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Abstract: The limitations in obtaining sufficient datasets for training deep learning networks is
preventing many applications from achieving accurate results, especially when detecting new
constructions using time-series satellite imagery, since this requires at least two images of the same
scene and it must contain new constructions in it. To tackle this problem, we introduce Chronological
Order Reverse Network (CORN)—an architecture for detecting newly built constructions in time-series
SAR images that does not require a large quantity of training data. The network uses two U-net
adaptations to learn the changes between images from both Time 1–Time 2 and Time 2–Time 1 formats,
which allows it to learn double the amount of changes in different perspectives. We trained the
network with 2028 pairs of 256 × 256 pixel SAR images from ALOS-PALSAR, totaling 4056 pairs for
the network to learn from, since it learns from both Time 1–Time 2 and Time 2–Time 1. As a result, the
network can detect new constructions more accurately, especially at the building boundary, compared
to the original U-net trained by the same amount of training data. The experiment also shows that
the model trained with CORN can be used with images from Sentinel-1. The source code is available
at https://github.com/Raveerat-titech/CORN.
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1. Introduction

The popularity of deep learning approaches is continuously increasing, as these approaches have
proven their potential by generating many state-of-the-art results for various fields of study [1,2].
For example, U-net [3] is one of the most used deep learning architectures, as it can accurately perform
an image segmentation when trained with a sufficient amount of training data. Training data are the
most important requirement when training of deep learning networks. The more data we use for
training, the better the possibility that the model will make a more accurate prediction [4]. On the other
hand, if there are not enough training data, the model tends to perform worse or may not be able to
predict at all. This statement is applicable regardless of the field of study, including in remote sensing.

The use of satellite data opens doors to many possibilities. We can use it for various applications
that involve viewing the Earth from above [5,6]. With this ability at our disposal, we can better manage
land use planning—for example, when planning the expansion of a city [7–9]. As time goes by, our
living areas tend to grow bigger and bigger. Without good land use management, we may eventually
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cause complete deforestation as a result of building constructions for human beings [10,11]. To tackle
this problem, we can use satellite images to create time-series data in order to observe how the city
has changed—specifically, where new buildings have been built. The fundamental way to do so is to
generate a difference image between two images using mathematical operations, and then perform
segmentation to extract the area of changes. Some publications use threshold-based methods for
segmentation, such as Y. Ban and O. Yousif [12], who applied several thresholding criteria on the
difference image to obtain the urban change area. However, thresholding methods usually lead to
false detections when the urban or non-urban area has an unordinary intensity in terms of its change
behavior [13]. This can happen with any change detection approach that is based on the difference
between images, even when using deep learning techniques such as in [14]. As a result, methods using
deep learning have been widely researched, as they can generate more accurate results, while not
having to depend on the difference image. For example, R.C. Daudt et al. [15] published an urban
change-detection method based on convolutional neural networks [16] and Siamese networks [17]
using bi-temporal multispectral images. Although the difference image was not used, the detection
result was still not very accurate, especially at the construction boundaries. While Y. Xu et al. [18] were
able to detect buildings with clear boundaries using U-net on very-high-resolution satellite imagery,
these kinds of data using optical sensors unfortunately cannot capture Earth’s surface when it is
covered by clouds. The problem applies to some accurate building detection methods, which have
a possibility to be extended for using in building change detection, that use the characteristic of the
shape of building roofs from a very-high-resolution imagery [19–21]. As well as being hindered by
cloud contamination, these images are also difficult to obtain especially when studying an event in the
distant past. A similar reason can also be applied to methods such as [22,23] that require images from
multiple sensors, since some data are not accessible to the public. We have previously addressed and
tried to fix this problem [13] by obtaining the detection result directly from a pair of Synthetic aperture
radar (SAR) images from two different time points without generating the difference image. Using
U-net as the network contains the skip connection, which can help the decoder part to receive low-level
features from the encoder, to allow it to generate a result with more solid boundaries. An SAR image is
a kind of satellite image that is captured by the reflectance of microwaves emitted from the satellite
to the earth’s surface. With this property, a SAR image can be captured regardless of the weather
condition of the specific area, which makes it a good substitution for an optical image in a cloudy area,
such as tropical countries. However, as many satellites, especially satellites with SAR sensors, are
orbiting around the earth and are unable to take images of the same area as frequently as we may want,
the number of images we can use to make time-series data is not high enough to use at maximum
potential. Especially with deep learning, in order to train a deep learning network efficiently, a large
amount of data need to be used in the training process. As we stated earlier, the amount of time-series
data of SAR images is limited, which makes it even harder to apply to deep learning. Not to mention,
the term “training data” always includes ground truth data. This means not only are the time-series
images required, the ground truths of the building of constructions are also needed in order to train a
deep learning network. As the ground truths are usually created by humans, obtaining enough data
for the training process is both costly and time-consuming.

The limited number of training data prevented our previous publication [13] regarding the
detection of newly built constructions from two different time points using SAR images based on U-net
architecture from being more accurate. In order to utilize the training data, in this paper, we introduce
a new way to detect newly built constructions in SAR images by proposing a network architecture
called “Chronological Order Reverse Network” (CORN), which can learn to detect constructions more
efficiently when the same number of SAR time-series data and ground truths are used. CORN is based
on the assumption that regardless of whether the changes are found from before–after (Time 1–Time 2)
or after–before (Time 2–Time 1), even though the detection in Time 1–Time 2 result in the appearance
of constructions and Time 2–Time 1 result in the disappearance of constructions, the changes are still
at the same spots with the same shape. This means that both types can be correctly associated with
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the same ground truth data. While normally, the detection of new buildings is supposed to use the
data in Time 1–Time 2 format, our proposed architecture takes both Time 1–Time 2 and Time 2–Time 1
formats of data to allow learning based on both of the changing features to make it more viable. With
this architecture, the amount of training data of the network appears to be doubled. This allows the
network to be trained with a greater variation of data, and can result an increased detection accuracy
without having to use more SAR data or create any additional ground truths. Moreover, CORN has
the potential to use SAR images from other satellites and other environments because the training back
and forth causes the model to be more robust.

