans et al. (2009) [115]

TSM20 R620·R681/R510 LLR New Caledonia lagoon,
Cienfuegos Bay, Suva Harbour and Laucala Bay New Caledonia, Cuba, Fiji Ouillon et al. (2008) [116]

TSM21 R620·R681/R412 LLR New Caledonia lagoon,
Cienfuegos Bay, Suva Harbour and Laucala Bay New Caledonia, Cuba, Fiji Ouillon et al. (2008) [116]

TSM22 R681 P2R New Caledonia lagoon,
Cienfuegos Bay, Suva Harbour and Laucala Bay New Caledonia, Cuba, Fiji Ouillon et al. (2008) [116]

TSM23 R443/R670 LLR New Caledonia lagoon,
Cienfuegos Bay, Suva Harbour and Laucala Bay New Caledonia, Cuba, Fiji Ouillon et al. (2008) [116]

TSM24 R560, R660, R830 MLR LS TM 11.5–33.5 Lake Reelfoot USA Wang et al. (2006) [74]

TSM25 R709/R754 LT-LR OLCI 1.2–9.14 Baltic Sea Estonia Toming et al. (2017) [30]
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Table A1. Cont.

Model Algorithm Stat. Tech. Sensor Data Range Waterbody Country Reference

TSM26 R745/R490 LT-LR GOCI 8–5275 Lake Taihu China He et al. (2019) [117]

TSM27 R560 LR MSI 5–38.76 Gorky Reservoir Russia Molkov et al. (2019) [118]

TSM28 R560 P2RR MSI 5–38.76 Gorky Reservoir Russia Molkov et al. (2019) [118]

TSM29 R740 P2R MSI 5–38.76 Gorky Reservoir Russia Molkov et al. (2019) [118]

TSM30 R740/R705 P2R MSI 5–38.76 Gorky Reservoir Russia Molkov et al. (2019) [118]

TSM31 R705-(R740+R665)/2 LT-LR MSI 5–38.76 Gorky Reservoir Russia Molkov et al. (2019) [118]

TSM32 R908 LR WV 2 >820 inland waters in Deqing County China Shi et al. (2018) [119]

TSM33 R427 LR WV 2 >820 inland waters in Deqing County China Shi et al. (2018) [119]

TSM34 R658 LR WV 2 >820 inland waters in Deqing County China Shi et al. (2018) [119]

TSM35 R840/R545 LT-LR SPOT 35–2000 Gironde estuary France Doxaran et al. (2002) [108]

TSM36 R840/R645 LT-LR SPOT 35–2000 Gironde estuary France Doxaran et al. (2002) [108]

TSM37 (R550+R670)/(R550/R670) LT10-LR Han et al. (2006) [120]

TSM38 log(R555), R645, log(R488/R555) LT10-MLR Gulf of Naples Italy Tassan (1993) [121]

TSM39 R555, R645, R488/R555 LT10-MLR Yellow Sea China Zhang et al. (2010) [66]

CHL40 R443/R551 LR MODIS 0.1–0.4 Lake Malawi Malawi Chavula et al. (2009) [106]

CHL41 R688/R674 LR AISA 1.0–100 Finnish lakes Finland Kallio et al. (2001) [110]

CHL42 (1/R665-1/R708)/R753 LR MERIS 0.63–65.51 Taganrog Bay, Azov Sea Russia Moses et al. (2009) [122]

CHL43 R705/R664 LR CASI 2.5–18.9 Lake Märalen Sweden Ammenberg et al. (2002) [68]

CHL44 R550 LR CASI 2.9–50.6 Lakes Erken and Mälaren Sweden Flink et al. (2001) [87]

CHL45 R708/R678 LR CASI 2.9–50.6 Lakes Erken and Mälaren Sweden Flink et al. (2001) [87]

CHL46 R708/R678, R643/R628 MLR CASI 2.9–50.6 Lakes Erken and Mälaren Sweden Flink et al. (2001) [87]

CHL47 R700/R670 LLR Radiometric 6.3–58.2 Lake Chagan China Duan et al. (2007) [88]

CHL48 R560/R660 LLR LS TM ∼5–50 New York Harbour USA Hellweger et al. (2004) [71]

