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Abstract: Instance segmentation in high-resolution (HR) remote sensing imagery is one of the most
challenging tasks and is more difficult than object detection and semantic segmentation tasks. It
aims to predict class labels and pixel-wise instance masks to locate instances in an image. However,
there are rare methods currently suitable for instance segmentation in the HR remote sensing images.
Meanwhile, it is more difficult to implement instance segmentation due to the complex background
of remote sensing images. In this article, a novel instance segmentation approach of HR remote
sensing imagery based on Cascade Mask R-CNN is proposed, which is called a high-quality instance
segmentation network (HQ-ISNet). In this scheme, the HQ-ISNet exploits a HR feature pyramid
network (HRFPN) to fully utilize multi-level feature maps and maintain HR feature maps for remote
sensing images’ instance segmentation. Next, to refine mask information flow between mask branches,
the instance segmentation network version 2 (ISNetV2) is proposed to promote further improvements
in mask prediction accuracy. Then, we construct a new, more challenging dataset based on the
synthetic aperture radar (SAR) ship detection dataset (SSDD) and the Northwestern Polytechnical
University very-high-resolution 10-class geospatial object detection dataset (NWPU VHR-10) for
remote sensing images instance segmentation which can be used as a benchmark for evaluating
instance segmentation algorithms in the high-resolution remote sensing images. Finally, extensive
experimental analyses and comparisons on the SSDD and the NWPU VHR-10 dataset show that
(1) the HRFPN makes the predicted instance masks more accurate, which can effectively enhance the
instance segmentation performance of the high-resolution remote sensing imagery; (2) the ISNetV2
is effective and promotes further improvements in mask prediction accuracy; (3) our proposed
framework HQ-ISNet is effective and more accurate for instance segmentation in the remote sensing
imagery than the existing algorithms.

Keywords: instance segmentation; HRFPN; ISNetV2; SSDD; NWPU VHR-10; remote sensing images

1. Introduction

With the rapid development of imaging technology in the field of remote sensing, high-resolution
(HR) remote sensing images are provided by many airborne and spaceborne sensors, for instance,
RADARSAT-2, Gaofen-3, TerraSAR-X, Sentinel-1, Ziyuan-3, Gaofen-2 and unmanned aerial vehicles
(UAV). Nowadays, these HR images have been applied to the national economy and the military
fields, such as urban monitoring, ocean monitoring, maritime management, and traffic planning [1–3].
In particular, territories such as military precision strike and maritime transport safety tend to take full
advantage of the HR remote sensing images for object detection and segmentation [3–5].
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Traditional object detection methods in remote sensing (RS) imagery mainly pay attention to
the detection results with the bounding boxes and the rotational bounding boxes, as shown in
Figure 1b,c. Cheng et al. [6] proposed an approach to improve the performance of target detection by
learning the rotation-invariant CNN (RICNN) model. Ma et al. [7] applied the You Only Look Once
(YOLOv3) approach to locate collapsed buildings from remote sensing images after the earthquake.
Gong et al. [8] put forward a context-aware convolutional neural network (CA-CNN) method to
improve the performance of object detection. Liu et al. [9] proposed a multi-layer abstraction saliency
model for airport detection in synthetic aperture radar (SAR) images. Wei et al. [10] came up with a
HR ship detection network (HR-SDNet) to perform precise and robust ship detection in SAR images.
Deng et al. [11] devised a method to detect multiscale artificial targets in remote sensing images.
An et al. [12] came up with a DRBox-v2 with rotatable boxes to boost the precision and recall rates
of detection for object detection in HR SAR images. Xiao et al. [13] came up with a novel anchor
generation algorithm to eliminate the deficiencies in the previous anchor-based detectors. However,
these detection results with the bounding boxes and the rotational bounding boxes do not reflect the
pixel-level contours of the original targets.
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Figure 1. Examples of objects in the high-resolution (HR) remote sensing imagery. (a) original images;
(b) bounding box results; (c) rotational bounding box results; (d) instance mask results.

Traditional semantic segmentation methods in remote sensing imagery mainly focus on pixel-level
segmentation results. Shahzad et al. [14] used Fully Convolution Neural Networks to automatically
detect man-made structures, especially buildings in very HR SAR Images. Chen et al. [15], based
on a fully convolutional network (FCN), proposed a symmetrical dense-shortcut FCN (SDFCN) and
a symmetrical normal-shortcut FCN (SNFCN) for the semantic segmentation of very HR remote
sensing images. Yu et al. [16] came up with an end-to-end semantic segmentation framework that
can simultaneously segment multiple ground objects from HR images. Peng et al. [17] came up with
dense connection and FCN (DFCN) to automatically acquire fine-grained feature maps of semantic
segmentation for HR remote-sensing images. Nogueira et al. [18] came up with a novel method
based on ConvNets to accomplish semantic segmentation in HR remote sensing images. However,
these segmentation results cannot distinguish different instances in each category. Therefore, instance
segmentation is introduced into the field of remote sensing.

Instance segmentation in remote sensing (RS) images is a complicated problem and one of the most
challenging tasks [3,19]. It aims to predict both the location and the semantic mask of each instance
in an image, as shown in Figure 1d. This task is much harder than object detection and semantic
segmentation. However, there are rare methods currently suitable for instance segmentation in RS
images. Meanwhile, it is more difficult to implement instance segmentation on HR RS images due to the
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complex background of remote sensing images. Therefore, this paper focuses on a high-quality instance
segmentation method for remote sensing images, especially for high-resolution artificial targets.

Nowadays, many instance segmentation methods have emerged in the area of computer vision,
which uses FPN structures as the backbone network, such as Mask R-CNN [19], Cascade Mask
R-CNN [20,21], Mask Scoring R-CNN [22]. In the remote sensing field, Mou et al. [2] came up with
a novel method to perform vehicle instance segmentation of aerial images and videos obtained by
UAV. Su et al. [3] introduced the precise regions of interest (RoI) pooling into the Mask R-CNN to solve
the problem of loss of accuracy due to the coordinate quantization in optical remote sensing images.
However, these methods mostly utilize low-resolution representations or restore high-resolution
representations for instance segmentation. Therefore, these methods are not appropriate for instance
segmentation at the pixel-level in the HR RS images due to the huge loss of spatial resolution.
Furthermore, in Cascade Mask R-CNN [20,21], the lack of interactive information flow between the
mask branches will lead to the loss of the ability to gradually adjust and enhance between stages. In
this article, a novel instance segmentation approach of HR remote sensing imagery based on Cascade
Mask R-CNN [20,21] is proposed to address these problems, which we call the high-quality instance
segmentation network (HQ-ISNet).