In summary, the objective of this paper is to cope with the lack of training data when training deep
learning networks, which leads to inaccurate results in newly built construction detection. We do so
by proposing a network architecture called “CORN”, which doubles the training set by reversing the
chronological order of the dataset. CORN contains two U-net adaptations; one trains on Time 1–Time
2 images, and the other one trains on Time 2–Time 1 images. The proposed network not only increases
the detection accuracy, but can also be used in a greater variety of settings of the data; specifically,
images from other satellites and other acquisition conditions, including the terrain of the testing area.

2. Network Description

2.1. Architecture Detail

The proposed architecture mainly consists of two U-net networks. The first one (upper side of
Figure 1) is for training the network to learn the features of change in the appearance of buildings
from Time 1–Time 2 times-series SAR images. The another one (lower side of Figure 1) is for learning
the change in the disappearance of buildings from Time 2–Time 1 image. Each encoder 1 receives
pairs of training data in the form of Time 1–Time 2 for the upper side and Time 2–Time 1, which are
generated by the reverse of the original data, for the lower side. By having two networks, the network
acts like it has been trained with double the number of datasets than actually exist, allowing it to learn
a greater variety of features of change in different perspectives, since it learns from different forms of
the dataset. These two U-nets have exactly the same architecture as the original one, except our little
modification at encoder 8 and the skip connection. Instead of using the ordinary encoder 8, which is
obtained through seven repetitions of Zeropadding-convolution-BatchNorm-ReLU [24] layers from
each encoder block (details shown in Table 1), we let encoder 8 from the Time 1–Time 2 side and from
the Time 2–Time 1 side share the features they have learned by

Encoder8 = 0.7
(
Encoder8sel f

)
+ 0.3

(
Encoder8opposite

)
(1)

This means encoder 8 from the Time 2–Time 1 side consists of 70% of what it has learned by itself,
and 30% of what the Time 2–Time 1 side has learned; in the case of encoder 8 from the Time 2–Time 1
side, this pattern would be reversed. The portion of 7:3 is the most suitable for our dataset, as it gives
the encoder 8 on each side some features that cannot be learned by itself, while not too much of what it
has learned is affected. We will discuss more on this matter in Section 4.1 of the paper.
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Figure 1. Architecture of the Chronological Order Reverse Network (CORN).

While the skip connection in the original U-net directly passes the features from each encoder to
each corresponding decoder, which allows it to receive significant information regarding the edges
and boundaries of the features, we do the same in our proposed architecture, but in a different way.
As encoder 8, which is the starting point for the decoder, is influenced by the information of the
opposite side, using such a straightforward skip connection would result in the decoder failing to
generate an output that includes features from both sides. Thus, we solved this by adding the features
from the encoders of both sides before passing it to the corresponding decoder. By following this
approach, the decoder is able to generate an output with features learned by its own encoders, but with
influence from the other side, while receiving all boundary information from both sides. However, we
only applied this with the Time 1–Time 2 side, as the Time 2–Time 1 side used the traditional direct
skip connection. The reason is that if we apply this on both sides (Figure 2), the boundary information
shared between them will be too much, and will lead to a limited result within these boundaries. The
evidence supporting this assumption is discussed in Section 4.2.

Table 1. Detail of the encoder and the decoder.

Encoder Decoder

PCR (256,2,4,2) CRD (1,512,2,2)
PCBR (128,64,4,2) CRD (2,1024,2,2)
PCBR (64,128,4,2) CRD (4,1024,2,2)
PCBR (32,256,4,2) CRD (8,1024,2,2)
PCBR (16,512,4,2) CRD (16,1024,2,2)
PCBR (8,512,4,2) CRD (32,512,2,2)
PCBR (4,512,4,2) CRD (64,256,2,2)
PCBR (2,512,4,2) C (128,128,2,2)



Remote Sens. 2020, 12, 990 5 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 24 

 

 
Figure 2. Architecture of CORN with an additional skip connection to both decoder sides. 

Lastly, we then applied the maximum operation between these two results to draw the best 
result out of each one. In training, loss was calculated with the weighted binary cross entropy 
function [25], as our dataset contained a lot of negative class pixels (non-changed areas), while the 
number of positive class pixels (new construction areas) was small. The weight of loss function is the 
division of the percentage of negative pixels in the training set by the percentage of positive pixels in 
the training set, as per Ref. [13]. In our case, the weight was 181.5, which is the result of the rate of 
white pixels (positive class pixels) = 0.548% and the rate of black pixels (negative class pixels) = 
99.452%. 

In Table 1, P, C, B, R, and D represent the layers of zero padding (size 1,1), convolution (in the 
encoder) or deconvolution (in the decoder), batch normalization (0.2), ReLU, and dropout, 
respectively. From left to right, the numbers in parentheses indicate the input size2, number of 
features, filter size, and stride amount of convolution filters, respectively. As we followed the method 
applied by Isola et al. [26], all of the ReLUs in the encoder were leaky with a slope of 0.2, while the 
ReLU functions in the decoder were not leaky. The dropout rate was 0.5. 

