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Abstract: In urban areas, the accuracy and reliability of global navigation satellite systems (GNSS)
vehicle positioning decline due to substantial non-line-of-sight (NLOS) signals and multipath effects.
Recently, positioning enhancement approaches with supervised GNSS signal type classification based
on 3D building model-aided labelling have received widespread attention. Despite the reduced
computing costs and improved real-time performance, the strict requirements of 3D building models
on accuracy and timeliness limit the popularization of the technology to some extent. Meanwhile,
the diversity of anomalous observation sources is beyond the reach of NLOS/multipath detection
methods. This paper attempts to construct an alternative framework for quality identification of GNSS
observations combining clustering-based anomaly detection and supervised classification, in which
the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm is
used to label the offline dataset as normal and anomalous observations without the aid of 3D building
models, and the supervised classifier in the online system learns the classification rule for real-time
anomaly detection. The experimental results based on the measured vehicle GPS/BeiDou data show
that after excluding anomalous observations the single point positioning accuracy of the offline
dataset is improved by 87.0%, 45.9%, and 69.6% in the east, north, and up directions, respectively,
and the positioning accuracy of two online datasets is improved by 48.4%/45.7%, 39.6%/63.3%, and
49.6%/49.1% in the three directions. Through a large number of comparative experiments and
discussion on key issues, it is certified that the proposed method is highly feasible and has great
potential in the practical application of urban GNSS vehicle positioning.

Keywords: GNSS vehicle positioning; urban environment; NLOS; multipath; HDBSCAN; anomaly
detection

1. Introduction

Global navigation satellite systems (GNSS) robust positioning in urban areas has always been a hot
and problematic issue in the navigation field. This is mainly because a large number of multipath and
non-line-of-sight (NLOS) effects degrade the positioning performance of a GNSS receiver. Due to the
complexity of urban environments, NLOS signal is often more harmful than multipath and its detection
and processing are more difficult [1]. With the rise of unmanned technology, intelligent transportation
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systems (ITS), and smart cities, the demand for accurate and reliable positioning results (including
static and dynamic) is becoming more and more urgent. For urban vehicles, a larger positioning error
may lead to serious consequences. Especially when vehicles move with little or no human control,
the accurate position of the vehicle becomes a vital issue. Meanwhile, the high development cost
of autonomous systems makes the GNSS sensor still one of the highest-value components. Proper
GNSS NLOS/multipath detection is a critical step for improving vehicle position solutions of both a
standalone GNSS system and a multi-source fusion system, and many different methods have been
proposed to distinguish between GNSS signal types [2–6]. To avoid the use of specific and expensive
hardware, 3D mapping and its derivative methods for dealing with NLOS and multipath have been
developed and have shown great potential in urban positioning applications [7–10]. Their basic
principle is to predict satellite visibility by generating building boundaries in the skyplot using a 3D
building model. However, it is expensive to establish and maintain accurate 3D building models,
and the use of models places high demands on the performance of computing equipment. In recent
years, increasingly more scholars have begun to use machine learning or deep learning to identify
NLOS/multipath. They attempted to reduce the operating cost of traditional methods and improve
usability by constructing a mapping relationship between multiple feature parameters and GNSS
signal categories, and achieved good results. In terms of classification algorithms, decision tree [11],
support vector machine (SVM) [12,13], convolutional neural network (CNN) [14], and adaptive neural
fuzzy inference system (ANFIS) [15] have been successively used for NLOS/multipath recognition.
The feature values in most of the above studies are directly or indirectly extracted from the receiver
independent exchange (RINEX) format files, which are easy to obtain for GNSS devices. The signal-level
feature values are used in [13].

A key issue is that, unfortunately, the classification method based on supervised learning requires
the training samples to be labelled in advance, and the labelling accuracy is directly related to the
performance of the classifier. As well known, it is always expensive to obtain a labelled dataset that is
accurate and can represent all types of states. The current mainstream labelling method is based on the
3D building model, which determines line-of-sight (LOS) and NLOS signals according to the elevation
and azimuth angles of the satellite and building boundary [16]. This method is not only limited by the
accuracy and timeliness of 3D building models but also requires the accurate position of the receiver to
obtain the correct classification label. What is more, in the urban environment, in addition to stationary
buildings, there are pedestrians, vehicles, trees, and other factors that interfere with the reception of
GNSS signals, which is beyond the application scope of 3D building model. The ray-tracing approach
based on the 3D building model can be employed to further determine multipath signals [17,18].
However, this method is computationally expensive and subject to the model accuracy and building
materials. This will also lead to another problem, that is, whether the classification model learned from
the training set based on certain fixed materials can show sufficient generalization ability when the
material of the surrounding obstacles changes as the environment changes. Some other methods for
obtaining labels are performed without using the 3D building model. The researchers in [11] utilized
the camera, calibrated compass, and accelerometer sensors to calculate the skyline contour. The NLOS
and LOS observations were labelled by comparing the elevation and azimuth of the building edge and
the satellites. In [14], the authors determined the carrier phase multipath in the real observations based
on whether the double-differenced carrier phase residual exceeds three-sigma of measurement errors
in a low multipath environment. The process for the former is too complex because of the need for
manually labelling. The latter only relies on a single indicator of residuals, which is a rough multipath
identification method. The traditional univariate-based method is often suboptimal because when
the state is determined by only one variable, it cannot be exactly known, especially in complex urban
environments [15]. Therefore, how to accurately label the signal type is a tedious and susceptible
process. In addition, except for [14], the other researches only focused on static observation scenarios,
which limited the dynamic application of their algorithms in urban areas.
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On the other hand, although the large NLOS/multipath error is the most important threat to urban
GNSS vehicle positioning, studies focusing on NLOS/multipath detection have not taken into account
observation anomaly caused by other factors such as satellite malfunction and receiver fault. Besides,
the ranging error caused by NLOS is not always greater than multipath. For some NLOS reflected
from close distances, the error is small [19]. There are certain loopholes in simply determining the
selection of observations according to the identified NLOS or multipath. In summary, to alleviate the
constraints of potential inaccurate signal type labelling on the performance of the classifier, improve
the usability and reliability of the classification algorithm, as well as expand the detection object
from NLOS/multipath to GNSS anomalous observations, we set our sights on unsupervised anomaly
detection (also known as outlier detection) methods and trying to establish observation classification
rules that can adapt to multiple urban scenarios. Due to the high complexity of real environments and
the diversity of GNSS anomalous observation sources, it is difficult to obtain satisfactory universality
of NLOS/multipath detection for both discrimination based on univariate statistical characteristics
and supervised classification limited by specific environments and behaviors. Therefore, it may be a
better choice to focus on the data itself and mine the distribution patterns of normal and anomalous
observations in different contexts. This requires a much larger amount of data. In addition, previous
statistical studies on variables related to GNSS signal types provide valuable references for our
work [20–24]. Machine learning has the advantage of being able to integrate various information
from measurements to improve the accuracy of observation type recognition. The correlation of
such measurements themselves and the continuous generation of massive available structured GNSS
data from human production activities creates opportunities for unsupervised anomaly detection of
GNSS observations.

