Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region
Abstract
:1. Introduction
2. Background Setting
3. Seismological Background and Seismic Moment-Rates
3.1. Historical Earthquakes
3.2. Instrumental Seismicity
3.3. Seismogenic Source Zones
- Tell seismogenic source zones (T1, T2, T3, T4, T5, and T6). Tell region is the one with the largest density of earthquakes, including some of the most destructive events in the area, such as the 10 October, 1980 Chlef (MW 7.3) and the more recent 21 May, 2003 Boumerdes (MW 6.9) earthquakes. The differentiation among these six zones is mainly related to the different seismic features, clearly revealed when computing seismicity parameters. These zones are based on the previous works by [51,52,53]. T1 to T4 sources display a dominant compression striking NNW-SSE, whereas the T5 source exhibits a N-S-striking compressional strike-slip regime (e.g., [24,49,54]. Few focal mechanisms are available for the T6 source and therefore the mean stress regime is poorly constrained (Figure 2c).
- Rif seismogenic sources (R1a, R1b, and R2). The Rif region has been divided into three source zones on the basis of well-known active faults (e.g., the Jebah and Nekor faults) and seismic activity distribution in the Rif and in the southwestern part of the Alboran Sea. Large earthquakes, such as the recent 25 January, 2016 (Mw 6.3) Al Hoceima event or the historical 1624 May, 11 (MS 6.7) Fez event, occurred along some of these active faults. R1b and R2 sources show a horizontal compression, striking NW-SE to NNW-SSE, as well as a perpendicular horizontal extension [50]. There are few mechanisms for R1a source, but they show a pure WSW-ENE horizontal extension [54].
- Atlas seismogenic sources (HA, HA-MA, HA-AA, SA1, SA2, and TA). Overall, they include the High, Middle, Saharan, and Tunisian Atlas, as well as the northeastern part of the Anti-Atlas. These zones have been struck by moderate to large magnitude earthquakes, such as the 856 3, December (MS 7.0) Tunisia event, the 1731 (MW 6.4) and the 29 February, 1960 (MW 5.7) Agadir events. Some of these zones are also based on the previous works by [51,52,53]. HA-MA, SA1, SA2, and TA sources exhibit a near pure compressional stress regime, with a wide range of attitudes (NNW-SSE, NW-SE, N-S, and NW-SE, respectively; [24,55,56]. The stress field for the other seismogenic source zones is poorly constrained because of the limited number of available focal mechanisms (Figure 2c).
- Moroccan Meseta-High Plateaus seismic source zones (MM and MA-HP). They include a region with scarce seismicity and characterized by the occurrence of only low and low to moderate earthquakes, such as the 1979 January, 17 (MS 4.6) Khenifra and the 29 November, 1980 (MS 4.9) Jerada events. The MA-HP source is based on a previous one already described in [52,53]. The MM source is characterized by the presence of NNE-SSW and NE-SW oriented faults, as well as faults parallel to the Atlantic coast [57]. The stress field for both seismogenic source zones is poorly constrained because of the limited number of available focal mechanisms (Figure 2c).
- Betic seismic source zones (BET1, BET2, BET3, BET4, BET5, and BET6). These seismogenic sources correspond to the seismogenic region called Betic Cordilleras, also embracing the Subbetic, western part of the Prebetic units, and the Guadalquivir Basin, in its northern part. With the exception of the 29 March, 1954 (Mw 7.8) deep seismic event (depth of ~625 km), both instrumental and historical earthquakes did not exceed M 6.3 [24]. As mentioned above, initial sources delimited in [25] have been grouped into larger seismogenic sources. BET1 source zone embraces a complex network of faults striking WSW-ENE on the Guadalquivir Basin and NE-SW to NNE-SSW on the Sierra de Segura area, which hosted some historical destructive earthquakes, for instance the 1357 (Mw 6.1) Andalucia and the 1504 (Mw 6.1) Carmona events. BET2 source zone is characterized by faults striking N140/160E and N70E to E-W, as well as faults striking NW-SE which hosted destructive earthquakes, such as the 1431 (Mw 6.11) Granada event and the 1884 (Mw 6.30) Arenas del Rey event. BET3 source zone is characterized by low to moderate instrumental seismicity with a Mw 6.17 destructive event occurring in 1531 close to the town of Baza. BET4 source zone is characterized by low to moderate instrumental seismicity with a Mw 6.10 destructive event occurring in 1910 close to the small coastal town of Adra. BET5 source zone includes, from west to east, the Sierra Nevada, the Sierra de los Filabres, and the Almanzora Corridor areas. This zone is characterized by NW-SE to NNW-SSE oriented faults which are considered the seismogenic sources for seismicity striking the region. BET6 source zone includes the Adra-Sierra Alhamilla and Almería areas, incorporating to some extent the off-shore platform. In this source, existing fault systems mostly strike NW-SE and NNE-SSW, hosting historical destructive earthquakes, such as the 1522 (Mw 6.07) Almería event. Regarding the stress regime, BET2 and BET4 source zones are characterized by a primary NNW-SSE sub-horizontal compression, while BET1, BET3, BET5, and BET6 zones are characterized by a complex pattern resulting from the interaction of different sources of stress (see [54,55] for additional details).