2.2. Network Training 

The training set in this paper was the same as in our previous work [13] to demonstrate the 
performance of our proposed architecture, since the goal of this paper was to increase the detection 
accuracy while not having to increase the number of datasets. We used three pairs of ALOS-PALSAR 
bitemporal data of Bangkok, Thailand, including 1 January 2008/15 January 2010, 12 January 2009/15 
January 2010, and 1 January 2008/12 January 2009 in HH polarization at a 15 m/pixel resolution in 
ascending orbit mode. These SAR images were acquired in the right-looking direction with an off-
nadir angle of 34.3°. The noise level of every image was suppressed using a 3 × 3 Lee filter [27]. The 
normalization was made for all image intensities to a range of [–1, 1] to avoid the problem of 
inconsistency between the data. Two dates from each set of Bangkok SAR images and the 
corresponding ground truths of the same area, which were created manually by drawing polygons 
of where building changes were detected in Google Earth software, were then stacked and cut into 
256 × 256 pixel patches for a total number of 2028 pairs. Please note that a patch must contain at least 
one polygon to be included in the training set. A patch size of 256 × 256 was proven in our previous 
work to be the most suitable number, since a patch contains a suitable portion between positive and 
negative classes for training building change detection. Our number of training sets was considerably 
smaller than other well-known deep learning datasets such as CIFAR-10 [28], which includes 10 
categories of natural image datasets containing 60,000 images. 

Figure 2. Architecture of CORN with an additional skip connection to both decoder sides.

Lastly, we then applied the maximum operation between these two results to draw the best result
out of each one. In training, loss was calculated with the weighted binary cross entropy function [25],
as our dataset contained a lot of negative class pixels (non-changed areas), while the number of positive
class pixels (new construction areas) was small. The weight of loss function is the division of the
percentage of negative pixels in the training set by the percentage of positive pixels in the training
set, as per Ref. [13]. In our case, the weight was 181.5, which is the result of the rate of white pixels
(positive class pixels) = 0.548% and the rate of black pixels (negative class pixels) = 99.452%.

In Table 1, P, C, B, R, and D represent the layers of zero padding (size 1,1), convolution (in the
encoder) or deconvolution (in the decoder), batch normalization (0.2), ReLU, and dropout, respectively.
From left to right, the numbers in parentheses indicate the input size2, number of features, filter
size, and stride amount of convolution filters, respectively. As we followed the method applied by
Isola et al. [26], all of the ReLUs in the encoder were leaky with a slope of 0.2, while the ReLU functions
in the decoder were not leaky. The dropout rate was 0.5.

2.2. Network Training

The training set in this paper was the same as in our previous work [13] to demonstrate the
performance of our proposed architecture, since the goal of this paper was to increase the detection
accuracy while not having to increase the number of datasets. We used three pairs of ALOS-PALSAR
bitemporal data of Bangkok, Thailand, including 1 January 2008/15 January 2010, 12 January 2009/15
January 2010, and 1 January 2008/12 January 2009 in HH polarization at a 15 m/pixel resolution
in ascending orbit mode. These SAR images were acquired in the right-looking direction with an
off-nadir angle of 34.3◦. The noise level of every image was suppressed using a 3 × 3 Lee filter [27].
The normalization was made for all image intensities to a range of [–1, 1] to avoid the problem of
inconsistency between the data. Two dates from each set of Bangkok SAR images and the corresponding
ground truths of the same area, which were created manually by drawing polygons of where building
changes were detected in Google Earth software, were then stacked and cut into 256 × 256 pixel patches
for a total number of 2028 pairs. Please note that a patch must contain at least one polygon to be
included in the training set. A patch size of 256 × 256 was proven in our previous work to be the most
suitable number, since a patch contains a suitable portion between positive and negative classes for
training building change detection. Our number of training sets was considerably smaller than other
well-known deep learning datasets such as CIFAR-10 [28], which includes 10 categories of natural
image datasets containing 60,000 images.
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We tried to train the network the same way as we trained U-net in the previous work so as to fairly
observe the difference in performance between these two models. Thus, the number of epochs was 10
with a batch size of 16. The Adam optimizer was used at a learning rate of 0.001. The model finished
training in approximately 71 min (10 epochs), while the original U-net model took approximately
55 min (10 epochs) on the same machine. The specification of the machine was Intel(R) Xeon(R) E5-2630
v4 @ 2.20 GHz CPU with 10 cores (dual thread) and an NVIDIA Tesla P100 GPU computing processor
(Tesla P100 SXM2 16 GB).

3. Dataset

This section describes all the datasets we use in this study. As we stated earlier in Section 2.2,
the three sets of Bangkok ALOS-PALSAR were used in training the network. In testing, two sets of
Bangkok at the different time from those in training were used along with the image from Hanoi and
Xiamen captured with the same satellite and acquisition conditions as the Bangkok sets used in training.
Please note that while the training data were 256 × 256 pixels, the data prepared for testing were 400 ×
400 pixels and chosen for ease of visual inspection. While these datasets are the same as in [13], in this
paper, we add one more testing set which is Chiang Mai, Thailand, captured by Sentinel-1 to see if our
proposed model trained with ALOS-PALSAR can detect new constructions in images from different
satellites or not. All the datasets used in this paper are summarized in Table 2.

Table 2. Acquisition information of dataset. SAR—synthetic-aperture radar.