First, the HR feature pyramid network (HRFPN) is introduced into pixel-level instance
segmentation in remote sensing images to fully utilize multi-level feature maps and maintain HR
feature maps. Next, to refine mask information flow between mask branches, the instance segmentation
network version 2 (ISNetV2) is proposed to promote further improvements in mask prediction accuracy.
Then, we construct a new, more challenging dataset based on the synthetic aperture radar (SAR), ship
detection dataset (SSDD) and the Northwestern Polytechnical University very-high-resolution 10-class
geospatial object detection dataset (NWPU VHR-10) for remote sensing images’ instance segmentation,
which can be used as a benchmark for evaluating instance segmentation algorithms in the HR remote
sensing images. Finally, the proposed HQ-ISNet is optimized in an end-to-end manner. Extensive
experimental analyses and comparisons on the SSDD dataset [23] and the NWPU VHR-10 dataset [3,6]
prove that the proposed framework is more efficient than the existing instance segmentation algorithms
in the HR remote sensing images.

The main contributions of this article are shown below:

• We introduce HRFPN into remote sensing image instance segmentation to fully utilize multi-level
feature maps and maintain HR feature maps, so as to solve the problem of spatial resolution loss
in FPN;

• We design an ISNetV2 to refine mask information flow between mask branches, thereby promoting
the improvement in mask prediction accuracy;

• We construct a new, more challenging dataset based on the SSDD and the NWPU VHR-10 dataset
for remote sensing images instance segmentation, and it can be used as a benchmark for evaluating
instance segmentation algorithms in the HR remote sensing images. In addition, we provide a
study baseline for instance segmentation in remote sensing images;

• Most importantly, we are the first to perform instance segmentation in SAR images.

The organization of this paper is as follows. Section 2 is related to object detection and instance
segmentation. Section 3 presents our instance segmentation approach. Section 4 describes the
experiments, including the dataset description, evaluation metrics, experimental analysis, and
experimental results. Section 5 discusses the impact of the dataset. Section 6 comes up with
a conclusion.

2. Related Work

2.1. Object Detection

Object detection needs to both declare the existence of a target belonging to the specified category
and locate it in the image with a bounding box. The existing object detectors can be roughly split into
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two categories. The one is one-stage object detectors, which can perform object detection without
proposals, such as YOLO v1-v3 [24–26], Single Shot MultiBox Detector (SSD) [27]. Fu et al. [28] put
forward a Deconvolutional SSD (DSSD) for introducing additional context into the SSD to enhance
detection performance. Li et al. [29] came up with Feature Fusion SSD (FSSD), which used a feature
fusion module to enhance the detection performance. Lin et al. [30] put forward a RetinaNet, which
utilized Focal Loss to address the class imbalance problem. The other is two-stage object detectors that
generates proposals and then makes predictions for these proposals, such as Region with convolutional
neural networks (R-CNN) [31], Fast R-CNN [32], Faster R-CNN [33]. Lin et al. [34] proposed a feature
pyramid network (FPN) to utilize multi-level features. For high-quality object detection, Cai et al. [35]
came up with a Cascade R-CNN, which consists of a series of detectors trained with increasing IoU
thresholds. In short, compared with the one-stage detector, the two-stage detector has more accurate
positioning and higher target recognition accuracy, but the one-stage detector has faster inference speed.

2.2. Instance Segmentation

Instance segmentation aims to predict both the location and the semantic mask of each
instance in an image. This task is much harder than object detection and semantic segmentation.
At present, the existing instance segmentation approaches can be summarily split into two categories:
(1) detection-based methods first detect objects then perform segmentation within each bounding
box. He et al. [19] came up with Mask R-CNN that adds a mask branch in parallel based on Faster
R-CNN to predict instance masks at pixel-level. Mask R-CNN is shown in Figure 2. Liu et al. [36] put
forward a novel approach, namely the Path Aggregation Network (PANet), to boost the information
flow by adding a bottom-up path beyond FPN. Chen et al. [37] put forward MaskLab that utilized
position-sensitive scores to acquire better segmentation results. Chen et al. [20] proposed a Hybrid Task
Cascade to improve instance segmentation performance by adding semantic segmentation branches
and training together with other branches. Huang et al. [22] came up with Mask Scoring R-CNN
to address the problem of scoring masks to improve the quality of the predicted instance mask; (2)
segmentation-based methods first obtain a pixel-level segmentation map in the entire image and
then recognizes target instances. Liang et al. [38] came up with Proposal-Free Network (PFN) for
instance-level object segmentation. Bai et al. [39] combined watershed algorithms and deep learning
methods to generate image energy maps to perform instance segmentation.
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Figure 2. The architecture of the Mask R-CNN.

In this paper, we follow the research line based on detection methods and further study the
instance segmentation for remote sensing imagery.

3. The Methods

The proposed network will be described in detail in this section.

3.1. Detailed Description of the HQ-ISNet

The framework of HQ-ISNet based on Cascade Mask R-CNN [21] is shown in Figure 3. First, an
HR feature pyramid networks (HRFPN) replaces the original FPN to fully utilize multi-level feature
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maps; next, the candidate proposals are generated by the RPN; finally, an instance segmentation
network version 2 (ISNetV2) is used to refine the original mask branches and is executed to obtain the
final instance segmentation results. In this section, we will present our proposed instance segmentation
approach in detail.
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Figure 3. Illustration of the high-quality instance segmentation network (HQ-ISNet) approach where
“HRFPN” indicates a backbone network; “RPN” indicates the proposals; “Cs” indicates the classification;
“M” denotes the mask branch; “B” represents the bounding box; “H” denotes the detection head; “pool”
means region feature extraction.

3.1.1. Backbone Network and RPN

Currently, most instance segmentation methods use FPN structures as the backbone network, such
as Mask R-CNN [19]. However, these methods mostly utilize low-resolution representations or restore
high-resolution representations for instance segmentation, resulting in a huge loss of spatial resolution.
To solve this problem, we urgently need a backbone network that can maintain a high resolution.

Recently, the HRFPN has achieved promising results for region-level ship detection in both
inshore and offshore areas of SAR images [10]. The HRFPN invariably maintains HR feature maps by
connecting parallel high-to-low resolution convolutions, and repeatedly exchange the information
between multi-resolution representations. In addition, FPN is a serial connection, and HRFPN is a
parallel connection. Hence, compared with FPN, the final feature maps are semantically richer and
spatially more accurate. Nowadays, to fully utilize multi-level feature maps and maintain HR feature
maps, we introduce the HRFPN into pixel-level instance segmentation in remote sensing imagery.

