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Abstract: Hyperspectral image sensing can be used to effectively detect the distribution of harmful
cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted
to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin
(PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in
certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor
in the atmosphere and the optical complexity of inland water. Thus, this study was focused on
the development of a deep neural network model for AC and cyanobacteria estimation, without
considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the
feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network
(ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate
cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models
without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations.
In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the
Nash–Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed
the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning
operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC
and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE,
which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the
deep neural network has a strong potential to realize an integrative remote sensing application.

Keywords: deep learning; stacked autoencoder; cyanobacteria; hyperspectral image; feature extraction;
dimensionality reduction
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1. Introduction

Toxic cyanobacterial blooms have been threatening water resource sustainability and water usage,
making it a paramount social and economic problem [1,2]. Over-eutrophication and global warming
are the main factors that promote cyanobacteria proliferation [3–7], which occurs due to an excess
supply of phosphorus and nitrogen fixation ability. A combination of these conditions accelerates
cyanobacterial growth [8–10]. In such circumstances, efficient management strategies are required
to prevent freshwater resources from harmful blooms. However, the patchy characteristic of blooms
renders huge uncertainties in conventional water sampling [11–13]. Thus, a synoptic monitoring
program is considered appropriate for precisely identifying the periodic and spatial proliferation of
harmful cyanobacterial bloom.

Remote sensing has been applied to determine the spatial characteristics of harmful cyanobacteria,
which can be used to generate a quantitative map of cyanobacteria concentration [14]. Multi-spectral
and hyperspectral sensors have been employed to detect cyanobacteria bloom, using phycocyanin
(PC) and chlorophyll-a (Chl-a) [15]. In particular, despite the relatively high costs of sensor and image
processing, hyperspectral sensing offers high spectral and spatial resolution for capturing the optical
and distributional features of cyanobacteria in detail. Several studies have used the hyperspectral
images for Chl-a monitoring [16–18]. These studies reveal that airborne hyperspectral imagery can
provide accurate spectral and spatial information of the harmful cyanobacteria bloom in optically
complex fresh waters.

The preprocessing of hyperspectral images is necessary to retrieve useful information from each
image. Specifically, the atmospheric correction (AC) is one of the most important image processing
methods that can transform digital signals into light intensity, by eliminating the atmospheric
interferences. Commonly used commercial software such as MODTRAN, 6SV, LibRadtran, ATCOR,
and FLAASH have been used for implementing AC. However, these models are undesired to perform
the AC in certain cases, due to the difficulty of representing dynamically changing atmospheric aerosols
and water vapor, adjacency effect, and heterogeneous land surface effect [19]. Previous studies have
attributed the AC error to the lack of observed gases in the atmosphere. With the default parameter
library of the models, poor atmospheric representation, such as for vapor and liquid cloud, leads to the
low simulation accuracy of aerosol and water vapor scattering [20–24]. Moreover, after implementing
AC, bio-optical algorithms have been applied, with atmospherically corrected reflectance to estimate
cyanobacteria concentration [15]. However, the spectral mixture of phytoplankton, debris, and colored
matter is relatively intense in fresh water, thereby necessitating a better understanding of the intricacies
of a bio-optical model calibration, to achieve an improved estimation performance. [25–28].