Purpose Location
Acquisition Date of
SAR Images (Time

1–Time 2)

Acquisition
Satellite Resolution(meters)

Training Bangkok, Thailand
1 January 2008–15

January 2010 ALOS-PALSAR 15

12 January 2009–15
January 2010 ALOS-PALSAR 15

1 January 2008–12
January 2009 ALOS-PALSAR 15

Testing

Bangkok, Thailand
27 November 2008–15

January 2010 ALOS-PALSAR 15

12 January 2009–21
November 2009 ALOS-PALSAR 15

Hanoi, Vietnam 2 February 2007–13
February 2011 ALOS-PALSAR 15

Xiamen, China 22 January 2007–2
November 2010 ALOS-PALSAR 15

Chiang Mai, Thailand 9 December 2015–24
December 2017 Sentinel-1 10

The area used in the Bangkok dataset is located in the northern part of Bangkok in the city of
Rangsit. From the whole dataset, two areas were selected as testing areas. The first area, as shown in
Figure 3a,b, is mostly rice fields areas with several large groups of villages scattered around the area.
The second area has a similar characteristic with a lower number of villages but has a continuously
developing, large temple (Figure 3c,d) as a landmark at the middle of the image.
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Figure 3. Optical image showing an example of new constructions of Bangkok testing area. The size of
each image is 1.3 × 1.3 km. (a) Time 1 image of first testing area from 22 August 2008, (b) Time 2 image
of first testing area from 18 December 2009, (c) Time 1 image of second testing area from 10 February
2005, (d) Time 2 image of second testing area from 18 December 2009.

Since the model was trained with the Bangkok area, we picked Hanoi and Xiamen for testing the
applicability of the model to other areas. The southern part of Hanoi in the Văn Điển town (Figure 4)
has a similar environment to the Bangkok area in terms of terrain and the density of resident area,
but also has quite different shapes and sizes of building in the selected area, especially around the
center of the image. Xiamen is also selected for testing, not only because it has been developing rapidly
throughout the last decade, but because it also has water surrounding the area, which should reveal
whether the model can work with areas of water or not since water areas were not included in the
training data. Two areas were selected for the Xiamen area: one contains three bridges as a landmark
of the area (Figure 5a,b), which the model is not supposed to detect, the another one contains the
building changes on the water (Figure 5b), which the model should be able to detect.
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Figure 5. Optical image showing an example of new constructions of Xiamen testing area. The size of
(a) and (b) image are 3.7 × 2.8 km and size of (c) and (d) image are 1.7 × 1.7 km. (a) Time 1 image of
first testing area from 12 May 2006, (b) Time 2 image of first testing area from 29 October 2009, (c) Time
1 image of second testing area from 5 December 2006, (d) Time 2 image of second testing area from 17
September 2011.

Lastly, the Chiang Mai testing area viewed from the Sentinel-1 satellite was selected to test the
model on images from other satellite with other acquisition conditions, and also to test the applicability
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of the model on mountain area. The area in question is at Doi Suthep mountain; as seen in Figure 6,
half of the image is mountain and another half is mainly scattered with small houses.
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Figure 6. Optical image showing an example of the new constructions in the Chiang Mai testing area.
The size of each image is 3.77 km × 3.97 km. (a) Time 1 image from 17 November 2015, (b) Time 2
image from 24 December 2017.

4. Experiment on Network Detail

In order to select the most appropriate setting for CORN, we conducted a number of experiments
to ensure the architecture we made works properly, which will be explained in this section. First, in
Section 4.1, to support our assumption on the ratio of the ordinary input set to the reverse input set to
be calculated in (1), we conducted experiments to prove that 7:3 is the most suitable ratio for encoder 8
among the 6:4, 7:3, 8:2, and 9:1 ratios for the model to learn the shared features between the two input
sets. In Section 4.2, an experiment on skip connection was conducted, where we tested the model
trained with the architecture in Figure 1 and compared the result with the model trained with the
architecture with an additional skip connection to both decoder sides, as shown in Figure 2.

Before calculating the accuracy, the final output prediction map in the range of [0, 1] from each
model is turned into binary map with thresholding by 0.5, where white pixels indicate newly built
construction and black pixels indicate non-change areas. The accuracy in these experiments, as well
as the rest of the paper, was calculated in the form of overall accuracy, precision, recall, F measure,
F1 measure, Kappa, intersect over union (IOU), false negative (FN) rate, and false positive (FP) rate.
The false negative rate was obtained by the number of pixels that were in the ground truth, but not in
our predicted result, multiplied by 100 and then divided by the total number of positive pixels in the
ground truth. The false positive rate was the number of pixels that were not in the ground truth, but
were in our predicted result, multiplied by 100 and then divided by the total number of negative pixels
in the ground truth. The calculation of each validation method, excluding the false negative and false
positive rates, is shown in Table 3. The TP in Table 3 stands for true positive, while TN stands for true
negative. Please note that the β value of our F measure was 0.3.
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Table 3. The calculation of each validation method. IOU—intersect over union; TP–true positive;
TN–true negative.