CHL49 (R485-R660)/R560 LR LS TM 3.0–6.0 Lake Garda Italy Brivio et al. (2001) [123]

CHL50 ln(R485), ln(R560) LT-MLR LS TM 3.0–6.0 Lake Garda Italy Brivio et al. (2001) [123]

CHL51 R485/R560 LLR LS TM Arabian Sea Dwivedi, Narain (1987) [124]

CHL52 R660/R485 LLR LS TM 2.0–70.0 Haifa Bay Israel Gitelson et al. (1996) [125]

CHL53 max(R400–R900)/R670 LR Radiometric 5.1–185 Lake Kinneret Israel Yacobi et al. (1995) [126]

CHL54 R830/R660 LR LS TM 5.1–185 Lake Kinneret Israel Yacobi et al. (1995) [126]

CHL55 R560 LLR LS TM 1.0–50.3 Lake Michigan USA Lathrop, Lillesand(1986) [127]

CHL56 R710/R670 LT-LR CASI-2 ∼4–63 Barton Broad UK Hunter et al. (2008) [128]

CHL57 (1/R650-1/R710)·R740 LR Radiometric 107–3078 Tamar Estuary UK Zimba, Gitelson (2006) [11]

CHL58 R704/R672 LR Radiometric 3–185 Inland waters Neatherlands Gons (1999) [90]

CHL59 sum(R670–R850) LR 21.0–280 Carter Lake USA Schalles et al. (1998) [129]

CHL60 sum(R670–R730) LR Radiometric 3.1–7.3 Lake Kinneret Israel Gitelson et al. (1994) [130]



Remote Sens. 2020, 12, 931 21 of 35

Table A1. Cont.

Model Algorithm Stat. Tech. Sensor Data Range Waterbody Country Reference

CHL61 R700/R680 LR AMMS 2–79 Tennessee Vally USA Dierberg, Carriker (1994) [89]

CHL62 R688/R681 LR AISA 1.0–100 Finnish lakes Finland Kallio et al. (2001) [110]

CHL63 R702/R664 LR AISA 22–130 Gulf of Finland Finland Koponen et al. (2007) [91]

CHL64 R665/R754 LR OLCI 0–6.02 Baltic Sea Toming et al. (2017) [30]

CHL65 R674/R709 LR OLCI 0–6.02 Baltic Sea Toming et al. (2017) [30]

CHL66 R674/R754 LR OLCI 0–6.02 Baltic Sea Toming et al. (2017) [30]

CHL67 R748/R667 LR MODIS Dnieper River, Sea of Azov Russia Moses et al. (2009) [92]

CHL68 (R490-R665)/R560 LR LS TM 3-7 Lake Kinneret Israel Mayo et al. (1995) [131]

CHL69 R709-(R665+R754)/2 LR Gitelson et al. (1992) [60]

CHL70 R709-R754 LR Gitelson et al. (1992) [60]

CHL71 R705-(R665+R740)/2 LR MSI 3.6–72.9 Estonian lakes Estonia Toming et al. (2016) [27]

CHL72 R709/R681 LR OLCI 5.99–117.54 Manguaba Brazil Lins et al. (2017) [10]

CHL73 R709/R665 LR OLCI 5.99–117.54 Manguaba Brazil Lins et al. (2017) [10]

CHL74 R705/R665 LR MSI 5.99–117.54 Manguaba Brazil Lins et al. (2017) [10]

CHL75 (1/R681-1/R709)/R674 LR OLCI 5.99–117.54 Manguaba Brazil Lins et al. (2017) [10]

CHL79 (1/R650-1/R710)·R740 LR 4.4–3078 National Warm-water Aquaculture Center, Stonevill USA Zimba, Gitelson (2006) [11]

CHL80 (R485-R660)/R560 LR LS TM 3.0–7.0 Lake Kinneret Israel Mayo et al. (1995) [131]

CHL81 log(R710/R670) LR CASI-2 Barton Broad UK Hunter et al. (2008) [128]

CHL82 log(R483)/log(R660) LR LS ETM+ 1.14–23.23 Pensacola Bay Florida Han, Jordan (2005) [132]

CHL83 R483/R660 LT-LR LS TM 2.1–183 Minnesota lakes USA Brezonik et al. (2005) [102]