In this context, a data-driven model is an alternative to the deterministic or empirical approach for
AC and cyanobacteria estimation. This model can effectively estimate remote sensing reflectance and
cyanobacteria pigment without any formulation [29,30]. Conventional neural networks are applied
to remote sensing data for estimating water surface reflectance. An artificial neural network (ANN)
has been used to calculate remote sensing reflectance, using medium resolution imaging spectrometer
(MERIS) data [31]. In addition, the quantification of phytoplankton pigments with high accuracy has
been implemented. As seen in [32], MERIS reflectance data on the neural network has been utilized
for estimating the Chl-a concentration. Moreover, PC concentration was estimated in [33], using an
ANN with water surface reflectance in a hyperspectral image. Furthermore, deep learning has been
introduced to strengthen the performance of conventional machine learning. An example of a deep
learning method is the application of stacked autoencoder (SAE) to feature learning to reduce the
dimensionality of the high-dimensional dataset [19]. As seen in [34], SAE with a backpropagation
neural network could predict floods using 10 years of flow datasets. On the other hand, it was
proven in [35] that SAE with a deep neural network accurately predicted the hourly passenger flow
in a transportation hub by utilizing flow data for 11,996,975 passengers. Based on these findings,
the atmospheric influence and light-induced information from AC can be considered by the SAE
network for estimating water surface reflectance. To estimate the cyanobacteria concentration and
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generate the concentration map, the optical feature of the reflectance spectra is taken into account,
wherein the optical feature bands can be reduced in the SAE. In other words, SAE is a promising tool
that can be implemented for AC and cyanobacteria estimation. However, only a few studies have been
performed using autoencoder with hyperspectral images. Moreover, an integrated remote sensing
application for AC and cyanobacteria estimation using a deep neural network has not been realized
yet. To address these challenges, this study aimed at achieving the following goals: 1) development
of an SAE network for AC and cyanobacteria estimation; 2) generation of quantitative cyanobacteria
bloom maps; and, 3) comparison of the SAE models with a conventional machine learning model for
model performance evaluation.

2. Materials and Methods

2.1. Study Site

The Baekje reservoir is located at the Geum River in South Korea, particularly at the mid- western
region (36◦ 31´ 87.75´´N, 126◦ 93´ 90.52´´E) (Figure 1). Baekje Weir has a length of 23 km, a basin area
of 7,976 km2, and a water storage capacity of 24.2 million·m−3. Most of the water is consumed for
domestic, industrial, and agricultural purposes. Recently, cyanobacterial blooms have been occurring
at Baekje Weir during summer, mainly due to the excessive nutrient supply from non-point sources
including soil erosion and runoff from livestock farms, as well as rural and domestic wastes [36].
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and the number of sampling points. The total number of sampling points allowed for the identification
of the amount of data that was utilized in the training and validation of the deep learning model.
Each monitoring point contained observed data, including that of PC, Chl-a, and surface reflectance
spectra. During the field sampling, airborne monitoring was conducted for hyperspectral imagery
sensing along the Baekje Weir region. Monitoring was conducted under clear sky conditions. A field
spectroradiometer (ASD FieldSpec 4 Hi-Res; ASD Inc., USA) was used to measure the optical
parameters, such as downwelling irradiance, downwelling radiance, and water-leaving radiance.
The spectroradiometer had a spectral range from 350 nm to 2500 nm, with optical data being recorded
at 1 nm interval. The spectral resolution of the device was 3 nm at approximately 700 nm and 8 nm at
1400 nm and 2100 nm, with the spectral bandwidth being 1.4 nm from 350 nm to 1000 nm and 1.1 nm
from 1001 nm to 2500 nm. The measured optical parameters were used to calculate the remote sensing
reflectance of the water surface, using the following equation:

Rrs =
Lw − 0.025× Lsky

Ed
(1)

where Rrs is the remote sensing reflectance (sr-1), Lw is the water-leaving radiance (W·sr-1
·m-2), Lsky is

radiance from the sky (W·sr-1
·m-2), and Ed is irradiance from the sky (W·m-2). The downwelling

irradiance was measured by a cosine detector fore-optic. And, the radiance data were measured
with bare fiber fore-optic. The measurement positions of the field spectroradiometer were strictly
maintained for the zenith angle less than 42◦ and azimuth angle less than 135◦ [37]. This study adopted
the skylight correction as a constant value of 0.025, by considering clear sky and gentle breeze condition
(i.e., wind speed < 5 m s-1) [38]. The remote sensing reflectance data was then used to evaluate the AC
performance of deep learning approaches.