Validation Method Calculation

Overall accuracy Overall accuracy = TP+TN
TP+TN+FP+FN

Precision Precision = TP
TP+FP

Recall Recall = TP
TP+FN

F measure Fβ =
(
1 + β2

)
·

precision·recall
(β2· precision)+recall

F1 measure F1 = 2· precision·recall
precision+recall

Kappa Kappa =
Observed agreement−chance agreement

1−chance agreement

IOU IoU =
target∩prediction
target∪prediction

4.1. Experiment on Encoder 8 Feature Sharing Ratio

To compare the encoder 8 ratio, we tested each model with the Bangkok site. The results of the
first testing area from the SAR pair of 12 January 2009/21 November 2009 are displayed in Figure 7,
as it is the easiest with which to notice the difference. The buildings tend to be detected less when
the influence from the opposite side of encoder 8 is smaller, as seen in Figure 7d, at a ratio of 9:1.
In contrast, the 6:4 ratio in Figure 7a includes too many, too-large buildings in the detection result,
since it experiences more influence from the opposite encoder 8. The 7:3 and 8:2 ratios have similar
detection results, but 7:3 was chosen for our work since it works significantly better in reducing the
false positive rate, as shown in Table 4.
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Figure 7. Results of the Bangkok site in the first area of the SAR pair of 12 January 2009/21 November 
2009, where the size of each image is 6 × 6 km: (a) the encoder 8 portion is 6:4, (b) the encoder 8 portion 
is 7:3, (c) the encoder 8 portion is 8:2, (d) the encoder 8 portion is 9:1, (e) ground truth. 14°1’2.26”N 
100°41’15.99”E. 

Figure 7. Results of the Bangkok site in the first area of the SAR pair of 12 January 2009/21 November
2009, where the size of each image is 6 × 6 km: (a) the encoder 8 portion is 6:4, (b) the encoder 8 portion
is 7:3, (c) the encoder 8 portion is 8:2, (d) the encoder 8 portion is 9:1, (e) ground truth. 14◦1’2.26”N
100◦41’15.99”E.
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Table 4. Accuracy of the model in the different encoder 8 portions at the Bangkok site.

Validation Method 6:4 7:3 8:2 9:1

False negative 47.368 54.667 55.739 59.621
False positive 0.601 0.210 0.391 0.285

Overall accuracy 98.928% 99.791% 99.614% 99.717%
Precision 0.471 0.687 0.535 0.590

Recall 0.526 0.453 0.442 0.404
F measure 0.475 0.659 0.526 0.568

F1 measure 0.497 0.546 0.484 0.479
Kappa 0.492 0.543 0.480 0.475

IOU 0.331 0.376 0.320 0.315

4.2. Experiment on the Addition of a Skip Connection in the Network

The second area of the Bangkok site from the SAR pair of 12 January 2009/21 November 2009 was
used to display the difference between sending the added features with skip connection to one side of
the decoder (Figure 1), and to both side of the decoders (Figure 2) in Figure 8.
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Figure 8. Results of the Bangkok site in the second area of the SAR pair of 12 January 2009/21 November
2009, where the size of each image is 6 × 6 km: (a) Additional skip connection on one side of the
network; (b) Additional skip connection on both sides of the network, (c) ground truth.

As we stated earlier, the shape of a detected building is too limited to the boundary information
sent by the addition of encoders when the addition of the skip connection is applied to both sides of
the network, as can be observed by the square-shape-like building change at the center of Figure 8b.
As a result, the false negative rate increases, as shown in Table 5.

Table 5. Accuracy of the model in the different skip connections in the architecture at the Bangkok site.

Validation Method Proposed Network Additional Skip Connection on Both Sides

False negative 54.667 66.936
False positive 0.210 0.180

Overall accuracy 99.791% 99.149%
Precision 0.687 0.652

Recall 0.453 0.331
F measure 0.659 0.603

F1 measure 0.546 0.439
Kappa 0.543 0.435

IOU 0.376 0.281
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5. Experiment on Testing Sets and Discussion

In this section, we used the CORN-trained model to compare with our previous work, which was
the newly built construction detection model trained with original U-net architecture. The reason we
chose the comparison with U-net is because it is proven to be the most effective method compared to a
number of conventional methods, such as the fully convolutional network, fuzzy c-mean, and Otsu
thresholding [29–31]. The training and validation conditions between the CORN and U-net models
were all the same in every aspect to make the comparison as fair as possible: the same training set
(three Bangkok datasets), same patch size (256 × 256 pixels), same loss function (weighted binary
cross entropy at ωp = 181.5), same epoch number (10 epoch), and same testing images (Bangkok,
Hanoi, and Xiamen) were used. The testing sites, which were Bangkok (same as in Sections 4.1 and 4.2
experiments), Hanoi, and Xiamen, were from various time points between 22 January 2007–13 February
2011. As per the training set, a Lee filter sized 3 × 3 and normalization were applied to all images.
In addition to the previous testing set, we added one more testing area—that is, an image from the
Sentinel-1 satellite in Chiang Mai, Thailand—to demonstrate how CORN works against the different
image setting.

5.1. Bangkok Testing Set

The same area as in [13] was selected for testing the model in Bangkok, which was the same city
chosen in the training data. The results are shown in Figures 9 and 10. Although multiple testing areas
were tested, we selected one area to show for ease of inspection. The pixel number of the testing area
was 640,000, including 6439 positive pixels and 633,561 negative pixels in ground truths.
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Figure 9. Results of the Bangkok site in the first area at 14◦1’2.26”N 100◦41’15.99”E. The size of each
image is 6 × 6 km (for SAR pairs 27 November 2008/15 January 2010: (a) Time 1 SAR image; (b) Time 2
SAR image; (c) ground truth; (d) result of U-net; (e) proposed result).
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Figure 10. Results of the Bangkok site in the first area at 14◦1’2.26”N 100◦41’15.99”E. The size of each
image is 6 × 6 km (for SAR pairs 12 January 2009/21 November 2009: (a) Time 1 SAR image; (b) Time 2
SAR image; (c) ground truth; (d) result of U-net; (e) proposed result).

The results were able to detect only the construction of buildings while avoiding the change
caused by the season. However, the results from the proposed architecture are visually better than
that of U-net, as it can detect more detailed buildings and provides more accurate shapes of buildings,
thus reflecting lower false negative and false positive rate in Table 6. The new model can also detect
rows of buildings at the lower left part of the image more accurately, even though it has a low intensity
difference between Time 1 and Time 2 images.
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Table 6. Accuracy of the model in the Bangkok area.