- LEV1 and LEV2 seismogenic source zones. This area, named as Levante seismogenic region [25], covers the easternmost part of the Prebetic and Internal Betics and is dominated by a prevailing strike slip stress field with a near E-W extension and a N-S compression [54]. Both seismogenic source zones are characterized by the occurrence of several low to moderate magnitude earthquakes and some damaging historical events, rarely exceeding M > 6 such as the 1396 (MW 6.00) Tavernes de Valldigna and the 1645 (MS 6.25) Muro de Alcoy for LEV1 and the 1829 (MW 6.25) Torrevieja event for LEV2 [36]. Among the main tectonic features included in this source, the Cádiz-Alicante and the Caudete-Elda-Elche fault systems are worth noting. Regarding the LEV2 seismogenic source zone, different fault systems host the seismicity, such as the striking N140-160E San Miguel de Salinas and Torrevieja faults and the NW-SE Bajo Segura fault.
3.4. Seismic Moment-Rates
4. GNNS Data and Geodetic Moment-Rates
4.1. GNSS Data Processing
4.2. Strain-Rate Field Estimation
4.3. Geodetic Moment-Rates Computation
5. Results and Discussions
5.1. Moment-Rates
5.2. Seismic/Geodetic Moment-Rates Ratio
6. Conclusive Remarks
- A large sector of the study area, comprising the western Betics, the western Rif, and the High, Middle, and Saharan Atlas is characterized by SCC values lower than 23%. Such a result coupled with geological and geophysical evidence supports the inference on the aseismic deformation (aseismic release processes) behavior at least for most of the Betics and Rif regions.
- Intermediate SCC values (between 35% and 60%) have been observed for some regions belonging to the eastern Betics, the central Rif, and the Middle Atlas. On these regions, crustal seismicity accounts only for a moderate fraction of the total deformation-rate budget.
- Higher SCC values (>95%) have been observed along the Tell Atlas, highlighting a fully seismic deformation. By considering the low SCC value inferred for T5 source zone, we speculated on the possibility of this being a seismic gap and hosting impending earthquakes.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SSZ | Stress Regime | Seismological Parameters | Level of Knowledge of Tectonic Structures | References | GNSS Data |
---|---|---|---|---|---|
BET1 | NNW-SSE compression and perpendicular horizontal extension | well constrained | High | [25,54,93,94] | 11 (3.2 ·10−4) |
BET2 | Strike-slip to NW-SE compression | well constrained | High | [25,54,93,94] | 15 (14.1 ·10−4) |
BET3 | NE extension to strike-slip | well constrained | High | [25,54,93,94] | 4 (3.9 ·10−4) |
BET4 | Strike-slip to NW-SE compression | well constrained | High | [25,54,93,94] | 5 (3.4 ·10−4) |
BET5 | NE extension to strike-slip | well constrained | High | [25,54,93,94] | 8 (14.6 ·10−4) |
BET6 | NE extension to strike-slip | well constrained | High | [25,54,93,94] | 3 (3.1 ·10−4) |
HA | NNW-SSE horizontal compression to strike-slip | poorly constrained | Medium | [24,50,93] | 2 (0.6 ·10−4) |
HA-AA | NNW-SSE horizontal compression to strike-slip | poorly constrained | Medium | [24,50,93] | 2 (0.4 ·10−4) |
HA-MA | NNW-SSE horizontal compression to strike-slip | poorly constrained | Medium-High | [24,50,93] | 3 (0.8 ·10−4) |
LEV1 | NE extension to strike-slip | well constrained | High | [25,54,93,94] | 6 (3.5 ·10−4) |
LEV2 | NE extension to strike-slip | well constrained | High | [25,54,93,94] | 22 (20.7 ·10−4) |
MA-HP | NNW-SSE compression and perpendicular horizontal extension | poorly constrained | Medium | [24,50,93] | 8 (1.4 ·10−4) |
MM | NNW-SSE pure compressional | poorly constrained | Medium | [24,50,93] | 7 (0.8 ·10−4) |
R1a | NNW-SSE compression and perpendicular horizontal extension | well constrained | High | [24,50,54,93,94] | 9 (5.1 ·10−4) |
R1b | NNW-SSE compression and perpendicular horizontal extension | well constrained | High | [24,50,54,93,94] | 3 (1.3 ·10−4) |
R2 | NW-SE compression and perpendicular horizontal extension | well constrained | Medium-High | [24,50,54,93] | 7 (2.6 ·10−4) |