CHL84 R483/R660 LR LS TM 2.1–183 Minnesota lakes USA Brezonik et al. (2005) [102]

CHL85 R830/(R485+R560+R830) LR LS TM 1.8–18 Sweden Lindell et al. (1999) [54]

CHL86 R660/R565 LR LS TM 66.0–188.59 Lake Reelfoot USA Wang et al. (2006) [74]

CHL87 R700/R670 LR Radiometric 2–79 Tennessee USA Dierberg, Carriker (1994) [89]

CHL88 R702/R674 LR AISA 2.6–100 Finnish lakes Finland Kutser et al. (1999) [63]

CHL89 R681-R665-(R709-R665)·((681-665)/(709-665)) LR MERIS Gower et al. (1999) [94]

CHL90 (1/R662-1/R693)/(1/R740-1/705) LR 0.98–89.23 Lake Taihu China Le et al. (2009) [12]

CHL91 R708/R665 LR MERIS 1.0–100 Finnish lakes Finland Kallio et al. (2001) [110]

CHL92 R710/R688 LR AISA 1.0–100 Finnish lakes Finland Kallio et al. (2001) [110]

CHL93 R719/R667 LR Radiometric 0–0.2 Lake Tai China Jiao et al. (2006) [133]

CHL94 R550/R590 LR Radiometric 0.6–70 Baltic Sea Darecki et al. (2003) [72]

CHL95 R555/R645 LR MODIS 1–100 Baltic Sea Woźniak (2014) [113]

CHL96 (1/R681-1/R709)/(1/R753-1/R709) LR MERIS Zhou (2011) [95]
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Model Algorithm Stat. Tech. Sensor Data Range Waterbody Country Reference

CHL97 (1/R705-1/R665)/(1/R705+1/R665) LR MERIS 1–60 Mishra, Mishra (2012) [62]

CHL98 (1/R670-1/R710)·R750 LR Radiometric 2.07–183.5 Fremont State lakes USA Gitelson et al. (2009) [64]

CHL99 log(max(R443/R560, R490/R560,
R510/R560)) P4R MERIS OC4E for MERIS

CHL100 log(max(R443/R547, R488/R547)) P4R MODIS OC3M for MODIS

CHL101 R709-R681-(709-681)/(753-681)·(R753-R681) LR MERIS Gower et al. (2008) [61]

CHL102 max(R670-R850) LR Radiometric 20–280 Lake Carter USA Schalles et al. (1998) [129]

ZSD103 R560 LLR LS TM 0.5–9.0 Lake Michigan USA Lathrop, Lillesand (1986) [127]

ZSD104 R485/R660, R485 LR-MLR TS TM ~0.5–5 Minnesota lakes USA Kloiber et al. (2002) [69]

ZSD105 R485/R560 LR LS TM 4.6–6.8 Lake Iseo Italy Giardino et al. (2001) [134]

ZSD106 (R488-R748)/(R667-R748) LR LS TM 0.4–7.0 Southern lakes Finland Härma et al. (2001) [109]

ZSD107 R560, R660 MLR LS TM 0.16-0.33 Reelfoot Lake USA Wang et al. (2006) [74]

ZSD109 R660 LLR LS TM 0.45–2 New York Harbour USA Hellweger et al. (2004) [71]

ZSD110 R485/R660 LR LS ETM+ 0.5–5.5 Southern Lakes Finland Kallio et al. (2008) [99]

ZSD111 R660/R560 LT-LR LS TM 0.22–0.79 Lake Chagan, Xinmiao, Kuli China Duan et al. (2009) [135]

ZSD112 ln(R555)/R488, (R645+R858)/R469,
R555 MLR MODIS 0.25–1.2 Chaohu Lake China Wu et al. (2009) [70]

ZSD113 R490/R620 LT-LR MERIS 3.0–6.0 Himmerf-Järden Bay Sweden Kratzer et al. (2008) [24]

ZSD114 R560/R709 LLR OLCI (turbid waters) Baltic Sea Estonia Alikas, Kratzer (2017) [25]

ZSD115 R490/R709 LLR OLCI (clear waters) Baltic Sea Estonia Alikas, Kratzer (2017) [25]