Validation Method Proposed Network U-net

False negative 54.667 55.801
False positive 0.210 0.403

Overall accuracy 99.791% 99.04%
Precision 0.687 0.527

Recall 0.453 0.442
F measure 0.659 0.519

F1 measure 0.546 0.481
Kappa 0.543 0.476

IOU 0.376 0.316

5.2. Hanoi and Xiamen Testing Sets

The comparison of the CORN and U-net results in the Hanoi testing site is shown in Figure 11
while that of the Xiamen site, which has two testing areas, is in Figures 12 and 13. The Hanoi testing
set was, in total, 160,000 pixels, including 859 positive pixels and 159,141 negative pixels, and that
of the Xiamen testing site was, in total, 320,000 pixels, including 4482 positive pixels and 325,518
negative pixels.
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of U-net.
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is 6 × 6 km. (a) Time 1 SAR data; (b) Time 2 SAR data; (c) ground truth; (d) result of proposed model;
(e) result of U-net.
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model; (e) result of U-net.
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For the Hanoi site, the accuracies of the results from the proposed network shown in Table 7 are
very close to that of the U-net. Since the constructions that occurred in this dataset were mainly of
small buildings, our model tried to generate the shapes of the changes as accurately as possible, which
led to very small detection results in some areas—so much so that some detected objects appeared in
very few pixels or were even omitted, as can be especially seen in the bottom half of Figure 11d. As a
result, the false negative rate increased in our results, which made that of recall, F1 measure, Kappa,
and IOU slightly lower than in U-net. In contrast, while several objects were detected by U-net in the
bottom half of Figure 11e, they did not all correlate with those in the ground truths, causing U-net to
have more false positive values than CORN. The lower false positive rate of our model resulted in
higher overall accuracy, precision, and F measure rates than U-net.

Table 7. Accuracy of the model in the Hanoi area.

Validation Method Proposed Network U-net

False negative 62.980 58.324
False positive 0.782 0.922

Overall accuracy 99.522% 98.77%
Precision 0.204 0.196

Recall 0.370 0.417
F measure 0.211 0.205
F1 measure 0.263 0.267

Kappa 0.258 0.261
IOU 0.151 0.154

The accuracies of Xiamen are shown in Table 8.

Table 8. Accuracy of the model in the Xiamen area.

Validation Method Proposed Network U-net

False negative 68.652 77.577
False positive 0.861 0.508

Overall accuracy 98.189% 98.412%
Precision 0.341 0.385

Recall 0.313 0.224
F measure 0.338 0.364
F1 measure 0.327 0.283

Kappa 0.317 0.276
IOU 0.195 0.165

Xiamen is a city surrounded by water, which is an area type that the training data did not include.
Unlike with Hanoi, the results for Xiamen from our model achieved better accuracies over U-net in
recall, F1 measure, Kappa, and IOU, because of the reduction in the false negative rate. This reduction
was a result of a better detection rate for constructions, especially in building boundaries, as highlighted
in the red rectangles in Figures 12d and 13d where the U-net can only detect as a small group of
pixels. Please note that although CORN used information from both Time 1–Time 2 and Time 2–Time 1
formats, it can also avoid detecting a noise in the SAR image, displayed as a faded line from the center
to the bottom in Figure 12b, compared to U-net that only uses change information in the Time 1–Time
2 format.

5.3. Sentinel-1 SAR Image Testing Set

Past experiments show that the current model trained with images of Bangkok city can be used
with other areas viewed from the same satellite. However, we wanted to show that it can also be used
with SAR images from other satellites too. We tested the model with a C-band SAR image from the
Sentinel-1 satellite, while an image from the ALOS-PALSAR training data was captured in L-band.
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Other properties were also different from those in the training data in many aspects; for instance,
the resolution was 10 m/pixel and the polarization was VV. The selected area was Chiang Mai in the
northern part of Thailand, where most of the area is mountainous, while Bangkok, the city used in the
training of the model, comprises mostly plain areas. Some parts of the detection results were cropped
and are shown in Figures 14–16. As this area was an additional area to the previous work, the ground
truth of this area was created, and thus, the validation was done by visual comparison with optical
images, since accuracies cannot be calculated and shown in terms of numbers. The date of the Time 1
optical images in Figures 14 and 15 was 7 January 2016, while in Figure 16, it was 17 November 2015,
due to the cloud cover problem. The Time 2 optical images in Figures 14 and 15 were from 29 October
2017; while in Figure 16, they were from 24 December 2017 due to the availability of the existing data.
Please note that all of the optical images in this experiment were selected from Google Earth software,
where images were captured by a variety of satellites and aircraft, meaning it is difficult to determine
the image source. However, according to the rough data provided by the software, some images were
captured with Landsat 7 at a 30 m/pixel resolution.
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(c) Time 1 SAR data ‘Copernicus Sentinel data [2015]’; (d) Time 2 SAR data ‘Copernicus Sentinel data
[2017]’; (e) result of CORN; (f) result of U-net.