SA1 | NW-SE horizontal compression to strike-slip | poorly constrained | Medium | [24,50,93] | 6 (0.8 ·10−4) |
SA2 | N-S horizontal compression | poorly constrained | Medium | [24,50,93] | 6 (1.4 ·10−4) |
T1 | NNW-SSE pure compressional to strike-slip | well constrained | High | [24,50,54,93,94] | 4 (1.3 ·10−4) |
T2 | NNW-SSE pure compressional to strike-slip | well constrained | High | [24,50,54,93,94] | 2 (0.7 ·10−4) |
T3 | NNW-SSE pure compressional | well constrained | High | [24,50,54,93] | 3 (1.1 ·10−4) |
T4 | NNW-SSE pure compressional | well constrained | High | [24,50,54,93] | 4 (1.1 ·10−4) |
T5 | N-S compressional strike-slip | well constrained | High | [24,50,54,93] | 3 (1.2 ·10−4) |
T6 | NNW-SSE pure compressional | well constrained | High | [24,50,56,93] | 1 (0.3 ·10−4) |
TA | NNW-SSE pure compressional | poorly constrained | High | [24,50,56,93] | 0 (0.0) |
Appendix B
Appendix C
Appendix D
References
- Masson, F.; Chéry, J.; Hatzfeld, D.; Martinod, J.; Vernant, P.; Tavakoli, F.; Ghafory-Ashtiani, M. Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys. J. Int. 2005, 160, 217–226. [Google Scholar] [CrossRef]
- Palano, M.; Imprescia, P.; Agnon, A.; Gresta, S. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt. Geophys. J. Int. 2018, 213, 194–209. [Google Scholar] [CrossRef]
- Mazzotti, S.; Leonard, L.J.; Cassidy, J.F.; Rogers, G.C.; Halchuk, S. Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J. Geophys. Res. 2011, 116, B12310. [Google Scholar] [CrossRef]
- Pancha, A.; Anderson, J.G.; Kreemer, C. Comparison of seismic and geodetic scalar moment rates across the Basin and Range Province. Bull. Seismol. Soc. Am. 2006, 96, 11–32. [Google Scholar] [CrossRef] [Green Version]
- Bos, A.G.; Spakman, W. Kinematics of the southwestern U.S. deformation zone inferred from GPS motion data. J. Geophys. Res. 2005, 110, B08405. [Google Scholar] [CrossRef] [Green Version]
- Rontogianni, S. Comparison of geodetic and seismic strain rates in Greece by using a uniform processing approach to campaign GPS measurements over the interval 1994–2000. J. Geodyn. 2010, 50, 381–399. [Google Scholar] [CrossRef] [Green Version]
- Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J. Geophys. Res. 2015, 120, 3909–3931. [Google Scholar] [CrossRef]
- Jenny, S.; Goes, S.; Giardini, D.; Kahle, H.G. Seismic potential of southern Italy. Tectonophysics 2006, 415, 81–101. [Google Scholar] [CrossRef]
- Palano, M.; Cannavò, F.; Ferranti, L.; Mattia, M.; Mazzella, M.E. Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data. Geophys. J. Int. 2011, 187, 1270–1282. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, N. Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy). Geophys. Res. Lett. 2014, 41, 1155–1162. [Google Scholar] [CrossRef]
- Bilham, R.; Ambraseys, N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr. Sci. 2005, 88, 1658–1663. [Google Scholar]
- Bungum, H.; Lindholm, C.D.; Mahajan, A.K. Earthquake recurrence in NW and central Himalaya. J. Asian Earth Sci. 2017, 138, 25–37. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.P. Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett. 2017, 43, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
- Déprez, A.; Doubre, C.; Masson, F.; Ulrich, P. Seismic and aseismic deformation along the East African Rift System from a reanalysis of the GPS velocity field of Africa. Geophys. J. Int. 2013, 193, 1353–1369. [Google Scholar] [CrossRef] [Green Version]
- Kostrov, V. Seismic moment and energy of earthquakes, and seismic Row of rock. Izv. Acad. Sci. USSR Phys. Solid Earth 1974, 1, 23–44. [Google Scholar]
- Hyndman, R.D.; Weichert, D.H. Seismicity and rates of relative plate motion on the plate boundaries of western North America. Geophys. J. R. Astron. Soc. 1983, 72, 59–82. [Google Scholar] [CrossRef] [Green Version]
- Mazzotti, S.; Adams, J. Rates and uncertainties on seismic moment and deformation in eastern Canada. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Michard, A.; Chalouan, A.; Feinberg, H.; Goffé, B.; Montigny, R. How does the Alpine belt end between Spain and Morocco? Bull. Soc. Géol. France 2002, 173, 3–15. [Google Scholar] [CrossRef]