CDOM116 R670/R412 LR Radiometric 0.1–1.5 (440 nm) Clyde Sea Scotland Bowers et al. (2000) [136]

CDOM117 R485, R485/R830 LT-MLR LS TM 0.6–19.4 (440 nm) Minnesota lakes USA Brezonik et al. (2005) [102]

CDOM118 R443/R510 LTLR SeaWiFS 0.07–1.1 (412 nm) Gulf of Mexico USA D’Sa, Miller (2003) [137]

CDOM119 R664/R550 LR MERIS 1.13–2.07 (420 nm) Lake Mälaren Sweden Ammenberg et al. (2002) [68]

CDOM120 R565/R660 LR ALI 0.68–11.1 (420 nm) Finnish and Sweden lakes Kutser et al. (2005) [98]

CDOM121 R565/R660 LLR ALI 0.68–11.1 (420 nm) Finnish and Sweden lakes Kutser et al. (2005) [98]

CDOM122 R670/R550 LLR 0.35–11.9 (440 nm) Minnesota lakes USA Menken et al. (2006) [67]

CDOM123 R700/R670 LR 0.35–11.9 (440 nm) Minnesota lakes USA Menken et al. (2006) [67]

CDOM124 R570/R655 LLR Radiometric 0.23–17.4 (440 nm) Pomeranian lakes, Baltic Sea Poland Ficek et al. (2011) [75]
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CDOM125 R412/R510 LLR SeaWiFS 0.07–1.1 (412 nm) Gulf of Mexico USA D’Sa, Miller (2003) [137]

CDOM126 R510/R590 LLR SeaWiFS 0.07–1.1 (412 nm) Gulf of Mexico USA D’Sa, Miller (2003) [137]

CDOM127 R400/R600 LLR Radiometric 0.1–1.9 (440 nm) Tamar Estuary UK Doxaran et al. (2005) [97]

CDOM128 R665/R490 LR AISA 1.29–2.61 (400 nm) Gulf of Finland Finland Koponen et al. (2007) [91]

CDOM129 R560/R660 LR LS ETM+ 1.1–12.2 (400 nm) Finnish lakes and rivers Finland Kallio et al. (2008) [99]

CDOM130 (R480-R700/R675-R520)/(R480-R700/R675+R520) LLR Radiometric 0.1–12 (380 nm) Hungarian, Bulgarian, German lakes Gitelson et al. (1993) [112]

CDOM131 R560/R660 LLR LS ETM+ 1–12.2 (400 nm) Finnish lakes Finland Kallio et al. (2008) [99]

CDOM132 R412+R700/R670 MLR 0.35–11.9 (440 nm) Minnesota lakes USA Menken et al. (2006) [67]

CDOM133 R660, R560/R485 LT-MLR LS TM 1.38–6.45 (400 nm) Kolyma River Russia Griffin et al. (2011) [138]

CDOM134 log(R490/R550) LT-P2R MODIS; MERIS,
SeaWiFS 0.4–2 (400 nm) Baltic Sea Poland Kowalczuk et al. (2005) [139]

CDOM135 R510/R753.75 LLR OLCI 0.51–25.1 (440 nm) Lakes and rivers USA Brezonik et al. (2015) [100]

CDOM136 R490/R740 LLR MSI 0.51–25.1 (440 nm) Lakes and rivers USA Brezonik et al. (2015) [100]
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Figure A1. On radar plots, four Chl-a predictive models with the highest score from our ranking 
system are plotted for each optical water type and spectral range. The statistical metrics that were 
used to rank the model are displayed on each axis. The center of the radar plot indicates a low score. 
The legend includes information about model position (1 to 4) and model number, without parametric 
specifications. 