According to [25], anomaly detection refers to “the problem of finding patterns in data that do not
conform to expected behavior”. It is widely applied in various domains, especially financial fraud
detection, network intrusion detection, industrial fault detection, and disease detection [26–29]. Point
anomaly (individual anomaly) is the simplest type of anomaly and the focus of most anomaly detection
studies. In this article, each GNSS observation can be regarded as a point instance with a specific set of
attributes (feature values). When an observation shows an anomalous state with respect to others, it is
determined as an anomalous observation. Depending on the availability of labels, anomaly detection
can be divided into three modes: supervised, semi-supervised, and unsupervised. Supervised anomaly
detection requires the labels for both normal and anomalous classes and semi-supervised anomaly
detection requires the labels for only normal class. Unlike them, the unsupervised anomaly detection
technique does not need any data label, so it has the most extensive range of application. Nevertheless,
it is based on the assumption that normal instances are much more frequent than the anomalous in the
dataset, otherwise a high false alarm rate will occur [25]. To fit the assumptions, preliminary screening
for offline data can be performed using Chi-square tests in this paper, and the unsupervised anomaly
detection algorithm can still work normally as long as the amount of the overall offline data is ensured.
There are many kinds of techniques to implement anomaly detection, which are reviewed in detail in
some literature [25,30–32]. To be specific, an improved clustering-based anomaly detection technique
(HDBSCAN) will be used to process offline data for obtaining labels here. It does not need to make
any assumptions about the generation distribution of the data and is scalable, with fast feedback on
the test set. However, anomaly detection faces one key challenge, that is, it is difficult to characterize
normal and anomalous behaviors. In response to this, we plan to make a prior distinction based on the
probability distribution of typical characteristic parameters of the dataset, and then use the positioning
accuracy after excluding anomalous observations to determine the boundary between the normal and
anomalous behavior.

The related studies have inspired us to explore a GNSS observation anomaly detection scheme
based on unsupervised learning (clustering), which can effectively identify most of anomalous
observations including large NLOS and multipath errors in the urban vehicular context by constructing
an appropriate characteristic parameter system and clustering model, without the help of any accurate
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3D building model. On this basis, the semi-supervised model or supervised classifier can be used
to detect anomalous GNSS observations in real time. The implication of our study is that GNSS
observations follow a certain distribution pattern on a multidimensional feature space, and high-quality
and available observations generally cluster together, away from anomalous observations caused by
diverse interference sources. This paper focuses on the method of vehicle GNSS observation anomaly
detection in urban environments, which is a basic and front-end work of GNSS robust positioning,
and the purpose of single point positioning (SPP) after excluding anomalous observations is to verify
the effect of anomaly detection. Subsequent enhancement methods such as auxiliary measurement
information fusion and advanced filtering algorithms are not covered. Our research also provides a new
perspective on vehicle GNSS receiver autonomous integrity monitoring (RAIM) in urban environments.

GNSS robust positioning based on 3D mapping is undoubtedly one of the most representative
and outstanding techniques for improving urban GNSS positioning accuracy and reliability in the past
decade. 3D building model-aided labelling has also been successful in supervised NLOS/multipath
detection. The novelty and contribution of this paper is to propose an urban vehicle GNSS anomalous
observation detection method mining the data itself when accurate and real-time 3D building models
become inaccessible. The structure of the article is as follows: (1) an anomalous observation detection
framework based on hybrid machine learning is given first, and the HDBSCAN algorithm is emphasized;
(2) the measured vehicle GPS/BeiDou data is used to analyze and verify the innovative method proposed
in this paper, and a large number of comparative experiments are conducted; (3) several key issues
about the practicality of this method are discussed; (4) the research conclusions and future work
are summarized.

2. Methodology

2.1. Feature Extraction

Proper feature values are critical to the performance of machine learning algorithms. In this paper,
we refer to the characteristic parameters of NLOS/multipath detection. Previous research has shown
that data-level feature values are adequate for NLOS/multipath detection. The features in this article are
extracted only from RINEX format files, which contain plenty of useful information about the quality of
GNSS observations. By making full use of these feature values combined with reasonable algorithms, it
is possible to effectively determine anomalous observations. There has been some literature about the
effects of different features on NLOS or multipath detection [11,15,19]. Here, after carefully evaluating
most of the above features, eight features are chosen for observation anomaly detection.

Satellite elevation angle: Assigning the weight of each observation based on the satellite elevation
angle is the simplest and most common method to reduce the impact of multipath and NLOS signal
reception on positioning results. In general, the satellite signal from the higher elevation angle are less
likely to be blocked and reflected by a building. However, this is not a universal truth. Affected by the
height and distribution of the buildings, high elevation signals may become NLOS, and low elevation
signals may become LOS. Nevertheless, the elevation angle is still an important characteristic index to
distinguish the NLOS signals.

Carrier-power-to-noise-density ratio (C/N0) measurement: According to the signal propagation
theory, additional propagation and reflection will increase the path loss of the GNSS signal. Similar
to elevation angle, signal strength or C/N0 has a general correspondence with the type of signal [22].
C/N0 measurement is also a commonly used parameter to mitigate multipath effects. In a complex
environment, the contribution of C/N0-based weighting to the positioning accuracy is greater than
elevation-based weighting [33]. Multi-frequency C/N0-based multipath detection is implemented by
comparing the difference of C/N0 measurements between different frequencies with the value expected
for the signal at that elevation angle. However, this indicator is not very suitable for applications
where the user moves too fast, such as GNSS vehicle positioning, because the path delay changes
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with the movement of the receiver antenna, often causing multipath interference to oscillate between
constructive and destructive faster than the bandwidth of the C/N0 measurement algorithm [19].

Pseudorange residual: When there are more observation equations than unknown parameters
and the position estimates are sufficiently accurate, the magnitude of pseudorange residual can reflect
the inconsistency between the pseudorange measurement and the geometric distance. Multi-system
fusion positioning increases the number of available observed satellites and observation redundancy.
Consequently, pseudorange residual can be used as an indicator to detect GNSS signal quality.

PDOP, HDOP, and VDOP: GNSS positioning accuracy usually depends on dilution of precision
(DOP) and measurement error. In the case where the user equivalent ranging error (UERE) is constant,
the larger DOP value is, the larger positioning error is. In a dense urban environment, a large DOP
value often means a large probability of multipath effect and NLOS reception.

The number of satellites involved in the position solution: The number of available satellites to
some extent indicates the quality of the observation environment at the current location, which has a
direct impact on the satellite signal quality.

Pseudorange rate consistency: This feature parameter is the difference between delta pseudorange
and pseudorange rate, and its mathematical expression is [15]

ζ =
∣∣∣∆ρ− .

ρ · ∆t
∣∣∣ (1)

where delta pseudorange ∆ρ and delta time ∆t indicate the change of pseudorange and the time
interval between two epochs, respectively. The pseudorange rate

.
ρ is calculated by Doppler shift based

on the principle of Doppler effect as
.
ρ
(s)

= −λi· f
(s)
Di

(2)

where superscript (s) and subscript i denote the index of satellite and frequency; λi is the carrier
wavelength; f (s)Di

is the Doppler shift in unit of Hz.

2.2. Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

HDBSCAN is an improvement based on hierarchical clustering for DBSCAN [34,35]. The principle
of the DBSCAN algorithm is that for each cluster, the sample points within a given neighborhood
radius must exceed a certain threshold. It is not sensitive to noise and can find clusters of arbitrary
shapes [36,37]. However, DBSCAN has two major disadvantages. First of all, it is necessary to manually
set the neighborhood radius Eps and the minimum number of samples around the core point MinPts.
It is difficult to find appropriate parameters when the spatial density of the samples is uneven, so
the parameters may not be universal on different datasets. Secondly, DBSCAN cannot be used for
clustering of large-scale data because of the huge computational overhead. HDBSCAN optimizes these
problems to reduce the running cost and sensitivity of the algorithm to parameters. What is more,
HDBSCAN can handle clustering with different densities. According to the tutorial of the open-source
code, the specific implementation steps of HDBSCAN are as follows [38]:

(1) Transform the space according to the density/sparsity. The mutual reachability distance is used to
represent the distance between two sample points, so that the distance between the sample points
in the sparse area and other points is enlarged, which reduces the dependence of clustering on Eps.
The expression of mutual reachability distance is

dmreach−k(a, b) = max
{
corek(a), corek(b), d(a, b)

}
(3)

where d(a, b) is the original metric distance between a and b; corek(a) denotes the distance of kth nearest
neighbor from a. Therefore, dense points (with low core distance) remain the same distance from each
other, while sparser points are pushed away to be at least corek away from any other point.