As in [10], the framework of the HRFPN consists of four stages of parallel convolution streams
and an HRFPN block. A detailed description of the four-phase parallel convolutional flow can be
found in the literature [10,40,41].

The detailed description of the HRFPN block is shown in Figure 4. Firstly, we represent the
four outputs from high- to low-resolution as {C2, C3, C4, C5}. Then, the feature maps of all parallel
convolutions are aggregated, and the result is defined as P2. Finally, the feature maps with the same
spatial size in the top-down pathway and {C2, C3, C4, C5} are merged through lateral connections.
Besides, to decrease the aliasing impact of sampling, a 3× 3 convolutional layer is attached to each
merged map to produce the final feature map. This final set of feature maps are defined as {P2, P3, P4, P5},
corresponding to {C2, C3, C4, C5}. Especially, the channel dimension in each feature map is reduced
via a 1× 1 convolutional layer. The output channels of HRFPN is set to 256. The entire process of the
HRFPN block is as follows

P2 = Conv1×1(C2) ⊕Upsample(C3) ⊕Upsample(C4) ⊕Upsample(C5)

Pi+1 = Conv3×3[Conv1×1(Ci+1) ⊕Downsample(Pi)], i = 2, 3, 4
(1)
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where Conv1×1 and Conv3×3 indicate a 1× 1 convolution layer and a 3× 3 convolution layer, respectively;
Upsample indicates bilinear up-sampling and then performs a 1× 1 convolution; Downsample indicates
a 3× 3 convolution layer with a stride of 2, respectively; ⊕ indicates the operation of concatenation.
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Furthermore, the candidate proposals are generated by the region proposal network (RPN) [33,34].
Specifically, HRFPN’s output Pi generates candidate proposals through a 3× 3 convolution and two
sibling 1× 1 convolutions, as shown on the right side of Figure 4. In RPN, anchors are often involved.
Following the literature [10,33–35], the areas of the anchors are set to

{
322, 642, 1282, 2562, 5122

}
pixels

on five stages {P2, P3, P4, P5, P6} respectively, where P6 is obtained via a 3× 3 convolutional layer with
a stride of 2 on P5. The anchors of multiple aspect ratios are used {1 : 2, 1 : 1, 2 : 1} at each stage. Thus,
there are a total of 15 anchors on the pyramid. For other descriptions of RPN, please refer to [10,34].

3.1.2. Instance Segmentation Network

Cai et al. [21] proposed a multi-stage architecture for object detection and instance segmentation
called Cascade Mask R-CNN, which achieves promising results due to the adaptive handling of training
distributions and progressive refinement of predictions. Therefore, we will implement our instance
segmentation method based on Cascade Mask R-CNN to perform high-quality instance segmentation.

Cascade Mask R-CNN is obtained by direct hybridization of Cascade R-CNN and Mask R-CNN.
In this implementation, each stage is similar to Mask R-CNN [19], with a mask branch, a class branch,
and a box branch. The current stage will accept RPN or the box returned by the previous stage as an
input, and then predict the new box and mask. For the convenience of description, we refer to the
instance segmentation part in Cascade Mask R-CNN as ISNetV1, as illustrated in Figure 5a.

In ISNetV1, RoIAlign [19] is used to extract regional features from the proposals generated by
RPN or the bounding box regression of the previous stage. Specifically, all proposals are adjusted to
7× 7 and 14× 14 by RoIAlign for the box branch and mask branch, respectively [19,21]. As is shown
in Figure 5, the intersection over the union (IoU) thresholds of three detection heads are 0.5, 0.6, and
0.7, in which the predictions of each stage are fed into the next stage to obtain high-quality prediction
results. The detection heads in the ISNetV1 have the same architecture [21]. Besides, the box branches
and the class branches are consistent with the literature [10,21]. The mask branch is a small fully
convolutional network (FCN) applied to each Region of Interest (RoI), predicting an instance mask
in a pixel-to-pixel manner. Moreover, the mask branch generates small feature maps (28× 28) from
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each proposal through four 3× 3 convolutional layers and one deconvolutional layer [19]. Finally, the
ISNetV1 is executed to obtain the final instance segmentation results.

Although the ISNetV1 has achieved good results, the mask prediction performance can still be
improved. As can be seen in Figure 5a, the three mask branches of ISNetV1 lack direct information flow.
The instance mask prediction of each stage completely depends on the bounding box regression of the
previous stage and the RoI features of the current stage, without any connection with the mask branch
of the previous stage. Specifically, the mask branches of multiple stages are more like training with the
data of different distributions and then the ensemble during testing, rather than playing the role of
gradual adjustment and enhancement between stages, which will prevent further improvements in
mask prediction precision.
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In Cascade R-CNN [35], the information flow of the box branch is to make the features and
learning goals of the next stage relevant to the current stage, that is, to gradually improve the prediction
between different stages.

To address this problem, we follow similar principles in Cascade R-CNN [35], adding a connection
between the mask branches of adjacent stages to provide the information flow of the mask branches, as
illustrated in Figure 5b. Specifically, the mask features from the previous stage are provided to the
current stage to facilitate further interaction of the information flow. The optimized network is called
ISNetV2, as illustrated in Figure 5b.

In ISNetV2, the mask branch Mi is a small FCN, which consists of four consecutives 3 × 3
convolutional layers and one deconvolutional layer, as shown in Figure 6. The features of Mi are
subjected to feature embedding through a 1× 1 convolution, and then input to Mi+1. In other words,
the feature maps before the deconvolutional layer are then embedded with a 1× 1 convolutional layer
to align with the merged backbone features of RoI. Lastly, the result is added to the next RoI through the
element-wise sum. The rest of ISNetV2 is consistent with ISNetV1. The ISNetV2 uses the introduced
bridge to directly interact with the adjacent mask branches, instead of separating mask features, which
will promote further improvements in mask prediction accuracy.
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3.2. Loss Function

For an image, during training, a multi-task loss function is as follows [19–21,32,33,35]

L = Rcls + Rbox + Rmask. (2)

where Rcls, Rbox, and Rmask represent the classification loss, the regression loss, and the segmentation
loss, respectively.