At the same location of measuring the optical data, Water samples were collected from the same
locations as the optical data to determine the algal pigment concentrations at Baekje Weir. Water bottles
of 2 L capacity were for the sample collection for Chl-a analysis. In addition, plankton net (DAIHAN
CHEMLAB Inc. South Korea) having 20µm mesh size was used to concentrate water of 10 L. The 100 mL
water bottle contained concentrated samples for PC analyses. All water samples were preserved in
an ice box and transported to the laboratory immediately after field sampling for pigment extraction.
Chl-a concentration was analyzed as the biomass indicator of algae [39]. The solvent extraction method
was used to extract the Chl-a pigment [40].

A freezing and thawing method was implemented to extract PC pigment, which is an indicator
of cyanobacteria biomass [41]. The water samples were homogenized using a sonicator (Sonictopia
Inc., South Korea), and were then centrifuged at 4000 rpm at 4◦C for 15 minutes. 5 mL of phosphate
buffer (pH 7.2) was then added to the remaining pellets. These resulting samples were then stored in a
dark room for 24 h at −20 ◦C. After the freezing step, the samples were thawed at room temperature.
The samples were agitated using a shaking incubator (N-BIOTECK Inc. South Korea), at a speed
of 150 rpm. The combination of freezing, thawing, and shaking processes facilitated the release of
the PC pigment, without releasing the Chl-a pigment. After which, the samples were centrifuged at
4000 rpm at 4 ◦C for 15 minutes. The absorbance of the supernatant of the samples was measured
using a Cary-5000 UV-VIS-NIR spectrophotometer. The following equation was used to determine the
PC concentration:

PC
(
mg m−3

)
=

OD(620) − (q×OD(652))
p

(2)

where OD(620) is the optical density at 620 nm; OD(652) is the optical density at 652 nm; q is 0.474; and
p is 5.34 referred by [41].
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Table 1. Phycocyanin (PC) and Chlorophyll-a (Chl-a) results of each sampling event.

PC
(mg m-3)

Chl-a
(mg m-3) Point AT

(◦C)
C *

(Cell mL-1)
D **

(Cell mL-1)
G ***

(Cell mL-1)

Range Mean Range Mean Range Range Range

08.12.2016 6.04–146.99 35.46 ± 36.10 14.19–111.40 40.65 ± 23.38 18 31.06 4,224–35,584 192–2,304 384–5,888
08.24.2016 12.48–100.00 39.43 ± 23.40 25.95–61.44 37.39 ± 8.21 19 30.33 2,048–20,544 96–672 512–20,640
09.20.2016 0.83–1.64 1.23 ± 0.27 11.85–60.88 25.51 ± 11.32 17 22.13 0–128 1,888–4,672 512–5,376
10.14.2016 0.19–0.88 0.34 ± 0.17 13.74–46.17 28.21 ± 9.38 20 17.97 0–224 640–3,968 0–512
09.15.2017 7.41–9.66 8.34 ± 0.66 30.24–61.52 47.28 ± 8.94 12 22.30 - - -
09.22.2017 7.64–21.69 12.63 ± 3.96 14.08–27.89 17.57 ± 3.98 12 23.60 - -
10.25.2017 2.64–4.56 3.51 ± 0.67 10.56–20.92 13.18 ± 2.99 12 17.25 - - -
10.28.2017 1.18–14.77 4.35 ± 4.52 8.45–16.73 10.54 ± 2.39 12 16.55 - - -
11.11.2017 0.23–0.71 0.34 ± 0.14 12.76–38.43 22.58 ± 6.95 12 12.93 - - -

AT indicates average temperature, * Cyanobacteria is Microcystis aeruginosa for August 12, September 20, and October 14 in 2016 and Oscillatoria sp. for August 24, 2016, ** diatom is
Aulacoseira granulata, and *** green algae is Coelastrum cambricum.
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2.2.2. Hyperspectral Image Sensing