(2) Build the minimum spanning tree of the distance weighted graph. The sample data is treated as a
weighted graph, with mutual reachability distance as the weight of the connection edge. A minimal
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set of edges is found so that removing any edges from the set will split the graph. This minimum set of
edges is the minimum spanning tree of the graph, which can be achieved quickly and efficiently with
Prim’s algorithm [39].

(3) Construct a cluster hierarchy of connected components. The above minimum spanning tree is
converted into the hierarchy of connected components at this stage. The implementation method is to
sort the edges of the tree by distance in increasing order, and then traverse to create a new merged
cluster for each edge. To obtain a set of flat clusters, we need to know the conditions for terminating
the clustering. Therefore, the key to HDBSCAN is how to cut the tree at different places to select the
clusters for variable density samples.

(4) Condense the cluster hierarchy based on minimum cluster size. As the most important parameter of
HDBSCAN, once MinClusterSize is determined, the minimum spanning tree can be traversed from
top to bottom. When each node is split, if the number of sample points of the sub-cluster is less than
MinClusterSize, then the samples of this sub-cluster are marked as -1 for “outlier” and deleted. After
traversing the entire cluster tree, a new tree with a small number of nodes is finally obtained.

(5) Extract the stable clusters from the condensed tree. Unlike the one-size-fits-all cluster selection
method of DBSCAN, HDBSCAN introduces the stability indicator. Here the parameter λ is defined as
the reciprocal of distance. Specifically, there are two measures for a node in the tree and a measure for
a point in the node:

• λbirth: the lambda value when the cluster is formed
• λdeath: the lambda value when the cluster is split into two sub-clusters
• λp: the lambda value when that point is separated from the cluster

where λbirth < λp < λdeath. For each cluster compute the stability as

scluster =
∑

p∈cluster

(
λp − λbirth

)
(4)

The cluster selection follows this principle: if the sum of the stabilities of the sub-clusters is greater
than the stability of the cluster, then the cluster stability is set to be the sum of the sub stabilities;
otherwise, the cluster is declared as the selected cluster and all its descendants are deleted. When
traversing to the root node, the current set of selected clusters is the flat clustering, namely, the final
clustering result.

The HDBSCAN class has a large number of parameters that can be set during initialization,
but in practice, few parameters have a significant practical impact on clustering. There are mainly
two parameters that affect the results of anomaly detection, where MinClusterSize is the minimum
size of clusters and MinSamples stands for the number of samples in a neighborhood for a point to
be considered a core point. The number of clusters can be reduced by increasing MinClusterSize.
The larger MinSamples is, the more points are considered outliers, and clusters will be restricted to
more dense areas.

2.3. Hybrid Machine Learning Framework for GNSS Observation Anomaly Detection

Most individual anomaly detection algorithms, including clustering, are based on post-processing
(autonomously learning rules from a large amount of unlabeled sample data), so it is difficult to
apply them directly in real time. However, GNSS positioning is more applied in real-time scenarios,
especially for vehicle dynamic positioning in the urban environment. To cope with this problem, we
designed a real-time detection framework for anomalous GNSS observations, which consists of two
major parts, namely an offline learning system and an online learning system. The former provides the
latter with prior knowledge of learning. The specific algorithm flow is shown in Figure 1.
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observation anomaly detection.

In the offline system, considerable urban vehicle GNSS observations are collected, which naturally
contains a certain number of anomalous observations. Considering that unsupervised anomaly
detection algorithms always work better for the dataset with a small proportion of outliers, we performed
a preliminary screening of the original observations based on the Chi-square test. The verification
formulas of positioning results are as follows

vs =
(
Ps

r −
(
ρ̂s

r + c·d̂tr − c·dTs + Is
r + Ts

r

))
/σs (5)

v = (v1, v2, v3, . . . , vm)
T (6)

vTv < χ2
α(m− n) (7)

where σs is the standard deviation of observation s; vs is weighted residual; vTv denotes the weighted
sum of the squared errors (WSSE) based on residuals; n is the number of estimated parameters and m
is the number of measurements. χ2

α(m− n) is Chi-square distribution of the degree of freedom m− n
and α is false alarm rate. Herein, the value of α is set to 0.1% [40]. When meeting the condition, the
epoch is marked in the raw training set, otherwise it is assigned to the validation set, which can be
verified using HDBSCAN prediction and the online classifier described later. Since the Chi-square test
cannot completely exclude anomalous observations, the remaining anomalies help the implementation
of the anomaly detection algorithm. After feature extraction and preprocessing, the training set is used
as the input for HDBSCAN clustering. There are two ways to determine the ideal anomaly detection
results, and the detailed description is given in Section 3.2.1. At this point, the offline labelled database
is created. When ground truth values are employed to seek the best parameters here, we can call this
process quasi unsupervised learning. Based on the previous research results, when the labels of the
training set are accurate enough, the supervised classifiers can always show a good NLOS/multipath
recognition performance. This confirms that the accuracy of the prior knowledge and the quality of the
training set data are more important than subsequent classification algorithms [41]. Therefore, the
establishment of a robust HDBSCAN clustering model for anomalies is the focus of this paper.

In the online system, the semi-supervised model or supervised binary classifier generates
classification rules by learning offline labelled data. When the new GNSS observations are input into
the classifier, the anomaly detection results can be obtained in real time. Several popular supervised
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classifiers without parameter fine-tuning are used to verify the system in this article. Finally, like the
offline system, we evaluate the effectiveness of anomaly detection with the accuracy and availability of
SPP after excluding anomalous observations. Generally, to obtain better real-time positioning accuracy,
the Chi-square test can be continued on the final positioning result according to Equation (7). However,
the positioning results obtained by the hybrid learning method usually have very few position solutions
that fail to pass the verification. When the computing capacity of the device can meet the real-time
requirements, for the results that do not pass the Chi-square test, we can update the feature values of
their observations and continue to use the online system for further anomaly detection and exclusion.
It is generally recommended to iterate only once.

It is worth mentioning that the offline system can learn new HDBSCAN rules and update the
labelled database by constantly adding new observations. Training data from more scenarios tend to
benefit the performance improvement of the clustering algorithm. Since the exclusion of anomalous
observations may cause the number of satellites in the epoch to be too small to calculate position, to
facilitate the performance verification of the proposed algorithm, we chose GPS/BeiDou dual-system
observations for experiments.