The bounding box regression loss Rbox is defined as [21,35]

Rbox[ f ] =
∑

i

Lbox(bi, gi). (3)

where g =
(
gx, gy, gw, gh

)
and b =

(
bx, by, bw, bh

)
can represent ground-truth bounding box and the

predicted bounding box, respectively. As in [32,33],

Lbox(b, g) =
∑

j∈{x,y,w,h}

smoothL1

(
b j − g j

)
. (4)

in which

smoothL1(x) =
{

0.5x2, |x| < 1
|x| − 0.5, otherwise

. (5)

is the smooth L1 loss. smoothL1 operates on the distance vector ∆ =
(
δx, δy, δw, δh

)
defined by [32,33,35]

δx = (gx − bx)/bw, δy =
(
gy − by

)
/bh

δw = log(gw/bw), δh = log(gh/bh)
(6)

In addition, ∆ =
(
δx, δy, δw, δh

)
needs to be normalized [32,33,35].

The classification loss Rcls is defined as follows

Rcls[h] =
∑

i

Lcls(pi, yi). (7)

where
Lcls(p, y) = − log py. (8)

is the cross-entropy loss. y is the class label. p is a discrete probability distribution over the M + 1
categories.

The mask branch has a K×m×m dimensional output for each RoI, which encodes K binary masks
of resolution m×m, one for each of the K classes. The segmentation risk can be minimized as follows

Rmask =
∑

i

Lmask
(
ms

i , m̂s
i

)
. (9)
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where Lmask is the binary cross-entropy loss form in Mask R-CNN [19]. ms
i and m̂s

i represent the mask
predictions and ground-truth mask, respectively.

4. Experiments

In this section, the instance segmentation approaches will be evaluated in high-resolution remote
sensing imagery.

4.1. Dataset Description

Two datasets are used in our experiments, including the SSDD dataset and the NWPU VHR-10
dataset. Instance masks in SSDD dataset and NWPU VHR-10 dataset have been released in https:
//github.com/chaozhong2010/VHR-10_dataset_coco.

4.1.1. The SSDD Dataset

The SSDD datasets [23] include 1160 SAR images with resolutions ranging from 1 to 15 m. Besides
this, the SSDD has a total of 2540 ships. We further mark the instance masks directly on the SSDD
dataset. In this paper, we use the LabelMe [42] open source project on GitHub to annotate these SAR
images. Then, LabelMe converts the annotation message into the COCO JSON format. The SAR
images annotation process is shown in Figure 7. In all experiment, the datasets are randomly split into
a train dataset 70% (812 images) and a test dataset 30% (348 images).
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Figure 7. Example images and annotated instance masks of the synthetic aperture radar ship
detection dataset (SSDD). (a) original synthetic aperture radar (SAR) images; (b) labeling process;
(c) visualization result.

4.1.2. The NWPU VHR-10 Dataset

The experiment also uses the NWPU VHR-10 datasets [3,6], which is a challenging ten-class
geospatial object detection dataset. The positive image set in the datasets contains a total of 650
high-resolution optical remote sensing images with a resolution ranging from 0.08 to 2 m. These
images were acquired from Google Earth and Vaihingen data. Su et al. [3] manually used the instance
masks to annotate ten-class objects in these optical remote sensing images. Then, LabelMe converts the
annotation message into the COCO JSON format. Some examples of images and the corresponding
annotated instance masks are shown in Figure 8. In all experiment, the datasets are randomly split into
a train dataset 70% (455 images) and a test dataset 30% (195 images).

https://github.com/chaozhong2010/VHR-10_dataset_coco
https://github.com/chaozhong2010/VHR-10_dataset_coco
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4.2. Evaluation Metrics

For the instance segmentation of remote sensing imagery, the intersection over union (IoU) is the
overlap rate between the ground-truth and the predicted mask. The calculation formulas of IoU is
as follows

IoU
(
Mp, Mg

)
=

Mp ∩Mg

Mp ∪Mg
. (10)

where Mp represents the predicted mask and Mg denotes the ground-truth mask.
The performance of the instance segmentation methods in remote sensing images is quantitatively

and comprehensively evaluated by the standard COCO [43] metrics. These metrics include average
precision (AP), AP50, AP75, APS, APM, APL [43]. The average precision (AP) is averaged across all
10 IoU thresholds (0.50: 0.05: 0.95) and all categories. Averaging over IoUs rewards detectors with
better localization. The larger AP value indicates that the more accurate the predicted instance masks,
the better the instance segmentation performance. AP50 represents the calculation under the IoU
threshold of 0.50; AP75 is a stricter metric and represents the calculation under the IoU threshold of 0.75.
Therefore, AP75 performs better than AP50 in the instance of mask accuracy evaluation. The greater
AP75 value indicates more accurate instance masks. APL is set for large targets (area > 962); APM is set
for medium targets (322 < area < 962); APS is set for small targets (area < 322).

4.3. Implementation Details

All the experiments are implemented on pytorch and mmdetection [44]. The operating system is
Ubuntu 16.04. A single GTX-1080Ti GPU is used to train and test the detectors.

In our experiments, the HQ-ISNet uses HRFPN-W18, HRFPN-W32, and HRFPN-W40 for feature
extraction, in which 18, 32, and 40 indicate the widths of the HR subnetworks, respectively. Regarding
HRFPN-W18, HRFPN-W32, and HRFPN-W40, the dimensions of the HR representation are reduced to
144, 256, and 320, respectively, by a 1× 1 convolution. For HRFPN-W18, the output channels of the
four-resolution feature maps are 18, 36, 72, and 144. For HRFPN- W32, they are 32, 64, 128, and 256.
For HRFPN-W40, they are 40, 80, 160, and 320. In addition, the IoU thresholds of the three detection
heads were set to 0.5, 0.6, and 0.7, respectively.
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The comparative experiments are performed using advanced object detection and instance
segmentation approaches: Faster R-CNN [33], Mask R-CNN [19], Cascade R-CNN [35], Cascade
Mask R-CNN [20,21], Mask Scoring R-CNN [22], and Hybrid Task Cascade [20]. They all use
ResNet-FPN [45,46] as backbone networks.

For HQ-ISNet, Hybrid Task Cascade, and Cascade Mask R-CNN, we use a single GPU to train
the model for 20 epochs [20,21,41,44]. The initial learning rate (LR) is set as 0.0025 for these methods.
Then, the LR will gradually reduce by 0.1 after 16 and 19 epochs, respectively. The batch size is set to
two images. We train Faster R-CNN, Mask R-CNN, Cascade R-CNN, and Mask Scoring R-CNN with
batch size of 2 for 12 epochs [20,21,41,44]. The initial learning rate is set as 0.0025 for these methods.
Then, the learning rate will gradually reduce by 0.1 after eight and 11 epochs, respectively. Besides,
SGD is used to optimize the entire model. We use a momentum of 0.9 and a weight decay of 0.0001.
The input images are adjusted to 1000 px along the long axis and 600 px along the short axis by the
bilinear interpolation. Additionally, the overall framework is optimized in an end-to-end manner. All
other hyper-parameters follow the literature [10,19–22,33,35,44] in this paper.