Figure A1. On radar plots, four Chl-a predictive models with the highest score from our ranking
system are plotted for each optical water type and spectral range. The statistical metrics that were
used to rank the model are displayed on each axis. The center of the radar plot indicates a low
score. The legend includes information about model position (1 to 4) and model number, without
parametric specifications.
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Figure A2. On radar plots, four TSM predictive models with the highest score from our ranking system
are plotted for each optical water type and spectral range. The statistical metrics that were used to rank
the model are displayed on each axis. The center of the radar plot indicates a low score. The legend of
the radar plots includes information about the model position (1 to 4) and model number, without
parametric specifications.
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Figure A3. On radar plots, four absorption coefficients of CDOM at a wavelength of 442 nm predictive
models with the highest score from our ranking system are plotted for each optical water type and
spectral range. The statistical metrics that were used to rank the model are displayed on each axis. The
center of the radar plot indicates a low score. The legend of the radar plots includes information about
the model position (1 to 4) and the model number, without parametric specifications.
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Figure A4. On radar plots, four Secchi disk depth predictive models with the highest score from our 
ranking system are plotted for each optical water type and spectral range. The statistical metrics that 
were used to rank the model are displayed on each axis. The center of the radar plot indicates a low 
score. The legend of the radar plots includes information about the model position (1 to 4) and model 
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Figure A4. On radar plots, four Secchi disk depth predictive models with the highest score from our
ranking system are plotted for each optical water type and spectral range. The statistical metrics that
were used to rank the model are displayed on each axis. The center of the radar plot indicates a low
score. The legend of the radar plots includes information about the model position (1 to 4) and model
number, without parametric specifications.
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Appendix C

Table A2. Acronyms and abbreviations used in this study.

Symbol Meaning

OWT Optical water type
OSC Optically significant constituent
R(λ) Water-leaving reflectance
TSM Total suspended matter, mg·L−1

SPIM Suspended particulate inorganic matter, mg·L−1

SPOM Suspended particulate organic matter, mg·L−1

CDOM Coloured dissolved organic matter
aCDOM(442) Absorption coefficient of CDOM at a wavelength of 442 nm, m−1

Chl-a Chlorophyll-a, mg·m−3

ZSD Secchi disk depth, m
NIR Near-infrared
SRF Spectral response function
MSI Multispectral Instrument
OLCI Ocean and Land Colour Instrument
MERIS Medium Resolution Imaging Spectrometer
MODIS Moderate Resolution Imaging Spectroradiometer
ALI Advanced Land Imager
LS TM Landsat Thematic Mapper
LS ETM+ Landsat Enhanced Thematic Mapper Plus
AISA The Airborne Imaging Spectrometer for Applications
SPOT Satellite Pour l’Observation de la Terre (in French)
SEVIR Spinning Enhanced Visible and Infrared Imager
GOCI Geostationary Ocean Color Imager
WV2 WorldView-2
CASI Compact Airborne Spectrographic Imager
AMMS Airborne Multispectral Measurement System
SeaWiFS Sea-viewing Wide Field-of-view Sensor
LR Linear regression
MLR Multiple linear regression
LT-LR Log-transformed linear regression
LT-MLR Log-transformed multiple linear regression
LLR Log-log regression
P2R Polynomial regression (number indicated degree of polynomial)
LT10-LR Log-transformed linear regression with base 10
LL10R Log-log regression with base 10
LT-P2R Log-transformed polynomial regression
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113. Woźniak, S.B. Simple statistical formulas for estimating biogeochemical properties of suspended particulate
matter in the southern baltic sea potentially useful for optical remote sensing applications. Oceanologia 2014,
56, 7–39. [CrossRef]

114. Dekker, A.G.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water tsm estimation for retrospective
analyses of tm and spot sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [CrossRef]

115. Neukermans, G.; Ruddick, K.; Bernard, E.; Ramon, D.; Nechad, B.; Deschamps, P.-Y. Mapping total suspended
matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea. Opt. Express
2009, 17, 14029. [CrossRef]

http://dx.doi.org/10.1080/014311699212470
http://dx.doi.org/10.1364/AO.42.002623
http://dx.doi.org/10.1080/01431160512331314092
http://dx.doi.org/10.1016/j.rse.2004.11.009
http://dx.doi.org/10.1007/s00267-008-9146-y
http://dx.doi.org/10.1016/j.rse.2014.04.033
http://dx.doi.org/10.1016/j.rse.2007.12.013
http://dx.doi.org/10.1080/07438140509354442
http://dx.doi.org/10.1109/36.942555
http://dx.doi.org/10.1364/OE.27.034838
http://dx.doi.org/10.1016/j.csr.2009.12.007
http://dx.doi.org/10.1016/j.pce.2009.07.015
http://dx.doi.org/10.1016/j.rse.2004.07.012
http://dx.doi.org/10.1080/0143116021000009912
http://dx.doi.org/10.1016/S0048-9697(00)00688-4
http://dx.doi.org/10.1016/S0048-9697(00)00685-9
http://dx.doi.org/10.1016/j.rse.2009.11.022
http://dx.doi.org/10.1080/01431169308953956
http://dx.doi.org/10.5697/oc.56-1.007
http://dx.doi.org/10.1080/01431160010006917
http://dx.doi.org/10.1364/OE.17.014029