3. Results

3.1. Data Acquisition and Preprocessing

In this paper, we employed vehicle GNSS observations in typical urban environments for
experimental verification. The experimental platform and test environment are shown in Figure 2.
The external antenna on the roof of the vehicle is connected to different GNSS receivers through a
power splitter. Meanwhile, the platform is equipped with a NovAtel’s high-performance tactical grade
inertial measurement unit (IMU) ISA-100C for tightly combining GNSS RTK/INS measurements to
obtain the calibration values of 3D position, velocity and attitude, which are used to subsequently
verify the improvement of positioning accuracy by excluding anomalous observations. The calibration
solutions are implemented by post-processing through a high-precision tight combination algorithm
from NovAtel Inertial Explorer software. The NovAtel receiver of the rover station and the Trimble
receivers of the three base stations contribute the carrier phase observations in tightly combined
positioning. It should be noted that due to the heterogeneity between different types of receivers
(different hardware configurations and signal processing algorithms), they differ to some extent in
terms of satellite signal acquisition and tracking, signal reception strength, observation quality, etc.
Therefore, to better demonstrate the universality performance of the proposed algorithm, we leveraged
ComNav K508 GNSS OEM board to collect the RINEX data of the training set, while the data collected
by NovAtel ProPak6 receiver was used as the test set. Besides, the time interval between the acquisition
of the training set and the test set is more than four months. In this case, the spatial-temporal
correlation between the datasets will be weakened, which is conducive to a more objective evaluation
of algorithm performance.
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Figure 2. The experimental platform and test environment. (a) shows the data acquisition and calibration
equipment, (b) shows a typical lane scenario in downtown Nanjing (from Baidu Map’s panorama).
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The average speed of the vehicle was about 30 km/h, and the maximum speed was 50 km/h.
In addition to the dynamic observations, the platform also recorded a small amount of static data when
stopping at the intersections. The sampling rate of data is 1 Hz. We only process single-frequency
observations from GPS L1 and BeiDou B1 bands.

Figure 3 shows the vehicle routes corresponding to three segments of GNSS observations, and the
three sets of data are labelled D1, D2, and D3 in chronological order, where D1 is composed of the
training set and the validation test, while D2 and D3 are the test sets. Details will be described later.
The location where the vehicle travelled is the urban area of Nanjing, and the typical scenarios include
urban canyon, semi-urban, tunnel, etc. Many roads in Nanjing are covered by tall London plane trees
and other leafy trees. As shown in the figure, D2 and D1 were collected at different places, and the
trajectory of D3 had an overlap with D1. Both D2 and D3 are over four months apart with D1.
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Figure 3. Vehicle routes corresponding to GNSS observations. (a) Vehicle route of the training set D1;
(b) vehicle route of the test set D2; (c) vehicle route of the test set D3.

The skyplots of three datasets are also given in Figure 4. Although the path of D3 is included in
D1, the satellite distributions of D1 and D3 are still quite different because of unknown changes in the
surroundings of overlapping areas and the existence of satellite orbit period. Consequently, there will
not be a large number of repeated or extremely approximate feature values between them to affect the
reliability verification of the algorithm. Considering the environmental similarity between D3 and D1,
we employed D3 as another test set to compare the detection and exclusion effect with D2.
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The three sets of data are processed to extract feature values, respectively. In particular, for the
integrity of the sample data, we do not set the satellite elevation mask and C/N0 mask during the
positioning process, which helps expand the range and diversity of feature values. Details of the
datasets are listed in Table 1. The title valid epoch refers to the number of epochs involved in the location
resolution. Due to the deterioration of the observation environment, the satellite signal loss of lock will



Remote Sens. 2020, 12, 971 10 of 26

occur, and when the number of visible satellites is less than 5, the dual-system pseudorange single
point positioning cannot be performed. These epochs are classified as invalid epochs. Nevertheless, in
the urban vehicular environment, there are a considerable number of anomalous GNSS observations
at valid epochs. How to effectively identify and eliminate them is exactly what aimed to study in
this paper.

Table 1. Valid epoch and sample size of each dataset.

Dataset Start Time (UTC) End Time (UTC) Valid Epoch Sample Size

D1 2016-12-07 06:35:48 2016-12-07 07:07:59 1784 20,302
D2 2017-04-20 05:12:58 2017-04-20 05:31:43 1052 11,454
D3 2017-04-20 05:31:44 2017-04-20 05:41:28 531 6011

We further divide D1 into two parts. The first part contains the epochs in which WSSEs pass the
Chi-square test, and the second part is the opposite. As mentioned above, we need to preliminarily
screen the training set for more accurate anomaly detection results. The segmented data are shown
in Table 2. The subscripts a and b indicate the data of the first part and the second part, respectively.
D1a is the training set, and the rest are considered the validation set. In the three datasets, epochs
that do not meet the Chi-square test account for 4.4%, 10.0%, and 7.2%, respectively. The observation
environment of D2 is worse than the other two. In the traditional RAIM fault detection and exclusion
(FDE) algorithm, consistency checking based on the redundancy of range measurements is applied
to recovering epochs conflicting the Chi-square test to improve the reliability and availability of
positioning results. However, the classical algorithm often fails in urban areas [42]. Therefore, it is
also crucial to restore the second part of observations reasonably and effectively, especially for the
continuity and integrity of dynamic positioning.

Table 2. Valid epoch and sample size of D1a and D1b.

Data Subset Valid Epoch Sample Size Attribute

D1a 1705 19,569 Training set
D1b 79 733 Validation set

To keep the features of different value ranges at the same numerical magnitude and reduce the
influence of the features with large variance on the model, the feature values were standardized so that
the mean value is 0 and the variance is 1. On this basis, principal component analysis (PCA) [43] is used
to extract key features and improve learning speed. What is more, PCA ensures that these variables are
independent of each other to avoid the instability of the solution space. The explained variance ratio
represents the contribution proportion of each principal component axis to the variance of the entire
dataset. In D1a, for example, the first six principal components cover more than 98% of the training set
information, as shown in Figure 5. Therefore, we used these six principal components instead of the
original feature values for learning. It should be noted that when testing the algorithm performance
with the test sets, the feature values of the test sets must be standardized using the mean and variance
parameters calculated by the training test. Similarly, we should use the dimension reduction matrix
obtained from the training set to reduce the dimension of the test sets.
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3.2. Anomaly Detection Based on HDBSCAN

In this section, we will show in detail the results of detecting anomalous GPS/BeiDou observations
on the dataset D1 using HDBSCAN algorithms. This contains a critical post-processing process, which
is also the focus of this article, laying the foundation for subsequent supervised learning and real-time
applications. At the same time, changes in positioning accuracy and availability after excluding
anomalous observations are also analyzed.

3.2.1. Results of D1a

The data subset D1a is first processed using the HDBSCAN algorithm. By parameter tuning, the
dataset is grouped into one category as far as possible. The criterion for parameter determination
is that as outliers evolve from less to more, the maximum positioning errors in the east and north
directions are both less than 10 m for the first time after excluding anomalous observations. This is a
relatively conservative approach to reduce false positive rate. Another effective method is to extract the
upper quantiles according to the probability distribution of outlier scores in HDBSCAN that describes
the possibility of the point becoming an outlier to determine the outlier boundary. In this paper, the
maximum positioning error was used to determine the parameters of the clustering model because
of the available ground truth values. To be specific, we first fixed MinSamples to the default value
and adjusted MinClusterSize. As described in the last paragraph of Section 2.2, the number of clusters
can be reduced by increasing MinClusterSize. Therefore, we set the parameter in ascending order.
When MinClusterSize is 60, the number of clusters starts to converge to 2 (the rest are outliers), and
there are very few sample points in one of the clusters. At this point, we started to adjust MinSamples.
The larger MinSamples is, the more points are considered anomalies. To reduce false positive rate, after
repeated SPP experiments with anomaly exclusion, we finally set MinSamples to 8, and the results
exactly meet the above-mentioned maximum plane error conditions. Figure 6 shows the 3D clustering
results when the MinClusterSize is 60 and the MinSamples is 8. For better visualization, the first three
principal components (PC) were set as the coordinate axes. It can be seen that the dataset is clustered
into two categories, Cluster 1 (blue points) and Cluster 2 (green points), labelled 1 and 0, respectively.
Here, the outlier samples labelled -1 are considered “anomalous observations” (red points). However,
this is just an intuitive preliminary labelling result, because outliers or anomalies do not necessarily
mean anomalous GNSS observations. In some extreme circumstances, anomalous observations in
the dataset may behave more like non-outliers than normal observations. Without prior knowledge,
there may be a risk that the anomalous observations are wrongly regarded as “normal”, while the
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normal observations become “anomalous”. Therefore, for the sake of insurance, it is necessary to
further confirm the clustering results according to the probability distributions of the feature values.
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Figure 6. Preliminary clustering results of the dataset D1a using hierarchical density-based spatial
clustering of applications with noise (HDBSCAN).