4.4. Results and Analysis of HQ-ISNet

4.4.1. Results of the HQ-ISNet

The instance segmentation outcomes of the proposed approach in SAR images and remote sensing
optical images are shown in Figure 9. a and c are ground-truth mask; b and d are the predicted instance
outcomes. As can be seen in Figure 9, HQ-ISNet is suitable for our instance segmentation task in HR
remote sensing images. HQ-ISNet has almost no missed detections and false alarms, which guarantees
that our mask branch performs instance segmentation. Finally, these artificial targets are correctly
detected and segmented. Moreover, the segmentation results of HQ-ISNet are very close to the ground
truth. HQ-ISNet successfully completed the instance segmentation task in HR remote sensing images.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 25 
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To further test our network, we performed test experiments on the SAR image from the port of
Houston. SAR images were obtained with a Sentinel-1B [47] sensor. The following is the parameter
information: the resolution is 3m, the polarization method is HH, and the imaging mode is S3-StripMap.
In addition, we have annotated according to the labeling methods and principles in Section 4.1.1.
As can be seen from Figure 10, HQ-ISNet successfully completed the instance segmentation task in the
SAR image. Our results have almost no missed ships and false alarms, and the segmentation results
also are very close to the ground truth.Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 25 
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From Tables 1 and 2, we can see that the HQ-ISNet, based on the ISNetV2 module and HRFPN
backbone, has the best instance segmentation performance. It achieves 67.4% and 67.2% AP on the
SSDD dataset and NWPU VHR-10 dataset, respectively. More specifically, with the help of the HRFPN,
our network achieves a 2.1% and 5.3% performance improvement on the SSDD dataset and NWPU
VHR-10 dataset in terms of AP. With the help of the ISNetV2, our network achieves 1.3% and 4.8%
performance improvement on the SSDD dataset and NWPU VHR-10 dataset in terms of AP. Moreover,
for AP75 score, our network achieves a gain of 1% and 1.6% on the SSDD dataset with ISNetV2 and
HRFPN, respectively. For the AP75 value, our network achieves a gain of 5.4% and 6.1% on the NWPU
VHR-10 dataset with ISNetV2 and HRFPN, respectively. In the SSDD and NWPU VHR-10 dataset,
the AP50 has also been increased. Besides this, APS value, APM value, and APL value have also been
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improved in the SSDD and NWPU VHR-10 dataset. Among them, the APL in SSDD has a decline rate
under the influence of HRFPN. We will discuss this in Section 5. The HRFPN can maintain a high
resolution and solve the problem of spatial resolution loss in FPN, and the ISNetV2 refines the mask
information flow between mask branches. Accordingly, the final feature maps are semantically richer
and spatially more accurate. The final predicted instance mask is also more accurate. In addition, there
are only ships in SSDD, and ten target categories in NWPU VHR-10 involve ship, harbor, ground track
field, basketball court, etc. The NWPU VHR-10 dataset with many complex targets needs this rich
semantic and spatial information, so its improvement is the most obvious. The results reveal that the
HRFPN and ISNetV2 modules can effectively improve instance segmentation performance in remote
sensing images.

Table 1. Results on SSDD for HQ-ISNet. The first line is the original baseline results; the second line is
the result of HRFPN replacing FPN; the third line is the result by adding ISNetV2; the fourth line is the
result obtained by the combined operation of HRFPN and ISNetV2.

FPN HRFPN ISNetV1 ISNetV2 AP AP50 AP75 APS APM APL

3 3 65.1 94.8 83.4 65.7 65.0 20.0
3 3 67.2 95.6 85.0 66.7 68.9 16.7

3 3 66.4 96.1 84.4 66.3 67.7 53.6
3 3 67.4 96.4 85.8 67.2 69.5 54.5

Table 2. Results on NWPU VHR-10 for HQ-ISNet. The first line is the original baseline results; the
second line is the result of HRFPN replacing FPN; the third line is the result by adding ISNetV2; the
fourth line is the result obtained by the combined operation of HRFPN and ISNetV2.

FPN HRFPN ISNetV1 ISNetV2 AP AP50 AP75 APS APM APL

3 3 60.3 92.3 66.6 45.3 60.7 67.3
3 3 65.6 94.5 72.7 52.7 66.0 77.9

3 3 65.1 94.5 72.0 49.6 65.9 76.6
3 3 67.2 94.6 74.2 52.1 67.8 77.5

4.4.2. Effect of HRFPN

The comparison of the outcomes of HRFPN and FPN in SAR images and remote sensing optical
images is displayed in Figure 11. Mask R-CNN is used as a powerful baseline to accomplish our
approach and comparison approach. Compared with FPN, the segmentation results of HRFPN are
closer to the ground truth mask, and the instance masks of HRFPN are more accurate. It is worth
noting that the instance segmentation performance of the HRPFN is better than the original FPN for
the high-resolution remote sensing imagery.

From Tables 3 and 4, we can see that the HRFPN is more efficient than FPN in the Mask R-CNN
framework for instance segmentation, with less computational complexity and smaller parameters.
The AP value is 66.0% on the SSDD dataset, which can achieve a performance improvement of nearly
1.5% compared to FPN. In addition, the AP value is 60.7% on the NWPU VHR-10 dataset, which
can achieve a performance improvement of nearly 3.3% compared to FPN. It has been suggested
that our approach acquires more accurate instance masks and improves the instance segmentation
performance. The AP50 and AP75 scores are 96.2% and 85.0% on the SSDD dataset, which achieves a
0.5% and 2.4% performance improvement over the FPN, respectively. Moreover, the AP50 and AP75

scores are 92.7% and 65.5% on the NWPU VHR-10 dataset, which achieves a 1% and 2.7% performance
improvement over the FPN, respectively. We find that AP75 improves significantly compared to AP50

on both datasets. With looser metrics, AP50, our method may approach the best performance in the
two datasets, so the improvement is not significant. However, under more stringent indicators AP75,
our method has been greatly improved. Therefore, the predicted instance masks are more accurate.
Besides, the performance improvement is obtained for small ships (APS) on the SSDD dataset, and
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APM maintains the original performance. We disucss APL in Section 5. Importantly, the APS score,
APM score, and APL score have been greatly increased on the NWPU VHR-10 dataset. In particular,
the performance improvement of small targets is most obvious, and small targets achieve nearly 6.2%
performance gains.
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Furthermore, we find that HRFPN improves the NWPU VHR-10 dataset more significantly than
the SSDD dataset. There are only ships in SSDD, and ten target categories in NWPU VHR-10 involve
ship, harbor, ground track field, basketball court, etc. Our HRFPN can maintain a high resolution and
solve the problem of spatial resolution loss in FPN. Hence, the final feature maps are semantically
richer and spatially more accurate compared with FPN. The NWPU VHR-10 dataset with many
complex targets needs this rich semantic and spatial information, so its improvement is the most
obvious, especially for small targets. In short, HRFPN can effectively improve instance segmentation
performance in remote sensing images, with less computational complexity and smaller parameters.