Remote Sens. 2020, 12, 931 34 of 35

116. Ouillon, S.; Douillet, P.; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.M.; Andréfouët, S.;
Muñoz-Caravaca, A. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal
waters. Sensors 2008, 8, 4165–4185. [CrossRef]

117. He, A.; He, X.; Bai, Y.; Zhu, Q.; Gong, F.; Huang, H.; Pan, D. Simulation of sedimentation in Lake Taihu with
Geostationary Satellite Ocean Color Data. Remote Sens. 2019, 11, 379. [CrossRef]

118. Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval
of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019,
11, 1215. [CrossRef]

119. Shi, L.; Mao, Z.; Wang, Z. Retrieval of total suspended matter concentrations from high resolution WorldView-2
imagery: A case study of inland rivers. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 032036. [CrossRef]

120. Han, Z.; Jin, Y.-Q.; Yun, C.-X. Suspended sediment concentrations in the Yangtze River estuary retrieved
from the CMODIS data. Int. J. Remote Sens. 2006, 27, 4329–4336. [CrossRef]

121. Tassan, S. An improved in-water algorithm for the determination of chlorophyll and suspended sediment
concentration from thematic mapper data in coastal waters. Int. J. Remote Sens. 1993, 14, 122–1229. [CrossRef]

122. Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite Estimation of Chlorophyll-a Concentration
Using the Red and NIR Bands of MERIS—The Azov Sea Case Study. IEEE Geosci. Remote Sens. Lett. 2009, 6,
845–849. [CrossRef]

123. Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in Lake Garda
using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502.
[CrossRef]

124. Dwivedi, R.M.; Narain, A. Remote sensing of phytoplankton an attempt from the Landsat Thematic Mapper.
Int. J. Remote Sens. 1987, 8, 1563–1569. [CrossRef]

125. Gitelson, A.A.; Yacobi, Y.Z.; Karnieli, A.; Kress, N. Reflectance spectra of polluted marine waters in Haifa Bay,
Southeastern Mediterranean: Features and application for remote estimation of chlorophyll concentration.
Isr. J. Earth Sci. 1996, 45, 127–136.

126. Yacobi, Y.Z.; Gitelson, A.; Mayo, M. Remote sensing of chlorophyll in Lake Kinneret using
highspectral-resolution radiometer and Landsat TM: Spectral features of reflectance and algorithm
development. J. Plankton Res. 1995, 17, 2155–2173. [CrossRef]

127. Lathrop, R.G.; Lillesand, T.M. Use of Thematic Mapper data to assess water quality in Green Bay and central
Lake Michigan. Photogramm. Eng. Remote Sens. 1986, 52, 671–680.

128. Hunter, P.D.; Tyler, A.N.; Willby, N.J.; Gilvear, D.J. The spatial dynamics of vertical migration by Microcystis
aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne
remote sensing. Limnol. Oceanogr. 2008, 53, 2391–2406. [CrossRef]

129. Schalles, J.F.; Gitelson, A.A.; Yacobi, Y.Z.; Kroenke, A.E. Estimation of Chlorophyll a from Time Series
Measurements of High Spectral Resolution Reflectance in an Eutrophic Lake. J. Phycol. 1998, 34, 383–390.
[CrossRef]

130. Gitelson, A.; Mayo, M.; Yacobi, Y.Z.; Parparov, A.; Berman, T. The use of high-spectral-resolution radiometer
data for detection of low chlorophyll concentrations in Lake Kinneret. J. Plankton Res. 1994, 16, 993–1002.
[CrossRef]