- Platt, J.P.; Whitehouse, M.J.; Kelley, S.P.; Carter, A.; Hollick, L. Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology 2003, 31, 251–254. [Google Scholar] [CrossRef]
- McKenzie, D.P. Plate tectonics of the Mediterranean region. Nature 1970, 226, 239–243. [Google Scholar] [CrossRef]
- Andrieux, J.; Fontbote, J.M.; Mattauer, M. Sur un modèle explicatif de l’arc de Gibraltar. Earth Planet. Sci. Lett. 1971, 12, 191–198. [Google Scholar] [CrossRef]
- Comas, M.C.; Platt, J.P.; Soto, J.I.; Watts, A.B. The origin and tectonic history of the Alboran Basin: Insights from Leg 161 results. In Proceedings of the Ocean Drilling Program; Scientific Results; Zahn, R., Comas, M.C., Klaus, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1999; Volume 161, pp. 555–580. [Google Scholar]
- Palano, M.; González, P.J.; Fernández, J. The diffuse plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth Planet. Sci. Lett. 2015, 430, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Peláez, J.A.; Henares, J.; Hamdache, M.; Sanz de Galdeano, C. A seismogenic zone model for seismic hazard studies in northwestern Africa in Moment tensor solutions. In A Useful Tool for Seismotectonics; D’Amico, S., Ed.; Springer Natural Hazards: Berlin/Heidelberg, Germany, 2018; pp. 643–680. [Google Scholar]
- CNIG. Update of Seismic Hazard Maps of Spain; Centro Nacional de Información Geográfica: Madrid, Spain, 2013. [Google Scholar]
- Bourgois, J.A.; Mauffret, A.; Ammar, N.A.; Demnati, N.A. Multichannel seismic data imaging of inversion tectonics of the Alboran Ridge (western Mediterranean Sea). Geo Mar. Lett. 1992, 12, 117–122. [Google Scholar] [CrossRef]
- Masana, E.; Martínez-Díaz, J.J.; Hernández-Enrile, J.L.; Santanach, P. The Alhama de Murcia fault (SE Spain), a seismogenic fault in a diffuse plate boundary: Seismotectonic implications for the Ibero-Magrebian region. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Gracia, E.; Pallas, R.; Soto, J.I.; Comas, M.C.; Moreno, X.; Masana, E.; Santanach, P.; Diez, S.; Garcia, M.; Dañobeitia, J. Active faulting offshore SE Spain, (Alboran Sea): Implications for earthquake hazard assessment in the southern Iberian Margin. Earth Planet. Sci. Lett. 2006, 241, 734–749. [Google Scholar] [CrossRef]
- Ballesteros, M.; Rivera, J.; Muñoz, A.; Muñoz-Martín, A.; Acosta, J.; Carbó, A.; Uchupi, E. Alboran basin, Southern Spain. Part II: Neogene tectonic implications for the orogenic float model. Mar. Petrol. Geol. 2008, 25, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Meghraoui, M.; Cisternas, A.; Philip, H. Seismotectonics of the lower Cheliff basin: Structural background of the El Asnam (Algeria) earthquake. Tectonics 1986, 5, 809–836. [Google Scholar] [CrossRef]
- Meghraoui, M.; Pondrelli, S. Active faulting and transpression tectonics along the plate boundary in North Africa. Ann. Geophys. 2012, 55. [Google Scholar] [CrossRef]
- Bahrouni, N.; Bouaziz, S.; Soumaya, A.; Ben Ayed, N.; Attafi, K. Active deformation analysis and evaluation of earthquake hazard in Gafsa region (Southern Atlas of Tunisia). Geophys. Res. Abstr. 2013, 15, EGU2013-1009. [Google Scholar]
- Rabaute, A.; Chamot-Rooke, N. Active Tectonics of the Africa-Eurasia Boundary from Algiers to Calabria. Map at 1:500,000 Scale; Geosubsight: Paris, France, 2014; ISBN 978-2-9548197-0-9. [Google Scholar]
- Maouche, S.; Abtout, A.; Merabet, N.E.; Aïfa, T.; Lamali, A.; Bouyahiaoui, B.; Ayache, M. Tectonic and Hydrothermal Activities in Debagh, Guelma Basin (Algeria). J. Geophys. Res. 2013, 409475. [Google Scholar] [CrossRef] [Green Version]
- Ben Hassen, M.; Deffontaines, B.; Turki, M.M. Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern Atlas of Tunisia. Quat. Int. 2014, 338, 99–112. [Google Scholar] [CrossRef] [Green Version]
- The SHARE European Earthquake Catalogue. Available online: www.emidius.eu/SHEEC/ (accessed on 26 January 2020).