The AISA eagle sensor (SPECIM Inc., Finland) attached to an aircraft captured the hyperspectral
images of the Baekje Weir. The airborne monitoring was conducted when the zenith angle of the sun
was between 35◦ and 65◦, in order to minimize the sun glint and shading effect. The flying time was
less than 3 hours and the flying altitude was 3 km above the ground. The hyperspectral sensor has a
full width at half maximum (FWHM), from 4.36 nm to 4.82 nm. A spectral information of the sensor
has signal to noise ratio (SNR) as 1,250:1. The field of view (FOV) and instantaneous field of view
(IFOV) were 39.7 degrees and 0.039 degrees, respectively. In addition, the swath width of the AISA
eagle sensor had 1024 pixels, with a spatial resolution of 2 m. The sensor had a spectral range from
400 nm to 970 nm, with a spectral resolution of 4-5 nm. Image processing was implemented using
MODTRAN 6 software. The MODTRAN is a scalar radiative transfer code calculating AC parameters
(i.e., path radiance, solar flux, direct transmittance, diffuse transmittance, and spherical albedo) [42].
The default atmospheric condition was assigned, simulating the software. The statistical band model
assigned the radiative transfer algorithms for generating atmospheric correction parameters from
MODTRAN 6. Specifically, the multiple scattering algorithm was selected for the discrete ordinate
radiative transfer algorithm. A mid-latitude summer atmospheric profile was selected and 400 ppmv
of CO2 concentration was set for the atmospheric profile. The aerosol specification was set to rural
boundary aerosol. Furthermore, the sampling time and geographic coordinates were used for solar
geometry, including solar zenith angle and azimuth angle. More detailed information of MODTRAN 6
implementation is described in [43]. The AC parameters and digital numbers from 400 nm to 800 nm
were then used as the input dataset of the data-driven models, to directly estimate water surface
reflectance, thereby sequentially estimating cyanobacteria concentrations.

2.3. Data-Driven Models

2.3.1. Autoencoder

Autoencoder is a neural network for unsupervised feature learning [44]. The typical structure of
the autoencoder is presented in Figure 2a. The representative layers of the autoencoder are composed
of an encoder and a decoder, that are composed of the following nonlinear autoencoder functions:

f(x) = ef(Wexi + be) (3)

g(x) = df(Wdf(xi) + bd) (4)

where f(x) and g(x) are the encoder and decoder functions, respectively; We and Wd represent the
weight matrices, while be and bd are the bias vectors. For the activation function, sigmoid function
was utilized by the encoding and decoding layers, as given in Equations (5) and (6):

ef =
1

1 + e−(Wexi+be)
(5)

df =
1

1 + e−(Wdf(xi)+bd)
(6)

In the encoding layer, the image pixels are fed as input feature. Spectral and spatial information
of the input pixels are then compressed and encoded to the middle layer, thereby reducing the number
of hidden nodes. In the decoding layer, the terminal nodes are reconstructed to be identical to the
original input image.

The encoding layer transforms high-dimensional data into low-dimensional data, while decoding
recovers the low-dimensional data and turns it into a high-dimensional data that is identical to the
original input structure [19]. Herein, the hidden nodes of the autoencoder layers deal with manifold
features from the hypercubes of the input image. In particular, the autoencoder has advantages in
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feature extraction and dimensionality reduction of nonlinear data [45]. However, it is only limited to a
small number of spectral bands. Handling hundreds of hyperspectral bands would be inadvisable
for the autoencoder, since the data complexity causes difficulty in extracting proper abstractions of
the input feature. Thus, this study introduced a variant autoencoder network in the form of the SAE.
Detailed information and the mathematical formula of the SAE are explained in the following section.
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2.3.2. Stacked Autoencoder (SAE)

The fundamental principle of the SAE is similar to that of the original autoencoder network. SAE is
an alternative to the basic autoencoder network, when dealing with complex feature information of the
hyperspectral image cube [46]. Contrary to the autoencoder that has a single hidden layer, SAE consists
of multiple encoding and decoding layers (Figure 2b), as represented by the following equations:

fk(x) = ek,f(Wk,exk,i + bk,e) (7)

gt(x) = dt,f(Wt,df(xt,i) + bt,d) (8)

where fk(x) and gt(x) are the encoder and decoder functions in the k-th and t-th layer, respectively, Wk,e

and Wt,d represent the weight matrices in the k-th and t-th layer, while bk,e and bt,d are the bias vectors.
To optimize the SAE network, the error between input and output data should be minimized.