Figure 7 depicts a pair plot that indicates pairwise relationships between variables in the training set
D1a. The subplots on the diagonal axes show the univariate distributions of the corresponding variables.
The four variables chosen for illustration are satellite elevation angle, pseudorange residual, C/N0

measurement, and pseudorange rate consistency. According to the probability distributions of the last
three variables, it can be determined that the recognition results of anomalous GNSS observations above
are generally consistent with prior statistical knowledge. Specifically, the anomalous observations are
characterized in probability by the largest absolute pseudorange residual, the lowest C/N0 measurement
and the largest magnitude of pseudorange rate difference, which is highly similar to the properties
of NLOS signals in the urban environments. Meanwhile, the satellite elevation angle has a weak
ability to discern the types of GNSS observations. However, it can still be seen that points with
medium-low elevation angles (less than 50◦) account for the majority of the anomalies. As for Cluster 1
and Cluster 2, the samples of Cluster 2 are mainly concentrated in the region with higher elevation
angle, smaller residual and larger C/N0 measurement. These samples can be defined as high-quality
observations, which are most likely derived from completely contamination-free LOS signals under
ideal observation conditions. Cluster 1 is a collection of those between high-quality observations and
anomalous observations. Due to the interference of low multipath effect or other potential factors, its
quality as a whole is not as good as that of Cluster 2, but it can still be used for position solution. In D1,
the number of anomalies and non-anomalies is 677 and 18,892, respectively.
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pseudorange rate consistency. The diagonals represent the probability density of different sample
points on this variable, while the off-diagonals represent the distribution of sample points on the
corresponding two-dimensional features.

Being short of labels, there is no unified evaluation index for clustering results. However, the
goal of clustering in this paper is clear, namely, to improve the accuracy and reliability of GNSS
positioning in urban environments, so the root mean square error (RMSE) of positioning results after
excluding anomalous observations was used as an index to evaluate the performance of clustering.
The high-precision RTK/INS tightly combined solution was considered as ground truth values. The
single point positioning solutions in this paper were obtained using the weighted least squares (WLS)
method based on satellite elevation angle.

Figure 8 and Table 3 show the improvement in positioning results after HDBSCAN was used to
eliminate anomalous observations. The original positioning RMSE without anomaly detection is 3.05,
2.41, and 9.88 m in the east, north, and up directions, respectively. In contrast, the positioning RMSE in
the three directions after excluding anomalous observations is 1.09, 2.10, and 6.17 m, with accuracy
improvements of 64.3%, 12.9%, and 37.6%. As the vehicle track generally goes from south to north,
the positioning error in the east direction is relatively large compared with the north direction [44].
The experimental results show that the removal of anomalies has a better effect on the improvement
of positioning accuracy in the east direction, which indicates that HDBSCAN is not only effective to
identify GNSS anomalous observations but also consistent with the real situation. The continuity
of dynamic positioning results is also of crucial importance while ensuring the positioning accuracy.
When there are too few GNSS constellations involved in position solution, it is not advisable to
lose a large number of original valid epochs by blindly pursuing the positioning accuracy. In the
dataset D1a, the number of valid epochs is 1705, and after excluding anomalous observations the
number becomes 1655, making the observed data available up to 97.1%. From Figure 9, besides, as the
number of satellites participating in position calculation is reduced due to the exclusion of anomalous
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observations, the geometric dilution of precision (GDOP) has unsurprisingly risen overall. Even so, the
positioning accuracy has been improved. Therefore, this method can effectively identify anomalies in
GNSS observations. Moreover, the epochs after using HDBSCAN to remove anomalous observations
all meet the Chi-square test.
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The proposed method can improve the positioning accuracy in two ways. As can be seen from
Figure 10, in harsh environments, fewer satellites can be observed and a large number of anomalous
observations are mixed into the observation epochs, resulting in huge positioning errors. After anomaly
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exclusion, there are not enough GPS or BeiDou satellites available for the dual-system positioning
process, so these epochs no longer output their positioning results. On the other hand, as shown
in Figure 11, when there are sufficient visible satellites and considerable anomalous observations
received, the remaining satellites can still participate in the position solution even if the removal of
anomalies weakened the satellite geometry, and the positioning accuracy is substantially improved,
especially in the east direction. In the former case, some valid epochs are lost due to insufficient normal
observations caused by the poor observation environment. However, incorrect coordinate solutions
are avoided. Since normal observations are preserved, these epochs can be complemented using their
normal observations through advanced filtering algorithms and enhanced information from other
sensors or measurements.
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after anomaly exclusion.

In the traditional GNSS single point positioning process, the satellite elevation mask and C/N0

mask are usually set to exclude the observations with poor quality. Therefore, this simple and direct
method is also used for comparative experiments. The experimental results are listed in Table 4. When
the C/N0 mask is set to 50 dB-Hz, the position solutions of only eight epochs can be obtained, and the
availability of high-quality observations is greatly reduced, so this result is ignored. By comparison, it
can be found that when the elevation angle mask and C/N0 mask are set to 25◦ and 0 dB-Hz, respectively,
the data subset D1a has the minimum two-dimensional plane positioning error. Nevertheless, the
positioning accuracy has not been significantly improved compared with the original result. Some
conclusions can be drawn here. Firstly, in urban vehicle-mounted scenarios, the C/N0 measurement has
a higher resolution in the positioning results compared with the satellite elevation angle. Specifically,
the change of the elevation mask has little influence on the positioning result under the condition of a
fixed C/N0 mask until the elevation mask reaches 40◦. This also indicates that in the urban environment,
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the observations are mainly concentrated below the C/N0 measurement of 50dB-Hz and above the
elevation of 35◦. Secondly, anomalous GNSS observations cannot be effectively eliminated by setting
elevation mask and C/N0 mask in a complex urban environment, because the factors affecting the
quality of GNSS observations are various. In addition, appropriate cut-off values are not easy to find. If
the mask is set too large, the satellite geometric distribution will deteriorate and the number of visible
satellites will decrease, thus reducing the positioning accuracy and availability.

Table 4. Positioning results of D1a corresponding to different elevation angle masks and C/N0 masks.