Although both our proposed network and U-net can detect new constructions, the results indicate
that U-net generated more false positive results than CORN. In Figure 14, CORN correctly detected
building change without any false detection, while U-net mistakenly detected forest area in the bottom
part of Figure 14d. Please note that the high intensity spot in the middle of Figure 14e is not the
building. In Figure 15, both CORN and U-net show two detected buildings in their results. They
both correctly detected a building in the center of the image. However, another object that U-net
detected was an existing road in the right side of Figure 15d, which was a false detection, while the
false detection in CORN is the area in the red rectangle in Figure 15b. From the selected Time 2 optical
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image from 29 October 2017, it is difficult to see what CORN detected in the area, but in the optical
image from 3 March 2018 (Figure 17), there is a bridge placed next to CORN’s detected area. Thus, it
can be assumed that the other object detected by CORN was a bridge under construction, since our
Time 2 SAR image was taken on 24 December 2017, which was around the middle of the dates that
these two optical images were taken.
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In Figure 16, even though U-net was also able to detect construction in Sentinel-1 data, as seen in
the top right corner area, it failed to handle data containing changes in mountain areas and ended
up involving them in the detection result instead. On the other hand, CORN was able to avoid the
intensity change of mountain areas and detected only the building changes. This experiment suggests
that by combining the training of ordinary and reverse time-series data, our model can eliminate a
greater variety of false positives, which means it can be used even with images from other satellites.

5.4. Other Experiments

It is also worth mentioning that we tried to randomly reduce the number of training sets from 2028
pairs to 1500 pairs and 500 pairs, respectively, to observe the learning capability of both CORN and
U-net in slightly lower training set situations and very low training set situations. For each number of
training sets, the networks were trained four times with four different randomly selected training pairs,
and then tested with the Bangkok testing site. The results of this experiment are shown in Table 9 as the
averages of four times the testing results. As expected, in the case of 1500 training pairs, the accuracies
of both CORN and U-net dropped from when trained with 2028 pairs, but CORN still surpassed U-net,
except in false negatives and recall. The use of 500 training pairs indicates that U-net cannot be trained
with a very small dataset, as is reflected in the very low accuracies. While the accuracies of CORN
were relatively low, they were still in the acceptable range, which means that the network is able to
learn even with a very small training set. This result supports our assumption that learning features
from two formats of bitemporal data helps the network to become better at detecting newly built
constructions. The time taken by CORN in training 1500 pairs was 53 min, whereas for U-net, it was
48 min. For the single training of 500 pairs, CORN spent 18 min and U-net spent 15 min.
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Table 9. Accuracies of the models in the different number of training data at the Bangkok site.

Validation Method
500 Pairs 1500 Pairs

CORN U-net CORN U-net

False negative 40.860 27.512 53.254 47.232
False positive 1.467 17.970 0.383 0.683

Overall accuracy 98.136% 81.934% 99.085% 98.848%
Precision 0.310 0.100 0.590 0.492

Recall 0.591 0.725 0.467 0.528
F measure 0.321 0.107 0.571 0.488

F1 measure 0.400 0.165 0.507 0.485
Kappa 0.391 0.150 0.503 0.480

IOU 0.251 0.092 0.340 0.321

5.5. Result Discussion

Most of the experiments indicate that CORN can detect new constructions while avoiding the
detection of other changes as seen in Figures 18–20. With the advantage of training using both Time
1–Time 2 and Time 2–Time 1, the use of CORN resulted in more precise detection at the edges of
buildings, resulting in improved accuracies for almost all the tested datasets. On visual inspection, it
can be seen that the edges of the detected buildings were more similar to the ground truth and had less
false positive detections than those achieved with U-net, as shown in Figure 21. In terms of accuracy,
both false positives and false negatives were mostly dropped from the previous work, which led to an
increase in F measure, F1 measure, Kappa, and IOU.
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Figure 19. Example of detection results of CORN at Hanoi testing site. (a) CORN result overlays on 
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Time 2 optical image, (d) Time 1 SAR image, (e) Time 2 SAR image.
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Figure 20. Example of detection results of CORN at Xiamen testing site. (a) CORN result overlays on
Time 1 optical image, (b) CORN result overlays on Time 2 optical image, (c) ground truth overlays on
Time 2 optical image, (d) Time 1 SAR image, (e) Time 2 SAR image.



Remote Sens. 2020, 12, 990 22 of 25

Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 26 

 

Figure 20. Example of detection results of CORN at Xiamen testing site. (a) CORN result overlays on 
Time 1 optical image, (b) CORN result overlays on Time 2 optical image, (c) ground truth overlays on 
Time 2 optical image, (d) Time 1 SAR image, (e) Time 2 SAR image. 

Despite the improved accuracy, some areas, especially the Hanoi site, still have a relatively high 
false negative rate. This is due to the fact that most of the constructions in the training data have a 
larger size than those in the Hanoi area, and the construction shapes are also way too different from 
each other. As a result, the model failed to detect some of the constructions and caused the high false 
negative rate in such areas. To tackle this problem, supplementing the training data with various 
sizes and shapes of buildings could be very helpful. 

(a) (b) (c) (d) 

U-net CORN 

Figure 21. Comparison of the proposed model’s result and the ground truth of the Bangkok testing 
site: (a) result of U-net for the SAR pair of 27 November 2008/15 January 2010; (b) result of U-net for 
the SAR pair of 12 January 2009/21 November 2009; (c) result of CORN for the SAR pair of 27 
November 2008/15 January 2010; (d) result of CORN for the SAR pair of 12 January 2009/21 November 
2009 ((red—true positive area; green—false positive area, blue—false negative area). The size of each 
image is 6 × 6 km. 