Table 3. Influence of the HRFPN on the SSDD dataset. Where “R-50” indicates ResNet-50; “R-101”
represents ResNet-101.

Backbone AP AP50 AP75 APS APM APL
Time
(ms)

Param
(M) Flops

R-50-FPN 64.4 95.1 81.0 65.4 62.3 12.7 51.8 43.75 198.02
R-101-FPN 64.5 95.7 82.6 64.7 65.0 22.0 63.3 62.74 244.27

HRFPN-W18 65.0 95.7 82.7 65.8 63.5 13.4 65.8 29.71 186.13
HRFPN-W32 65.5 95.8 84.0 66.2 65.3 20.6 74.1 49.50 245.65
HRFPN-W40 66.0 96.2 85.0 66.5 65.5 15.1 86.2 65.75 293.56

Table 4. Influence of the HRFPN on the NWPU VHR-10 dataset. Where “R-50” indicates ResNet-50;
“R-101” represents ResNet-101.

Backbone AP AP50 AP75 APS APM APL
Time
(ms)

Param
(M) Flops

R-50+FPN 56.2 90.2 60.7 40.9 56.6 61.1 61.0 43.80 198.25
R-101-FPN 57.4 91.7 62.8 41.0 57.5 60.5 71.4 62.79 244.5

HRFPN-W18 58.0 89.9 64.9 43.3 58.9 64.3 75.2 29.75 186.36
HRFPN-W32 59.7 91.1 64.7 46.3 60.1 64.0 83.3 49.55 245.87
HRFPN-W40 60.7 92.7 65.5 47.2 61.6 64.0 96.2 65.80 293.79
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In the HRFPN structure, the HRFPN-W40 achieves a 66.0% AP score on the SSDD dataset and a
60.7% AP score on the NWPU VHR-10 dataset, which is improved compared with HRFPN-W18 and
HRFPN-W32, but it also increases computational complexity and the parameters.

In conclusion, the HRFPN, which fully utilizes multi-level feature maps and can maintain HR
feature maps, can make the predicted instance masks more accurate and effectively improve the
instance segmentation performance for the HR remote sensing images.

4.4.3. Effect of ISNetV2

The comparison results of ISNetV1 and ISNetV2 in SAR images and remote sensing optical images
are displayed in Figure 12. Cascade Mask R-CNN is used as a powerful baseline to accomplish our
approach and comparison approach. Compared with ISNetV1, the segmentation result of ISNetV2 is
closer to the ground truth mask. The ISNetV2 is more accurate than ISNetV1 in the mask segmentation.
There is no doubt that that the instance segmentation performance of the ISNetV2 is better than
the original ISNetV1 for the high-resolution remote sensing imagery, especially for high-resolution
artificial targets.
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From Tables 5 and 6, we can see that the ISNetV2 is more efficient than ISNetV1 in the Cascade
Mask R-CNN framework for instance segmentation, with similar parameters and computational cost.
With the ISNetV2, Cascade Mask R-CNN performs better on the SSDD dataset, which can achieve
a performance improvement of nearly 1.4% in terms of AP. In addition, the AP value on the NWPU
VHR-10 dataset achieves nearly 4.8% performance gains over ISNetV1. It has been suggested that
ISNetV2 refines the mask information flow between the mask branches, which promotes further
improvements in mask prediction accuracy. The AP50 and AP75 scores on the SSDD dataset, compared
to ISNetV1, achieve a gain of 1.3% and 1%, respectively. Moreover, the AP50 and AP75 scores on
the NWPU VHR-10 dataset, compared to ISNetV1, achieve a gain of 2.2% and 5.8%, respectively.
The results reveal that the predicted instance mask is more accurate. Importantly, a large performance
improvement is obtained for medium ships (APM) and large ships (APL) on the SSDD dataset, and APS

also improved. Besides these, the APS score, APM score, and APL score have been greatly increased
on the NWPU VHR-10 dataset. As a result, the instance segmentation performance is remarkably
enhanced for small, medium and large targets. Furthermore, we find that ISNetV2 improves the
NWPU VHR-10 dataset more significantly than SSDD dataset. There are only ships in SSDD, and
ten target categories in NWPU VHR-10 involve ship, harbor, ground track field, basketball court,
etc. When calculating the IoU, we know that the larger the target, the more pixels it takes, and the
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inaccurate prediction has a great impact on the quantitative result. Therefore, small changes have a
big impact on results. Our ISNetV2 improves the mask information flow and makes the predicted
results more accurate. Therefore, the NWPU VHR-10 dataset with a larger target size has the most
significant improvement.

Table 5. Influence of the ISNetV2 on the SSDD dataset. Where “R-50” indicates ResNet-50; “R-101”
represents ResNet-101. “3 ” means use ISNetV2 and “-” means use ISNetV1.

Backbone ISNetV2 AP AP50 AP75 APS APM APL
Time
(ms)

Param
(M) Flops

R-50-FPN
- 65.1 94.8 82.6 65.7 64.4 20.0 72.5 76.80 359.65
3 65.9 96.1 83.5 66.0 66.9 30.8 71.9 76.99 362.24

R-101-FPN
- 65.0 94.8 83.4 65.5 65.0 12.0 86.2 95.79 405.90
3 66.4 95.8 84.4 66.3 67.7 53.6 84.7 95.99 408.49

Table 6. Influence of the ISNetV2 on the NWPU VHR-10 dataset. Where “R-50” indicates ResNet-50;
“R-101” represents ResNet-101. “3 ” means use ISNetV2 and “-” means use ISNetV1.