- Peláez, J.A.; Chourak, M.; Tadili, B.A.; Aït Brahim, L.; Hamdache, M.; López Casado, C.; Martínez Solares, J.M. A catalog of main Moroccan earthquakes from 1045 to 2005. Seismol. Res. Lett. 2007, 78, 614–621. [Google Scholar] [CrossRef]
- Hamdache, M.; Peláez, J.A.; Talbi, A.; López Casado, C. A unified catalog of main earthquakes for northern Algeria from a.d. 856 to 2008. Seismol. Res. Lett. 2010, 81, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Bougrine, A.; Yelles-Chaouche, A.K.; Calais, E. Active deformation in Algeria from Continuous GPS measurements. Geophys. J. Int. 2019, 217, 572–588. [Google Scholar] [CrossRef]
- Koulali, A.; Ouazar, D.; Tahayt, A.; King, R.W.; Vernant, P.; Reilinger, R.E.; McClusky, S.; Mourabit, T.; Davila, J.M.; Amraoui, N. New GPS constrains on active deformation along the Africa-Iberia plate boundary. Earth Planet. Sci. Lett. 2011, 308, 211–217. [Google Scholar] [CrossRef]
- Stich, D.; Martín, J.B.; Morales, J. Deformación sísmica y asísmica en la zona Béticas-Rif-Alborán. Rev. Soc. Geol. Esp. 2007, 20, 311–319. [Google Scholar]
- Martínez Solares, J.M.; Mezcua, J. Seismic Catalog of the Iberian Peninsula (880 BC-1900); IGN: Madrid, Spain, 2002. (In Spanish) [Google Scholar]
- Buforn, E.; Udías, A.; Madariaga, R. Intermediate and deep earthquakes in Spain. Pure Appl. Geophys. 1991, 136, 375–393. [Google Scholar] [CrossRef]
- Buforn, E.; Pro, C.; Udías, A.; del Fresno, C. The 2010 Granada, Spain, deep earthquake. Bull. Seismol. Soc. Am. 2011, 101, 2418–2430. [Google Scholar] [CrossRef]
- Cunha, T.A.; Matias, L.M.; Terrinha, P.; Negredo, A.M.; Rosas, F.; Fernandes, R.M.S.; Pinheiro, L.M. Neotectonics of the SW Iberia margin, Gulf of Cadiz and Alboran Sea: A reassessment including recent structural, seismic and geodetic data. Geophys. J. Int. 2012, 188, 850–872. [Google Scholar] [CrossRef] [Green Version]
- International Seismological Centre. Available online: www.isc.ac.uk/ (accessed on 26 January 2020).
- Dziewonski, A.M.; Chou, T.-A.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewonski, A.M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- Custódio, S.; Lima, V.; Vales, D.; Cesca, S.; Carrilho, F. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region. Tectonophysics 2016, 676, 70–89. [Google Scholar] [CrossRef]
- Peláez, J.A.; Henares, J.; Hamdache, M.; Sanz de Galdeano, C. An updated seismic model for northwestern Africa. In Proceedings of the 16th European Conference on Earthquake Engineering, Thessaloniki, Greece, 18–21 June 2018. [Google Scholar]
- Aoudia, A.; Vaccari, F.; Suhadolc, P.; Meghraoui, M. Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. J. Seism. 2000, 4, 79–98. [Google Scholar] [CrossRef]
- Peláez, J.A.; Hamdache, M.; López Casado, C. Seismic hazard in northern Algeria using spatially smoothed seismicity. Results for peak ground acceleration. Tectonophysics 2003, 372, 105–119. [Google Scholar] [CrossRef]
- Peláez, J.A.; Hamdache, M.; López Casado, C. Updating the probabilistic seismic hazard values of Northern Algeria with the 21 May 2003 M 6.8 Algiers earthquake included. Pure Appl. Geophys. 2005, 162, 2163–2177. [Google Scholar] [CrossRef]
- Henares, J.; López Casado, C.; Sanz de Galdeano, C.; Delgado, J.; Peláez, J.A. Stress fields in the Ibero-Maghrebian region. J. Seismol. 2003, 7, 65–78. [Google Scholar] [CrossRef]
- Palano, M.; González, P.J.; Fernández, J. Strain and stress fields along the Gibraltar Orogenic Arc: Constraints on active geodynamics. Gondwana Res. 2013, 23, 1071–1088. [Google Scholar] [CrossRef]
- Soumaya, A.; Ben Ayed, N.; Delvaux, D.; Ghanmi, M. Spatial variation of present-day stress field and tectonic regime in Tunisia and surroundings from formal inversion of focal mechanisms: Geodynamics implications for central Mediterranean. Tectonics 2015, 34, 1154–1180. [Google Scholar] [CrossRef]
- Aït Brahim, L.; Chotin, P.; Hinaj, S.; Abdelouafi, A.; Nakhcha, C.; Dhont, D.; Sossey Alaoui, F.; Bouaza, A.; Tabyaoui, H.; Chaouni, A. Paleostress evolution in the Moroccan African margin from Triassic to present. Tectonophysics 2002, 357, 187–205. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
- Weichert, D.H. Estimation of the earthquake recurrence parameters for unequal observation observation periods for different magnitudes. Bull. Seismol. Soc. Am. 1980, 70, 1337–1346. [Google Scholar]
- Wells, D.L.; Coppersmith, K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Kijko, A.; Singh, M. Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys. 2011, 59, 674–700. [Google Scholar] [CrossRef] [Green Version]
- EUREF. Permanent GNSS Network. Available online: www.epncb.oma.be (accessed on 26 January 2020).