131. Mayo, M.; Gitelson, A.; Yacobi, Y.Z.; Ben-Avraham, Z. Chlorophyll distribution in Lake Kinneret determined
from Landsat Thematic Mapper data. Int. J. Remote Sens. 1995, 16, 175–182. [CrossRef]

132. Han, L.; Jordan, K.J. Estimating and mapping chlorophyll- a concentration in Pensacola Bay, Florida using
Landsat ETM+ data. Int. J. Remote Sens. 2005, 26, 5245–5254. [CrossRef]

133. Jiao, H.B.; Zha, Y.; Gao, J.; Li, Y.M.; Wei, Y.C.; Huang, J.Z. Estimation of chlorophyll- a concentration in Lake
Tai, China using in situ hyperspectral data. Int. J. Remote Sens. 2006, 27, 4267–4276. [CrossRef]

134. Giardino, C.; Pepe, M.; Brivio, P.A.; Ghezzi, P.; Zilioli, E. Detecting chlorophyll, Secchi disk depth and surface
temperature in a sub-alpine lake using Landsat imagery. Sci. Total Environ. 2001, 268, 19–29. [CrossRef]

135. Duan, H.; Ma, R.; Zhang, Y.; Zhang, B. Remote-sensing assessment of regional inland lake water clarity in
northeast China. Limnology 2009, 10, 135–141. [CrossRef]

136. Bowers, D.G.; Harker, G.E.L.; Smith, P.S.D.; Tett, P. Optical properties of a region of freshwater influence (the
Clyde Sea). Estuar. Coast. Shelf Sci. 2000, 50, 717–726. [CrossRef]

137. D’Sa, E.J.; Miller, R.L. Bio-optical properties in waters influenced by the Mississippi River during low flow
conditions. Remote Sens. Environ. 2003, 84, 538–549. [CrossRef]

http://dx.doi.org/10.3390/s8074165
http://dx.doi.org/10.3390/rs11040379
http://dx.doi.org/10.3390/rs11101215
http://dx.doi.org/10.1088/1755-1315/121/3/032036
http://dx.doi.org/10.1080/01431160600658164
http://dx.doi.org/10.1080/01431169308904406
http://dx.doi.org/10.1109/LGRS.2009.2026657
http://dx.doi.org/10.1080/014311601450059
http://dx.doi.org/10.1080/01431168708954797
http://dx.doi.org/10.1093/plankt/17.11.2155
http://dx.doi.org/10.4319/lo.2008.53.6.2391
http://dx.doi.org/10.1046/j.1529-8817.1998.340383.x
http://dx.doi.org/10.1093/plankt/16.8.993
http://dx.doi.org/10.1080/01431169508954386
http://dx.doi.org/10.1080/01431160500219182
http://dx.doi.org/10.1080/01431160600702434
http://dx.doi.org/10.1016/S0048-9697(00)00692-6
http://dx.doi.org/10.1007/s10201-009-0263-y
http://dx.doi.org/10.1006/ecss.1999.0600
http://dx.doi.org/10.1016/S0034-4257(02)00163-3


Remote Sens. 2020, 12, 931 35 of 35

138. Griffin, C.G.; Frey, K.E.; Rogan, J.; Holmes, R.M. Spatial and interannual variability of dissolved organic
matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. 2011, 116, G03018.
[CrossRef]

139. Kowalczuk, P.; Olszewski, J.; Darecki, M.; Kaczmarek, S. Empirical relationships between coloured dissolved
organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int. J. Remote Sens.
2005, 26, 345–370. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2010JG001634
http://dx.doi.org/10.1080/01431160410001720270
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Sites and In Situ Dataset 
	Water-Leaving Reflectance (R()) 
	Analysis of Water Samples 

	Classification of Optical Water Types (OWTs) 
	Algorithms for Retrieving Water Quality Parameters 
	Satellite Dataset 

	Results 
	Description of In Situ Dataset 
	Predictive Models for Concentration of Chlorophyll-a (Chl-a) 
	Predictive Models for Concentration of Total Suspended Matter (TSM) 
	Predictive Models for Absorption Coefficient of Coloured Dissolved Organic Matter (CDOM) 
	Predictive Models for Secchi Disk Depth 

	Discussion 
	Conclusions 
	
	
	
	References