Elevation
Mask (◦)

C/N0 Mask
(dB-Hz)

RMSE (m) Maximum Error (m)
Availability

East North Up East North Up

15

0 3.04 2.38 10.21 77.25 21.86 215.15 1705
30 11.89 6.46 55.96 474.48 249.00 2271.86 1703
35 21.81 11.50 103.59 884.83 460.76 4211.24 1685
40 4.00 2.73 19.37 129.47 73.53 622.91 1615
45 3.79 2.81 17.76 104.94 49.66 487.84 1304
50 0.81 2.68 5.03 1.81 4.83 12.00 8

20

0 3.05 2.38 10.31 77.25 21.86 215.15 1705
30 11.89 6.46 55.98 474.48 249.00 2271.86 1703
35 21.81 11.50 103.59 884.83 460.76 4211.24 1685
40 4.00 2.73 19.41 129.47 73.53 622.91 1615
45 3.79 2.81 17.76 104.94 49.66 487.84 1304
50 0.81 2.68 5.03 1.81 4.83 12.00 8

25

0 3.03 2.37 10.25 77.25 21.86 215.15 1705
30 11.88 6.45 55.96 474.48 249.00 2271.86 1703
35 21.81 11.50 103.59 884.83 460.76 4211.24 1685
40 4.00 2.73 19.41 129.47 73.53 622.91 1615
45 3.79 2.81 17.77 104.94 49.66 487.84 1304
50 0.81 2.68 5.03 1.81 4.83 12.00 8

30

0 3.03 2.39 10.39 77.25 21.86 215.15 1705
30 11.88 6.46 55.99 474.48 249.00 2271.86 1703
35 21.81 11.51 103.60 884.83 460.76 4211.24 1685
40 4.00 2.76 19.50 129.47 73.53 622.91 1615
45 3.80 2.81 17.79 104.94 49.66 487.84 1304
50 0.81 2.68 5.03 1.81 4.83 12.00 8

35

0 3.05 2.35 10.11 77.25 21.86 215.15 1705
30 11.89 6.45 55.94 474.48 249.00 2271.86 1703
35 21.81 11.50 103.57 884.83 460.76 4211.24 1685
40 4.01 2.71 19.34 129.47 73.53 622.91 1615
45 3.80 2.81 17.79 104.94 49.66 487.84 1304
50 0.81 2.68 5.03 1.81 4.83 12.00 8

40

0 17.35 9.30 82.41 474.48 249.00 2271.86 1702
30 17.37 9.29 82.48 474.48 249.00 2271.86 1700
35 22.00 11.59 104.44 884.83 460.76 4211.24 1679
40 4.06 2.76 19.47 129.47 73.53 622.91 1608
45 3.80 2.81 17.81 104.94 49.66 487.84 1302
50 0.81 2.68 5.03 1.81 4.83 12.00 8

3.2.2. Results of D1b

For this part of data, the traditional RAIM FDE algorithm recalculates the position by excluding,
one by one, the visible satellites at each epoch. Once meeting the Chi-square test, the position solutions
of these epochs are output. However, in epochs with a large number of anomalous observations,
the algorithm usually fails. Since HDBSCAN itself can also be used to build predictive models,
we first try to predict anomalies of D1b using HDBSCAN which are trained on D1a in this section.
The prediction results are shown in Figure 12. To facilitate visualization, the dataset was projected
onto the PC1-PC2 plane. There are 599 anomalous observations, obviously more than the normal
observations. The remaining 134 normal observations are used for single point positioning to verify
the effect of anomaly detection.
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Table 5 shows how the above two methods change the positioning results. It can be seen that
although RAIM FDE retains most of the epochs, the positioning accuracy does not increase but
decreases because the anomalous observations are not effectively eliminated. HDBSCAN improves
the plane positioning accuracy to within 1 m, and the two new epochs after excluding anomalous
observation meet the Chi-square test. Since the old epochs of D1b do not conform to the Chi-square
test, it contains considerable anomalous observations. After identification and elimination of them, the
observations that can be used for position calculation will be greatly reduced, so only a small number
of epochs are retained. In D1b, although 79 valid epochs contain 134 normal observations, only two
epochs with more than five satellites are involved in the solution. This problem will be alleviated once
more constellations are introduced.

Table 5. Comparison of positioning accuracy and availability of D1b using different anomaly detection
and exclusion methods.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

Original 37.37 14.67 84.68 125.79 34.43 352.13 79

RAIM FDE 54.46 18.42 226.81 437.12 159.49 1926.57 78

HDBSCAN 0.86 0.88 2.08 1.13 1.01 2.44 2

In addition to the HDBSCAN prediction, we also used some typical supervised classifiers, such as
radial basis function (RBF) kernel SVM, decision tree, random forest, adaptive boosting (AdaBoost) and
multi-layer perceptron (MLP), to detect anomalous observations of D1b for verification of clustering
results. Before the training, we classified Cluster 1 and Cluster 2 in D1a into one category, and anomalous
observations into another, forming a binary classifier. The positioning results after classification are
listed in Table 6. It can be seen that the positioning results of RBF SVM, decision tree, and MLP are close
to that of HDBSCAN. As the availability increases, the positioning accuracy decreases, which indicates
that more anomalous observations may be retained in the observations. Therefore, for D1b, both the
direct prediction based on HDBSCAN and the classifier based on supervised learning can effectively
detect anomalous observations. In addition, to deal with the imbalance of positive and negative
samples, an over-sampling method called synthetic minority over-sampling technique (SMOTE) [45]
was used to increase the number of anomaly samples. However, the desired results were not achieved.
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Table 6. Comparison of positioning accuracy and availability of D1b after different classifications.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

RBF SVM 0.79 1.24 6.61 1.01 1.43 9.20 2

Decision tree 0.79 1.24 6.61 1.01 1.43 9.20 2

Random Forest 18.51 11.69 50.01 36.09 22.85 97.09 5

AdaBoost 12.56 7.74 31.82 19.84 12.58 52.05 4

MLP 0.79 1.24 6.61 1.01 1.43 9.20 2

Similarly, we also set the elevation mask and C/N0 mask for this part of data to compare with the
proposed method. The positioning results are shown in Table 7. Obviously, due to the poor quality of
the data, the positioning results improve only when the C/N0 mask is set to a large value. One epoch
with higher accuracy is retained, which is similar to the results of machine learning methods. However,
it is still difficult to determine the optimal elevation and C/N0 mask, which must be consistent with
D1a. In practical applications, the cut-off values of the two parts of data are set uniformly. Therefore, it
is generally advisable to abandon the recovery of these epochs, so as not to encumber the positioning
result of D1a. Combined with the two parts of observations, it is difficult to identify the anomalies by
setting the elevation and C/N0 mask in the complex urban vehicle-mounted environment, which has
little effect on the improvement of the positioning results.

Table 7. Positioning results of D1b corresponding to different elevation angle masks and C/N0 masks.

Elevation
Mask (◦)

C/N0 Mask
(dB-Hz)

RMSE (m) Maximum Error (m)
Availability

East North Up East North Up

15

0 37.59 14.60 91.41 125.79 34.43 352.13 79
30 38.85 13.33 90.74 125.79 34.43 352.13 79
35 39.45 13.05 92.68 125.79 31.42 365.73 78
40 37.06 22.20 93.44 86.92 121.52 365.73 74
45 48.56 53.73 188.54 166.75 282.75 792.43 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1

20

0 37.58 14.48 91.43 125.79 34.43 352.13 79
30 38.86 13.29 91.81 125.79 34.43 352.13 79
35 39.45 13.04 93.12 125.79 31.42 365.73 78
40 37.06 22.20 93.44 86.92 121.52 365.73 74
45 48.56 53.73 188.54 166.75 282.75 792.43 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1

25

0 37.43 14.75 93.51 125.79 34.43 352.13 79
30 38.78 13.44 92.87 125.79 34.43 352.13 79
35 39.42 13.13 93.70 125.79 31.42 365.73 78
40 37.06 22.20 93.44 86.92 121.52 365.73 74
45 48.56 53.73 188.54 166.75 282.75 792.43 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1

30

0 37.43 14.75 93.51 125.79 34.43 352.13 79
30 38.78 13.44 92.87 125.79 34.43 352.13 79
35 39.42 13.13 93.70 125.79 31.42 365.73 78
40 37.06 22.20 93.44 86.92 121.52 365.73 74
45 48.56 53.73 188.54 166.75 282.75 792.43 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1
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Table 7. Cont.