- CDDIS. NASA’s Archive of Space Geodesy Data. Available online: https://cddis.nasa.gov/ (accessed on 26 January 2020).
- UNAVCO. Available online: www.unavco.org (accessed on 26 January 2020).
- Herring, T.A.; King, R.W.; Floyd, M.A.; McClusky, S.C. Introduction to GAMIT/GLOBK, Release 10.7; Massachusetts Institute of Technology: Cambridge, UK, 2017; Available online: www-gpsg.mit.edu (accessed on 26 January 2020).
- Palano, M. On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy. Geophys. J. Int. 2015, 200, 969–985. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J. Geophys. Res. 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Echeverría, A.; Khazaradze, G.; Asensio, E.; Gárate, J.; Martín Dávila, J.; Suriñach, E. Crustal deformation in eastern Betics from CuaTeNeo GPS network. Tectonophysics 2013, 608, 600–612. [Google Scholar] [CrossRef]
- Garate, J.; Martin-Davila, J.; Khazaradze, G.; Echeverria, A.; Asensio, E.; Gil, A.J.; de Lacy, M.C.; Armenteros, J.A.; Ruiz, A.M.; Gallastegui, J.; et al. Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco. GPS Solut. 2015, 19, 287–295. [Google Scholar] [CrossRef]
- Cabral, J.; Mendes, V.B.; Figueiredo, P.; da Silveira, A.B.; Pagarete, J.; Ribeiro, A.; Dias, R.; Ressurreição, R. Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics. J. Geodyn. 2017, 112, 1–11. [Google Scholar] [CrossRef]
- Shen, Z.-K.; Wang, M.; Zeng, Y.; Wang, F. Optimal interpolation of spatially discretized geodetic data. Bull. Seismol. Soc. Am. 2015, 105, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.C.; Simpson, R.W. Surface strain accumulation and the seismic moment tensor. Bull. Seismol. Soc. Am. 1997, 87, 1345–1353. [Google Scholar]
- Stich, D.; Martínez-Solares, J.M.; Custódio, S.; Batlló, J.; Martín, R.; Teves-Costa, P.; Morales, J. Seismicity of the Iberian Peninsula. In The Geology of Iberia: A Geodynamic Approach; Springer: Cham, Switzerland, 2020; pp. 11–32. [Google Scholar] [CrossRef]
- Mahsas, A.; Lammali, K.; Yelles, K.; Calais, E.; Freed, A.; Briole, P. Shallow afterslip following the 2003 May 21, Mw = 6.9 Boumerdes earthquake, Algeria. Geophys. J. Int. 2008, 172, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Stein, R.; Meghraoui, M.; Toda, S.; Ayadi, A.; Dorbath, C.; Belabbes, S. Stress transfer among en echelon and opposing thrusts and tear faults: Triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake. J. Geophys. Res. 2011, 116, B03305. [Google Scholar] [CrossRef] [Green Version]
- Onana, P.N.E.; Toto, E.A.; Zouhri, L.; Chaabane, A.; El Mouraouah, A.; Brahim, A.I. Recent seismicity of Central High Atlas and Ouarzazate basin (Morocco). Bull. Eng. Geol. Environ. 2011, 70, 633–641. [Google Scholar] [CrossRef]
- Turcotte, D.; Schubert, G. Geodynamics; Cambridge University Press: Cambridge, UK, 2002; p. 456. [Google Scholar]
- Ward, S.N. On the consistency of earthquake moment rates, geological fault data, and space geodetic strain: The United States. Geophys. J. Int. 1998, 134, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Torné, M.; Fernàndez, M.; Comas, M.C.; Soto, J.I. Lithospheric structure beneath the Alboran Basin: Results from 3D gravity modeling and tectonic relevance. J. Geophys. Res. 2000, 105, 3209–3228. [Google Scholar] [CrossRef]
- Polyak, B.G.; Fernàndez, M.; Khutorskoy, M.D.; Soto, J.I.; Basov, I.A.; Comas, M.C.; Khain, V.Y.; Alonso, B.; Agapova, G.V.; Mazurova, I.S.; et al. Heat flow in the Alboran Sea, western Mediterranean. Tectonophysics 1996, 263, 191–218. [Google Scholar] [CrossRef]
- Fernàndez, M.; Marzán, I.; Correia, A.; Ramalho, E. Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 1998, 291, 29–53. [Google Scholar] [CrossRef]