Backbone ISNetV2 AP AP50 AP75 APS APM APL
Time
(ms)

Param
(M) Flops

R-50-FPN
- 59.8 91.9 66.6 45.3 60.0 67.3 81.3 76.83 360.22
3 64.2 93.9 72.0 49.2 64.7 69.3 104.1 77.03 362.81

R-101-FPN
- 60.3 92.3 65.6 44.6 60.7 62.4 100.0 95.82 406.47
3 65.1 94.5 71.4 49.6 65.9 76.6 117.6 96.02 409.06

In summary, the information flow between the mask branches is refined, which promotes further
improvements in mask prediction accuracy. Therefore, ISNetV2 can effectively improve instance
segmentation performance in the HR remote sensing imagery.

4.5. Comparison with Other Approaches

The qualitative outcomes between the HQ-ISNet and the comparison method on the SSDD
dataset and NWPU VHR-10 dataset are displayed in Figures 13 and 14 to further validate the instance
segmentation performance. Row 1 is ground-truth mask; Row 2-4 are the outcomes of Faster R-CNN,
Cascade R-CNN, and Mask R-CNN, respectively; Row 5-7 are the outcomes of Cascade Mask R-CNN,
Hybrid Task Cascade (HTC), and HQ-ISNet, respectively.

As shown in Figures 13 and 14, compared with other instance segmentation methods, our approach
can accurately detect and segment artificial targets in multiple remote sensing scenes. Specifically,
these artificial targets are accurately covered by the predicted instance masks. HQ-ISNet has almost
no missed detections and false alarms, which ensures that our mask branch performs better instance
segmentation. Compared with bounding box detection, such as Faster R-CNN and Cascade R-CNN,
the results of instance segmentation are closer to the silhouette of the original targets. The instance
segmentation can also distinguish between different instances in the same category. The ships in
Figure 13 are distinguished by different colors. The targets, such as airplanes, in Figure 14 are
also distinguished by different colors. Furthermore, compared with other instance segmentation
methods, our approach not only has almost no missed targets and false alarms but also has better mask
segmentation results. The results of the SSDD dataset and the NWPU VHR-10 dataset imply that our
method is suitable for instance segmentation task in HR remote sensing images and has a better mask
segmentation performance than the other instance segmentation algorithms.
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In Tables 7 and 8, we compare the HQ-ISNet based on ISNetV2 and HRFPN with other advanced
approaches on the SSDD dataset and the NWPU VHR-10 dataset to quantitatively evaluate the instance
segmentation performance. These methods include Mask R-CNN [19], Mask Scoring R-CNN [22],
Cascade Mask R-CNN [21] and Hybrid Task Cascade (HTC) [20] based on ResNet-FPN [45,46].

As can be observed from Table 7, the HQ-ISNet achieves the highest AP of 67.4%. Compared
with Mask R-CNN and Mask Scoring R-CNN, the HQ-ISNet achieves 2.9% and 2.6% improvements,
respectively. Besides, the HQ-ISNet achieves gains of 2.3% over Cascade Mask R-CNN. In short,
compared with other instance segmentation algorithms on the SSDD dataset, our approach has a better
instance segmentation performance and more accurate predicted instance masks. Moreover, the AP50

score of HQ-ISNet is 96.4%, which has 0.7% improvements over Mask R-CNN, 1.4% gains over Mask
Scoring R-CNN, and 1.6% improvements over Cascade Mask R-CNN. The HQ-ISNet attains an 85.8%
AP75, which achieves a gain of 3.2% over Mask R-CNN, 3.4% over Mask Scoring R-CNN, and 2.4%
over Cascade Mask R-CNN. It has been established that the mask segmentation will be better and
more precise than the other advanced approaches for instance segmentation on the SSDD dataset.
The performance of small, medium, and large targets has also been improved on the SSDD dataset
according to APS, APM, and APL. Under various AP indicators, we can obtain the same performance
as HTC on the SSDD dataset, and some indicators exceed it, such as AP.
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Table 7. Comparison to other advanced approaches on the SSDD dataset. Where “R-50” indicates
ResNet-50 and “R-101” represents ResNet-101.

Model Backbone Time
(ms)

Model
Size AP AP50 AP75 APS APM APL

Mask R-CNN
R-50-FPN 51.8 351M 64.4 95.1 81.0 65.4 62.3 8.5

R-101-FPN 63.3 503M 64.5 95.7 82.6 64.7 65.0 22.0

Mask Scoring
R-CNN

R-50-FPN 50.8 481M 64.1 94.2 81.0 64.8 62.8 11.7
R-101-FPN 63.3 633M 64.8 95.0 82.4 65.0 64.7 13.4

Cascade Mask
R-CNN

R-50-FPN 72.5 615M 65.1 94.8 82.6 65.7 64.4 20.0
R-101-FPN 86.2 768M 65.0 94.8 83.4 65.5 65.0 12.0

Hybrid Task
Cascade

R-50-FPN 119.0 639M 66.0 95.2 84.0 66.3 66.4 25.8
R-101-FPN 133.3 791M 66.9 95.3 85.0 66.6 67.7 29.6

HQ-ISNet
HRFPN-W18 87.0 504M 66.5 96.2 84.4 66.5 67.7 29.7
HRFPN-W32 93.5 662M 67.3 96.3 85.8 67.2 68.8 24.1
HRFPN-W40 106.4 792M 67.4 96.4 84.5 66.9 69.5 54.5

As can be observed from Table 8, the HQ-ISNet attains a 67.2% AP, which achieves a gain of 9.8%
over Mask R-CNN, 8.4% over Mask Scoring R-CNN, and 6.9% over Cascade Mask R-CNN. In short,
contrasted with other instance segmentation methods on the NWPU VHR-10 dataset, our approach has
a better instance segmentation performance and more accurate predicted instance masks. Moreover,
the AP50 score of HQ-ISNet is 94.6%, which has 2.9% improvements over Mask R-CNN, 3.3% gains
over Mask Scoring R-CNN, and 2.3% improvements over Cascade Mask R-CNN. The HQ-ISNet attains
a 74.2% AP75, which achieves a gain of 11.4% over Mask R-CNN, 9.3% over Mask Scoring R-CNN, and
7.6% over Cascade Mask R-CNN. It has been established that the mask segmentation will be better and
more precise than the other advanced approaches for instance segmentation on the NWPU VHR-10
dataset. The performance of small, medium, and large targets has also been greatly improved on the
NWPU VHR-10 dataset according to APS, APM, and APL scores. Under various AP indicators, we can
obtain the same performance as HTC on the NWPU VHR-10 dataset, and some indicators exceed it,
such as AP.