Further evidence that shows the benefit of the more robust detection provided by our model is 
the result of using Sentiel-1 satellite. While the area in Figure 14, which was captured in a completely 
different setting to those in the training data, involved a lot of intensity change (as shown in Figure 
22), CORN was able to detect the building correctly and avoided seasonal changes even though they 
have a similar intensity of change to buildings, especially the bright spot in the middle of the image 
which is brighter than the actual building, making it visually very similar to the building change. 
Although U-net was also able do the same thing, it still detected many incorrect changes in the image. 
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terrain, as it can avoid changes in mountains while U-net cannot. Please note that in Figure 14, the 
detection results for both networks appear to shift to the south-east from the real building location in 
the optical image. This is probably because the intensity of the building in the SAR image was too 
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Figure 21. Comparison of the proposed model’s result and the ground truth of the Bangkok testing site:
(a) result of U-net for the SAR pair of 27 November 2008/15 January 2010; (b) result of U-net for the SAR
pair of 12 January 2009/21 November 2009; (c) result of CORN for the SAR pair of 27 November 2008/15
January 2010; (d) result of CORN for the SAR pair of 12 January 2009/21 November 2009 ((red—true
positive area; green—false positive area, blue—false negative area). The size of each image is 6 × 6 km.

Despite the improved accuracy, some areas, especially the Hanoi site, still have a relatively high
false negative rate. This is due to the fact that most of the constructions in the training data have a
larger size than those in the Hanoi area, and the construction shapes are also way too different from
each other. As a result, the model failed to detect some of the constructions and caused the high false
negative rate in such areas. To tackle this problem, supplementing the training data with various sizes
and shapes of buildings could be very helpful.

Further evidence that shows the benefit of the more robust detection provided by our model is
the result of using Sentiel-1 satellite. While the area in Figure 14, which was captured in a completely
different setting to those in the training data, involved a lot of intensity change (as shown in Figure 22),
CORN was able to detect the building correctly and avoided seasonal changes even though they have
a similar intensity of change to buildings, especially the bright spot in the middle of the image which is
brighter than the actual building, making it visually very similar to the building change. Although
U-net was also able do the same thing, it still detected many incorrect changes in the image. For the
same area, Figure 16 is the best example, showing that CORN is robust against changing terrain, as it
can avoid changes in mountains while U-net cannot. Please note that in Figure 14, the detection results
for both networks appear to shift to the south-east from the real building location in the optical image.
This is probably because the intensity of the building in the SAR image was too low to display obvious
features, and therefore it was difficult for the models to detect it in its exact position. The reason this
building has a lower intensity than the surrounding buildings is because its roof shape and orientation
are different from the other buildings. The high intensity of surrounding buildings is possibly the
result of the double bounce on the walls or a strong single bounce on the roofs, which did not happen
with the detected building due to the reason stated above.

Since CORN achieved benefits by training on both ordinary and reverse datasets, it was inevitable
that it would take a longer time than U-net in training. Still, although the training time was longer
than U-net, it was not by much, or was even shorter when the training data was reduced. In fact,
a decrease in the training set size in CORN can shorten the training time, as stated in Section 5.4,
while the accuracies only slightly dropped. It is worth noting that, while the accuracy of results when
training 1500 pairs with CORN were higher than when training 2028 pairs in U-net in every way, the
training time was lower than training U-net with 2028 pairs (53 min and 55 min, respectively). As a
result, we believe this architecture can replace U-net for detecting constructions in time-series SAR
images with the right amount of training data.
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Figure 22. Detection results of CORN in the first area of Chiang Mai at 18°51’23.49”N 98°57’17.90”E 
in yellow hollowed polygon overlays on (a) a Time 2 optical images; (b) a Time 1 SAR image 
‘Copernicus Sentinel data [2015]’ and (c) a Time 2 SAR image ‘Copernicus Sentinel data [2017]’. 

Since CORN achieved benefits by training on both ordinary and reverse datasets, it was 
inevitable that it would take a longer time than U-net in training. Still, although the training time was 
longer than U-net, it was not by much, or was even shorter when the training data was reduced. In 
fact, a decrease in the training set size in CORN can shorten the training time, as stated in Section 5.4, 
while the accuracies only slightly dropped. It is worth noting that, while the accuracy of results when 
training 1500 pairs with CORN were higher than when training 2028 pairs in U-net in every way, the 
training time was lower than training U-net with 2028 pairs (53 min and 55 min, respectively). As a 
result, we believe this architecture can replace U-net for detecting constructions in time-series SAR 
images with the right amount of training data. 

6. Conclusions 

In this research, we proposed “CORN”, a new deep-learning architecture for newly built 
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results also suggest that the new model can be used with images from other SAR satellites, as it can 
detect some changes without much false detection in Sentinel-1 L-band images after having been 
trained with C-band SAR images from ALOS-PALSAR. 
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Figure 22. Detection results of CORN in the first area of Chiang Mai at 18◦51’23.49”N 98◦57’17.90”E in
yellow hollowed polygon overlays on (a) a Time 2 optical images; (b) a Time 1 SAR image ‘Copernicus
Sentinel data [2015]’ and (c) a Time 2 SAR image ‘Copernicus Sentinel data [2017]’.

6. Conclusions

In this research, we proposed “CORN”, a new deep-learning architecture for newly built
construction detection using bitemporal SAR time-series images. The architecture consists of two U-net
bases for the network to learn differences—both forward and backward—by training it using Time
1–Time 2 and Time 2–Time 1 data. The features between the two U-net adaptations are shared through
encoder 8, and the addition of encoders before feeding to decoders via skip connection. The detection
results of Bangkok, Hanoi, and Xiamen show that the new model can achieve higher accuracies than
the U-net model, without having to use more training data or ground truths. The results also suggest
that the new model can be used with images from other SAR satellites, as it can detect some changes
without much false detection in Sentinel-1 L-band images after having been trained with C-band SAR
images from ALOS-PALSAR.
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