- Rimi, A.; Chalouan, A.; Bahi, L. Heat flow in the westernmost part of the alpine mediterranean system (The Rif, Morocco). Tectonophysics 1998, 285, 135–146. [Google Scholar] [CrossRef]
- Pollack, H.N.; Chapman, D.S. On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 1977, 38, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Serrano, I.; Zhao, D.P.; Morales, J. 3-D crustal structure of the extensional Granada Basin in the convergent boundary between the Eurasian and African plates. Tectonophysics 2002, 344, 61–79. [Google Scholar] [CrossRef]
- Fernàndez-Ibáñez, F.; Soto, J.I. Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean. Tectonics 2008, 27, TC2007. [Google Scholar] [CrossRef]
- González, P.J.; Palano, M.; Fernández, J. Study of the present-day tectonics and seismogenetic sources of the Al-Hoceima region (Morocco) using GPS and MTINSAR. In Proceedings of the Fringe 2009 Workshop, Frascati, Italy, 30 November–4 December 2009; Volume 30. [Google Scholar]
- Yelles Chauche, A.K.; Kherroubi, A.; Beldjoudi, H. The large Algerian earthquakes (267 A.D.-2017). Física de la Tierra 2017, 29, 159–182. [Google Scholar] [CrossRef] [Green Version]
- Roger, J.; Hébert, H. The 1856 Djijelli (Algeria) earthquake and tsunami: Source parameters and implications for tsunami hazard in the Balearic Islands. Nat. Hazards Earth Syst. Sci. 2008, 8, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Hamdache, M.; Peláez, J.A.; Yelles Chauche, A.K. The Algiers, Algeria earthquake (Mw 6.8) of 21 May 2003: Preliminary report. Seismol. Res. Lett. 2004, 75, 360–367. [Google Scholar] [CrossRef]
- Rong, Y.; Jackson, D.D.; Kagan, Y.Y. Seismic gaps and earthquakes. J. Geophys. Res. 2003, 108, 2471. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.; Gahalaut, V.K. Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res. 2014, 25, 204–213. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H. The generic mapping tools (GMT). Eos Trans. Am. Geophys. Union 1995, 76, 329. [Google Scholar] [CrossRef]
- Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K.; Müller, B.; Reinecker, J.; Reiter, K.; Tingay, M.; Wenzel, F.; Xie, F.; et al. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 2018, 744, 484–498. [Google Scholar] [CrossRef]
- de Vicente, G.; Cloetingh, S.; Muñoz Martín, A.; Olaiz, A.; Stich, D.; Vegas, R.; Galindo Zaldívar, J.; Fernández Lozano, J. Inversion of moment tensor focal mechanisms for active stresses around the microcontinent Iberia: Tectonic implications. Tectonics 2008, 27, TC1009. [Google Scholar] [CrossRef] [Green Version]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
SSZ | Mobs | a | b | Mmax | # (1016 Nm/yr) | * (1016 Nm/yr) |
---|---|---|---|---|---|---|
BET1 | 6.10 (20 October 1883)P | 4.03 | 1.13 ± 0.01 | 6.7 ± 0.4 | ||
BET2 | 7.80 (29 March 1954)P | 4.43 | 1.13 ± 0.01 | 6.7 ± 0.4 | ||
BET3 | 6.17 (30 September 1531)S | 3.87 | 1.13 ± 0.01 | 6.6 ± 0.4 | ||
BET4 | 6.10 (16 June 1910)P | 3.84 | 1.13 ± 0.01 | 6.7 ± 0.4 | ||
BET5 | 6.10 (9 November 1518)H | 3.78 | 1.13 ± 0.01 | 6.6 ± 0.4 | ||
BET6 | 6.50 (22 September 1522) H | 4.24 | 1.13 ± 0.01 | 6.7 ± 0.3 | ||
HA | 6.40 (1731)P | 2.06 | 0.69 ± 0.06 | 6.6 ± 0.4 | ||
HA-AA | 5.80 (22 June 1941)P | 1.69 | 0.55 ± 0.05 | 6.3 ± 0.3 | ||
HA-MA | 5.30 (11 August 2007) | 5.81 | 1.35 ± 0.01 | 5.5 ± 0.3 | ||
LEV1 | 6.00 (18 December 1396)S | 3.21 | 0.92 ± 0.02 | 6.9 ± 0.4 | ||
LEV2 | 6.25 (21 March 1829)S | 3.38 | 0.92 ± 0.02 | 6.7 ± 0.4 | ||
MA-HP | 5.30 (29 November 1980)H | 2.71 (4.08) | 0.76 ± 0.07 (1.04 ± 0.41) | 5.6 ± 0.3 | () | |
MM | 5.10 (17 January 1979)P | 7.20 | 1.66 ± 0.15 | 5.6 ± 0.4 | ||
R1a | 5.50 (29 September 1822)P | 2.62 | 0.83 ± 0.14 | 5.7 ± 0.4 | ||
R1b | 6.40 (24 February 2004)P | 2.58 | 0.67 ± 0.06 | 6.8 ± 0.3 | ||