Furthermore, the performance gain on the NWPU VHR-10 dataset is greater than the SSDD
dataset. Just as for the analysis of HRFPN and ISNetV2 in Sections 4.4.2 and 4.4.3, the performance of
NWPU VHR-10 is better due to the influence of target type, target size distribution, etc. In conclusion,
our HRFPN can maintain a high resolution and solve the problem of spatial resolution loss in FPN, and
our ISNetV2 improves the mask information flow. The final feature maps are semantically richer and
spatially more accurate. The final predicted instance mask is also more accurate. Consequently, it can
be extrapolated that the HRFPN and ISNetV2 modules can effectively improve instance segmentation
performance in remote sensing images.

It can be observed from Tables 7 and 8 that the entire performance of HQ-ISNet performs
the best with a lighter computation cost and fewer parameters. Besides, our models have a better
performance than Mask R-CNN and Mask Scoring R-CNN with a similar model size and computational
complexity. Compared with Cascade Mask R-CNN, our models have a better performance with less
computational cost and smaller model size. Additionally, the HQ-ISNet has a similar performance
compared to the Hybrid Task Cascade under the same model size, but with less runtime. Therefore,
our network is more efficient and practical than other advanced approaches in terms of model size and
computation complexity.
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Table 8. Comparison to other advanced methods on the NWPU VHR-10 dataset. Where “R-50”
indicates ResNet-50 and “R-101” represents ResNet-101.

Model Backbone Time
(ms)

Model
Size AP AP50 AP75 APS APM APL

Mask R-CNN
R-50-FPN 61.0 351M 56.2 90.2 60.7 40.9 56.6 61.1

R-101-FPN 71.4 503M 57.4 91.7 62.8 41.0 57.5 60.5

Mask Scoring
R-CNN

R-50-FPN 59.9 481M 57.7 89.9 63.4 42.0 58.8 61.6
R-101-FPN 71.9 633M 58.8 91.3 64.9 41.7 59.1 65.7

Cascade Mask
R-CNN

R-50-FPN 81.3 615M 59.8 91.9 66.6 45.3 60.0 67.3
R-101-FPN 100.0 768M 60.3 92.3 65.6 44.6 60.7 62.4

Hybrid Task
Cascade

R-50-FPN 156.2 639M 65.0 94.1 72.9 48.3 65.5 69.8
R-101-FPN 166.7 791M 65.7 94.4 73.4 50.7 66.2 75.8

HQ-ISNet
HRFPN-W18 120.5 504M 65.6 93.9 72.2 50.6 65.9 76.2
HRFPN-W32 128.2 662M 65.9 94.2 72.6 52.1 66.1 76.6
HRFPN-W40 137.0 792M 67.2 94.6 74.2 51.9 67.8 77.5

In [20], HTC introduced semantic segmentation into the instance segmentation framework to
obtain a better spatial context. Because semantic segmentation requires fine pixel-level classification of
the whole image, it is characterized by strong spatial position information and strong discrimination
ability for the foreground and background. By reusing the semantic information of this branch into the
box and mask branches, the performance of these two branches can be greatly improved. However, to
achieve this function, HTC needs a separate semantic segmentation label to supervise the training
of semantic segmentation branches, which is difficult to implement without annotations. Therefore,
under the same model size, we achieve a similar performance compared to HTC, but our method runs
for a shorter time and is easier to implement.

In summary, compared with other advanced approaches, our network acquires more accurate
instance masks and improves the instance segmentation performance in HR remote sensing imagery.
There are two main reasons for this. One is that HRFPN fully utilizes multi-level feature maps and can
maintain HR feature maps. The other is that ISNetV2 refines the mask information flow between the
mask branches.

5. Discussion

We found that the APL metrics in the SSDD dataset fluctuated greatly, so we calculated the number
of target instances in SSDD according to the definition of large (area > 962), medium (322 < area < 962)
and small (area < 322) targets in Section 4.2. As can be observed in Figure 15, ship instances are mainly
concentrated in small and medium target areas and APL fluctuates greatly due to too few large ships
in SSDD. According to the AP calculation formula [10], a small amount of missed detections and false
alarms will cause huge changes in the APL value. Because our instance segmentation method relies on
detection performance, in NWPU VHR-10, the target instances are mainly concentrated in large and
medium target areas, but the number of small targets is significantly larger than the number of large
targets in SSDD.

In addition, we calculate the variance to discuss the uncertainty estimate of the quality metric. We
train and test our model five times to calculate the variance. As can be observed from Table 9, APL has
the largest variance fluctuation in SSDD. It is known from Figure 15 that it is caused by too few large
targets. In short, the variance of other indicators is relatively stable. Thus, our results are effective.
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Table 9. Variance of the results for HQ-ISNet.

Data Set Backbone AP AP50 AP75 APS APM APL

SSDD
HRFPN-W18 0.072 0.143 0.373 0.047 0.077 47.712
HRFPN-W32 0.018 0.003 0.453 0.033 0.087 45.837
HRFPN-W40 0.073 0.003 0.208 0.035 0.357 106.652

NWPU
VHR-10

HRFPN-W18 0.053 0.063 0.360 0.522 0.093 1.175
HRFPN-W32 0.082 0.497 0.493 1.36 0.128 2.022
HRFPN-W40 0.093 0.075 1.007 1.333 0.035 1.717
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6. Conclusions

In this article, we put forward an instance segmentation approach based on Cascade Mask R-CNN
for instance segmentation in HR remote sensing images, which is called HQ-ISNet. The HQ-ISNet
adopts an HRFPN to fully utilize multi-level feature maps and maintain HR feature maps for remote
sensing images’ instance segmentation. Moreover, to refine mask information flow between mask
branches, the instance segmentation network version 2 (ISNetV2) is proposed to promote further
improvements in mask prediction accuracy. Then, we construct a new, more challenging dataset based
on the SSDD and the NWPU VHR-10 dataset for remote sensing images’ instance segmentation and it
can be used as a benchmark for evaluating instance segmentation algorithms in the high-resolution
remote sensing images. Experimental conclusions can be drawn on the SSDD and the NWPU VHR-10
dataset: (1) the HRFPN makes the predicted instance masks more accurate, which can effectively
promote the instance segmentation performance of the HR remote sensing imagery; (2) the ISNetV2 is
effective and promotes further improvements in mask prediction accuracy; (3) our proposed framework
HQ-ISNet is effective and more accurate for instance segmentation in the remote sensing imagery than
the existing algorithms. In future work, we will further study instance segmentation in SAR images.
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