Elevation
Mask (◦)

C/N0 Mask
(dB-Hz)

RMSE (m) Maximum Error (m)
Availability

East North Up East North Up

35

0 38.10 14.84 95.39 125.79 34.43 352.13 79
30 39.29 13.41 92.15 125.79 34.43 352.13 79
35 39.87 13.08 92.58 125.79 31.42 365.73 78
40 37.06 22.20 93.44 86.92 121.52 365.73 74
45 48.56 53.73 188.54 166.75 282.75 792.43 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1

40

0 38.58 14.04 104.33 125.79 34.43 352.13 79
30 39.96 12.85 100.10 125.79 34.43 352.13 79
35 40.90 12.61 100.64 125.79 31.42 365.73 78
40 38.25 22.00 101.75 86.74 121.52 365.73 74
45 68.27 56.13 279.08 353.07 282.75 1529.57 54
50 0.55 2.43 4.10 0.55 2.43 4.10 1

3.2.3. Overall results of D1

Finally, the overall effect of different anomaly detection and exclusion methods on D1 is listed in
Table 8. The best localization performance is achieved by using HDBSCAN-based anomaly detection
and exclusion method. Compared with the original positioning results, HDBSCAN improves the
accuracy by 87.0%, 45.9%, and 69.6% in the east, north, and up directions, respectively. This is in
line with the driving path of D1, and it is clear that more anomalous observations are coming from
the cross-street (east) direction. Therefore, after anomaly exclusion, the positioning accuracy in the
east direction improves the most. Besides, the availability remains at a high level of 92.9% (of course,
it depends on the severity of the observation environment), and all the 1657 epochs meet further
Chi-square tests. In complex urban vehicular environments, RAIM and cut-off values cannot effectively
improve the positioning accuracy but may cause the accuracy to deteriorate.

Table 8. Comparison of positioning accuracy and availability of D1 using different anomaly detection
and exclusion methods.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

Original 8.41 3.88 20.27 125.79 34.43 352.13 1784

HDBSCAN 1.09 2.10 6.17 8.82 9.42 46.69 1657

RAIM FDE 11.77 4.52 48.41 437.12 159.49 1926.57 1783

Cut-off 8.42 3.87 22.08 125.79 34.43 352.13 1784

Chi-square test 3.05 2.41 9.88 77.25 21.86 215.15 1705

3.3. Predicted Results Based on Supervised Classification

The detection results of anomalies on D1a provide a priori knowledge for the supervised classifier
in this section. After training the classifier, the predicted results of the new observations can be used for
real-time positioning. There are many classification methods based on supervised learning, including
complicated deep neural networks with excellent performance. We did not intend to study the network
model in depth, because that is not the point of our article. Several typical lightweight classifiers were
used to verify the effectiveness and feasibility of the hybrid learning method in GNSS observation
anomaly detection. The parameters of each model are only a preliminarily set.

Tables 9 and 10 list the positioning results of D2 and D3 using different anomaly detection and
exclusion methods, respectively. The figures in parentheses represent the number of epochs that do not
conform to the Chi-square test. Overall, the RBF SVM classifier has the best effect on the improvement
of location results. In D2, the positioning accuracy is improved by 48.4%, 39.6%, and 49.6% in the three
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directions. The availability is 75.6% because of the harsher environment than D1. While in D3, the
positioning accuracy is improved by 45.7%, 63.3%, and 49.1%, and the availability remains at 87.8%.
The positioning accuracy improvement of D3 is slightly greater than that of D2, which may be caused
by the overlap between the observed trajectories of D3 and D1. Moreover, the positioning accuracy
improvement of MLP for D3 is comparable to SVM, which indicates that SVM is not necessarily the
only suitable classifier. Better results are expected through more refined parameter tuning. It can be
seen that after the anomaly detection and exclusion with the proposed method, the epochs composed
of the remaining observations basically conform to the Chi-square test, which also shows the reliability
of the algorithm from another perspective.

Table 9. Comparison of positioning accuracy and availability of D2 using different anomaly detection
and exclusion methods.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

Original 3.95 3.86 16.43 30.59 26.94 100.13 1052

RAIM FDE 3.37 3.02 13.09 28.87 26.94 92.47 1020

Chi-square test 2.20 3.05 10.75 14.79 26.94 92.46 947

HDBSCAN 2.08 2.37 8.37 28.29 31.82 142.67 776(5)

RBF SVM 2.04 2.33 8.28 28.29 31.82 142.67 795(7)

Decision tree 3.06 2.97 11.78 31.41 28.46 86.11 946(45)

AdaBoost 5.39 5.28 16.00 108.96 83.14 243.90 939(9)

Random forest 3.22 3.61 13.81 35.88 25.63 94.19 1027(21)

MLP 2.53 3.12 11.85 30.95 40.62 113.07 999(5)

Table 10. Comparison of positioning accuracy and availability of D3 using different anomaly detection
and exclusion methods.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

Original 3.85 1.88 8.02 35.20 19.98 49.88 531

RAIM FDE 3.46 1.57 7.05 24.63 19.98 49.88 518

Chi-square test 3.50 1.55 7.04 24.63 19.98 49.88 493

HDBSCAN 2.19 1.26 4.45 12.19 15.76 31.73 426(1)

RBF SVM 2.09 0.69 4.08 12.19 4.94 31.73 466(3)

Decision tree 2.58 1.12 5.60 19.12 17.98 50.51 462(1)

AdaBoost 2.59 1.16 4.88 15.57 19.98 35.98 478(5)

Random forest 4.55 2.18 8.45 44.38 23.76 73.65 513(16)

MLP 2.25 0.69 3.79 14.66 5.68 24.31 472(2)

Figure 13 shows the predicted anomaly results of D2 and D3 on the PC1-PC2 plane using RBF
SVM. The subgraph of D2 is zoomed in because some anomalies deviate too far from the normal. After
processing by the classifier, normal observations are clustered together, while anomalies are scattered
everywhere, which conforms to the assumption from the first category of clustering-based techniques
in [25]. Intuitively, the results of the classification are also credible. Nevertheless, the incomplete
feature values from the training set and the less elaborate classification model will result in a certain
amount of false and missed detections. In addition, the number of satellites and DOP values will drop
after excluding anomalous observations, so there may be a small number of relatively large errors in
the positioning results, which does not affect the improvement of the overall positioning performance.
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In general, the classifier performs better on the training set than on the test set. Although
satisfactory anomaly detection results of the above test sets are obtained by using the hybrid learning
rule, the generalization ability of the classification model can still be improved through the following
points. Firstly, longer observations from more scenarios should be collected to increase the number
of samples in the training set and avoid overfitting. Secondly, it is necessary to extract better and
more descriptive feature values, which are not limited to RINEX-level measurements. Finally, the best
performance is achieved by selecting a more appropriate classifier and fully tuning the parameters of
the model.