R2 | 6.70 (11 May 1624)P | 4.96 | 1.19 ± 0.10 | 6.7 ± 0.4 | ||
SA1 | 5.80 (4 April 1924)H | 1.77 (5.50) | 0.60 ± 0.06 (1.27 ± 0.26) | 6.3 ± 0.4 | () | |
SA2 | 6.00 (12 February 1946)H | 4.67 | 1.07 ± 0.08 | 6.1 ± 0.4 | ||
T1 | 7.00 (9 October 1790)H | 3.25 | 0.79 ± 0.04 | 7.4 ± 0.4 | ||
T2 | 7.30 (10 October 1980)H | 2.81 | 0.65 ± 0.05 | 7.8 ± 0.3 | ||
T3 | 7.30 (2 January 1867)H | 3.50 | 0.81 ± 0.07 | 7.5 ± 0.4 | ||
T4 | 6.90 (21 May 2003)H | 3.86 | 0.86 ± 0.05 | 7.3 ± 0.3 | ||
T5 | 5.80 (27 October 1985)H | 4.46 | 1.08 ± 0.01 | 5.9 ± 0.3 | ||
T6 | 7.00 (27 November 1722)H | 2.85 | 0.73 ± 0.03 | 7.0 ± 0.4 | ||
TA | 7.00 (3 December 856)H | 2.50 | 0.65 ± 0.17 | 7.0 ± 0.4 |
SSZ | A [km2] | μ [1010 N/m2] | Hs [km] | [1016 Nm/yr] |
---|---|---|---|---|
BET1 | 3.48 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 22.3 ± 10.2 |
BET2 | 1.07 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 6.2 ± 3.0 |
BET3 | 1.02 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 9.7 ± 3.8 |
BET4 | 1.48 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 12.0 ± 3.9 |
BET5 | 5.47 × 103 | 30.0 ± 1.5 | 15 ± 1.5 | 5.6 ± 2.2 |
BET6 | 9.77 × 103 | 30.0 ± 1.5 | 15 ± 1.5 | 17.1 ± 6.0 |
HA | 3.38 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 4.5 ± 7.1 |
HA-AA | 4.58 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 18.7 ± 11.0 |
HA-MA | 3.59 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 12.9 ± 5.0 |
LEV1 | 1.73 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 9.2 ± 6.1 |
LEV2 | 1.07 × 104 | 30.0 ± 1.5 | 15 ± 1.5 | 11.4 ± 4.7 |
MA-HP | 5.52 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 41.7 ± 18.2 |
MM | 8.97 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 73.2 ± 33.6 |
R1a | 1.76 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 17.1 ± 7.6 |
R1b | 2.33 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 34.9 ± 9.1 |
R2 | 2.66 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 39.3 ± 15.5 |
SA1 | 7.68 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 70.0 ± 21.6 |
SA2 | 4.30 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 31.1 ± 10.7 |
T1 | 3.12 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 37.4 ± 10.9 |
T2 | 2.72 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 23.2 ± 7.3 |
T3 | 2.67 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 24.5 ± 7.1 |
T4 | 3.68 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 29.0 ± 8.7 |
T5 | 2.46 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 15.7 ± 5.5 |
T6 | 3.01 × 104 | 30.0 ± 1.5 | 18 ± 1.8 | 16.3 ± 6.7 |
TA | 5.22 × 104 | 30.0 ± 1.5 | 20 ± 2.0 | 29.4 ± 12.5 |
SSZ | SCC (%) (*) | SCC (%) (#) |
---|---|---|
BET1 | ||
BET2 | ||
BET3 | ||
BET4 | ||
BET5 | ||
BET6 | ||
HA-AA | ||
HA-MA | ||
LEV1 | ||
LEV2 | ||
MA-HP | ||
MM | ||
R1a | ||
R1b | ||
R2 | ||
SA1 | ||
SA2 | ||
T1 | ||
T2 | ||
T3 | ||
T4 | ||
T5 | ||
T6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparacino, F.; Palano, M.; Peláez, J.A.; Fernández, J. Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sens. 2020, 12, 952. https://doi.org/10.3390/rs12060952
Sparacino F, Palano M, Peláez JA, Fernández J. Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sensing. 2020; 12(6):952. https://doi.org/10.3390/rs12060952
Chicago/Turabian StyleSparacino, Federica, Mimmo Palano, José Antonio Peláez, and José Fernández. 2020. "Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region" Remote Sensing 12, no. 6: 952. https://doi.org/10.3390/rs12060952
APA StyleSparacino, F., Palano, M., Peláez, J. A., & Fernández, J. (2020). Geodetic Deformation versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sensing, 12(6), 952. https://doi.org/10.3390/rs12060952