4. Discussion

4.1. The Necessity of Chi-Square Test Separation

As mentioned above, HDBSCAN-based anomaly detection makes the implicit assumption that
anomaly points in the sample set account for a small proportion. Therefore, before the clustering
algorithm started to run, the Chi-square test is used to separate the offline dataset, where observations
in epochs that meet the Chi-square test are considered as the raw training set. To verify the significance
of this step, we also used HDBSCAN directly on the whole dataset without Chi-square test separation
for the comparative experiment. The parameter determination method is the same as described in
Section 3.2.1. Unfortunately, with more anomalies in the dataset, parameter tuning becomes a challenge.
When the availability of the dataset without separation is less than 1657 epochs, its positioning error
still exceeds the dataset with Chi-square test separation. Additionally, it has five epochs that do not
meet the second Chi-square test, as shown in Table 11. During the parameter tuning process, as more
“outliers” are detected, the positioning accuracy becomes higher, but the availability will drop sharply,
which is not desirable. Through the comparative experiment, it can be found that excessive outliers
affect the performance of HDBSCAN anomaly detection and may cause a high false alarm rate, that
is, some normal observations are considered as anomalies. Of course, there are many methods of
preliminary screening for the dataset, among which the Chi-square test is only a representative one.
Besides, the different values of α also affect the screening results. However, when clustering-based
anomaly detection is performed, reducing the ratio of anomalous observations is a critical step.
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Table 11. The effect of Chi-square separation on the positioning results of D1 using HDBSCAN anomaly
detection and exclusion.

Method
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

Separation 1.09 2.10 6.17 8.82 9.42 46.69 1657(0)
No separation 1.64 2.23 6.91 36.09 22.85 97.09 1643(5)

4.2. The Balance between Accuracy and Availability

Due to the lack of true and accurate anomaly labels, we can only verify the effectiveness of the
anomaly detection algorithm and supervised classifier by the accuracy of the positioning results after
excluding anomalous observations, while also taking into account the availability. However, directly
deleting anomalous observations reduces the number of available satellites and weakens the geometric
distribution, which also affects the positioning performance to a certain extent. For dual-system
GNSS positioning, when the number of satellites is less than five, the positioning process cannot be
performed. While correct anomaly detection and exclusion can greatly improve positioning results, it
must be acknowledged that this improvement is limited by the above disadvantages in areas where
only a few satellites are available. Some epochs cannot output the position due to the too few satellites
available, and some epochs can only obtain the suboptimal accuracy due to the poor geometric
distribution. Suggestions about determining whether to include, exclude, or downweight multipath or
NLOS observations within the navigation solution are given in [19]. In addition, the measurement
information from external sensors can also be used to enhance the availability and positioning accuracy
of GNSS observations. Although no forthcoming well-developed methods or techniques are available
for autonomous integrity monitoring based on standalone GNSS receivers, the integrity monitoring
approaches without any additional sensors are considered more promising and attractive because they
can reduce the complexity and cost of the on-board equipment [42]. It is certain that when there are
sufficient GNSS constellations available, the room for optimizing signal selection will be larger. For D1,
a total of 127 epochs have to be abandoned due to fewer than five satellites.

4.3. Performance of RAIM with Different False Alarm Rates

In traditional RAIM, Chi-square test based on WSSE is a commonly used method. However, it
can only determine whether the measured values are consistent or not, and cannot pick out which
observations are anomalous. The epochs that do not meet the Chi-square test are directly discarded,
which causes a huge waste of observation information. The positioning error at the epoch conforming
to the Chi-square test is still likely to be large because the anomalies cannot be detected completely.
In addition, how to properly determine α according to the severity of the environment is also a difficult
problem. A large value of α indicates strict inspection conditions, but it also means a large false
alarm rate and low credibility. To make our argumentation more complete, a batch of positioning
experiments by setting different α values are conducted, and the critical values are obtained by looking
up the Chi-square distribution table. The positioning results are listed in Table 12. It can be seen
that as the value of α increases, the positioning accuracy becomes higher. However, again, when
the availability of RAIM is less than 1657 epochs (the confidence is only 0.3), its plane positioning
error is still larger than the proposed method. RAIM improves the overall positioning accuracy by
discarding the low-precision positioning results it considers, but for other position solutions, it does not
improve the accuracy but maintains their original state. On the other hand, as described in Section 3.1,
the overall observation environment of D1 is not very severe, resulting in high availability of RAIM.
Although the two schemes are not very comparable (one for epochs and one for observations), we
still have a reason to believe that when the available constellations increase or the environment is
worse, the superiority of the proposed method will be better demonstrated. As can be seen from the
results of the last row in the table, RAIM FDE almost completely fails in urban vehicular environments,
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regardless of the false alarm rate, while RAIM alone cannot recover abandoned epochs. The authors
have thoroughly discussed the limitations of classic RAIM in urban environments in their review
article [42], including the difficulty in establishing error statistical models, the reduction of available
observations, the existence of a large number of NLOS, and the criteria for integrity risk. Besides, the
existing RAIM algorithm in the urban environment needs to be further improved.

Table 12. Comparison of positioning accuracy and availability of D1 using Chi-square test based on
different false alarm rates.

Alpha
RMSE (m) Maximum Error (m)

Availability
East North Up East North Up

0.05 1.89 2.35 7.48 31.85 21.86 97.35 1698

0.1 1.67 2.34 7.35 31.85 21.86 97.35 1689

0.2 1.45 2.23 6.74 20.61 10.81 68.61 1683

0.5 1.23 2.20 6.34 10.16 10.81 40.67 1667

0.7 1.16 2.12 6.14 7.59 9.42 25.52 1648

0.7 (FDE) 18.52 16.23 83.10 515.91 617.27 2274.64 1773

5. Conclusions and Future Work

With the continuous development of ITS and autonomous driving, vehicles require significantly
improved accuracy and reliability in terms of communication, time, and position awareness. However,
the deterioration of GNSS observation quality caused by the complexity of the urban environment has
become one major challenge for reliable positioning, navigation, and timing (PNT) technology. This
paper proposed an anomaly detection frame for urban vehicle GNSS observations, consisting of an
offline learning system and an online learning system. In the offline system, HDBSCAN clustering is
used to detect anomalous observations and construct the labelled offline training set without the need
for 3D building models. On this basis, a supervised binary classifier in the online system acquires the
classification rule by training the labelled datasets, which are used for anomaly detection of vehicle
GNSS observations in real time. The algorithm was validated with measured GPS/BeiDou single
frequency data collected by different types of receivers. HDBSCAN-based anomalous observation
detection and exclusion improve the original SPP accuracy of D1 by 87.0%, 45.9%, and 69.6% in the
east, north, and up directions, respectively. After using the unrefined RBF SVM classifier to detect
and exclude anomalies on D2/D3, the positioning accuracy is improved by 48.4%/45.7%, 39.6%/63.3%,
and 49.6%/49.1% in the three directions. Besides, the article gave a lot of comparative experiments,
including RAIM (FDE), elevation angle and C/N0 cut-off values, different classification methods, etc.
At the same time, some key issues in the practical application of the proposed method were discussed
in depth. As the results show, this scheme can greatly improve the positioning accuracy in the urban
vehicular environment and has good retention of the availability of observations.

As an exploratory work, the main contribution of this research is to propose a clustering-based
anomaly detection method for urban vehicle GNSS observations and demonstrate its feasibility in
detail. In the follow-up work, we will further improve it in the following aspects. Firstly, more GNSS
observations will be used to establish the offline labelled dataset, so that the training set can cover
more scenarios, and increase the generalization ability of the classification model. Secondly, it is
necessary to conduct in-depth research on the feature parameters for the types of constellations due to
the differences between GNSS constellations. Finally, more suitable anomalous observation detection
methods will be sought based on different assumptions for anomaly distribution.
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