The mean squared error (MSE) of each iteration was determined, while the lowest MSE value was
identified using the cost function below:

Y = min


∑N

i=1(g(x) − Io)
2

N

 (9)

where Y is the cost function, N denotes the number of nodes, g(x) represents the reconstructed input,
and Io is the original input. The input data for AC included the AC parameters and digital number,
while remote sensing reflectance with 86 bands between 400 nm and 800 nm was the input for the
cyanobacteria estimation. To train the SAE network, the backpropagate error derivatives update the
network parameters in the autoencoder layers in the network using the function in Equation (10)

δ =
∂Y
∂Af

(10)

where Af represents the autoencoder functions.
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2.3.3. Stacked Autoencoder with ANN and SVR

This study utilized the feature extraction and dimensionality reduction of the SAE network, to
implement AC and cyanobacterial estimation with artificial neural network (ANN) and support vector
regression (SVR), as fine-tuning operators of the SAE network. The ANN model is a feedforward
neural network capable of the regression task with nonlinear environmental data [47]. The hidden
layer of ANN model is composed of trainable weight and biases in the hidden nodes. These nodes
capture the input features after which deliver the traits to the consecutive layer, by using the nonlinear
activation function. The training of the ANN model optimized the weights and biases, in order to
minimize the error between measured and estimated results. The SVR model has been utilized for
the regression problem with multivariate datasets. The SVR model projects the training data to the
higher dimensional feature space, utilizing nonlinear kernel function [48]. The kernel function makes
the nonlinear data into linear in the feature space for solving linear regression. After assigning kernel
function, the SVR model is trained to minimize the error between observed and estimated data.

The SAE network with ANN and SVR was able to provide water surface reflectance from AC,
and PC and Chl-a pigments from cyanobacteria. The path radiance, solar flux, direct transmittance,
diffuse transmittance, and spherical albedo were assigned as atmospheric influence input, and digital
numbers were represented to the optical information input for AC. These data were fed into SAE
network input for atmospheric and optical feature extraction, after which consecutive ANN and
SVR models estimated the surface reflectance spectra. The estimated reflectance data were fed
into a sequential SAE model for extracting features of water surface reflectance, thereby estimating
algal pigment concentration in the consecutive models. These comprehensive processes and data
compositions followed the conventional remote sensing application for water quality estimations.

To run the SAE, ANN, and SVR, the TensorFlow library was adopted. Figure 3 shows the deep
neural network structure composed of two SAE networks, which were followed by the fine-tuning layers.
The parameters of the data-driven model were adjusted using several empirical experiments [49,50].
The learning rate, number of hidden nodes and layers, activation function, and kernel functions
were significant variables for the data-driven model performance. For the convenience of the reader,
SAE with ANN and SVR are denoted as SAE-ANN and SAE-SVR, respectively.

2.3.4. Model Comparison

This study evaluated and compared the performances between the conventional machine learning
models and deep neural network models. ANN and SVR models without SAE were implemented
to estimate water surface reflectance and cyanobacterial concentration. The learning rate and the
number of layers and nodes were adjusted iteratively. In addition, the different activation functions of
ANN and the different kernel functions of SVR were tested and adopted based on their performances.
This study compared the performances between SAE-ANN, SAE-SVR, ANN, and SVR, in estimating
the water surface reflectance and cyanobacterial concentration; 70% and 30% of the input data were
used as the training and validation dataset, respectively.
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2.4. Accuracy

The performance of the data-driven model was evaluated using the root mean squared error
(RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE). The RMSE, MAE, and NSE
functions are represented by Equations (11)–(13), respectively:

RMSE =

√∑n
t=1(Pt −Ot)

2

n
(11)

MAE =
1
n

n∑
t=1

∣∣∣∣∣Ot − Pt

Ot

∣∣∣∣∣ (12)

NSE = 1−

∑n
t=1(Pt −Ot)

2∑n
t=1(Ot −Oa)

2 (13)

where Pt is the estimated surface reflectance (sr-1), PC (mg m-3), or Chl-a (mg m-3); Ot is the observed surface
reflectance, PC, or Chl-a; Oa is the average surface reflectance, PC, or Chl-a; and n is the number of samples.

3. Results

3.1. Variations in Concentrations of the Observed Pigments

Table 1 shows the concentrations of PC and Chl-a. This information was used to identify the
temporal variations in the PC concentration as ranging between 0.19 mg m-3 to 146.99 mg m-3 and Chl-a
concentration from 8.45 mg m-3 to 111.40 mg m-3 during the monitoring periods. Water temperature
varied from 12.93◦C to 31.06◦C during the sampling periods. In particular, the pigments data collected in
August 2016 showed considerable variations, with PC ranging between 6.04-146.99 mg m-3 and Chl-a
between 14.19-111.40 mg m-3. The high PC concentration indicated the outbreak of cyanobacterial blooms.
It was found that the dominant cyanobacterial genera were Microcystis and Oscillatoria (Table 1).

3.2. AC Performance of SAE

This study adopted SAE #1 layer configuration to a 7-6-5-3-5-6-7 hidden node, with encoding
and decoding layers (Figure 3). The first layer with seven nodes represents the input layer, consisting
of five AC parameters, a digital number, and a sampling event number for each wavelength band.
After training the SAE #1, the manifold feature layer (middle layer with three nodes) was used as the
input for atmospheric correction of the fine-tuning operators (ANN and SVR). The ANN model had
3-10-5-1 nodes for each layer, wherein the input layer with three nodes corresponded to the results of
the manifold feature layer. Meanwhile, the ANN output layer estimated the surface reflectance for
each wavelength band, resulting in a total of 86 water surface reflectance values. For the SVR models,
radial basis function (RBF) was implemented and optimized as the kernel function. Without SAE,
the ANN model had a 7-6-1 node configuration to estimate the water surface reflectance. Furthermore,
the SVR model was performed for AC by adopting RBF.

Figure 4 presents the training and validation results of AC, and their respective R2 and RMSE
values. The training and validation results included 134 observation points that had 86 reflectance bands
in each point, resulting in a total of 11,524 (i.e., 134 × 86) comparable points. The SAE-ANN yielded R2

values of 0.73 and 0.74, and an RMSE of 0.0019 sr-1 and 0.0018 sr-1 (Figure 4a), while SAE-SVR showed
its accuracy by having R2 values of 0.73 and 0.70, and an RMSE of 0.0019 sr-1 and 0.0019 sr-1 (Figure 4c)
for training and validation, respectively. Figure 5 shows the comparison observed reflectance spectra,
with estimated spectra from SAE-ANN. The training and validation results had good agreement with
in-situ reflectance spectra. In particular, the estimated spectra from 600 nm to 700 nm was able to
describe the PC peaks (i.e., 615 nm - 622 nm) and the Chl-a peaks (i.e., 660 nm −670 nm).
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Figure 4. Training and validation results of the atmospheric correction: (a) SAE-ANN, (b) ANN,
(c) SAE-SVR, and (d) SVR. A total of 134 observation points is presented. Each point had observed
reflectance spectra with 86 bands, indicating 11,524 (i.e., 134 × 86) points, comparing the estimated
reflectance spectra to the observed spectra of total bands. Black and white dots indicate training and
validation results, respectively
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Figure 5. Example of comparison between observed reflectance spectra and estimated spectra: (a)
training result of reflectance and (b) validation result. Straight lines indicate the observed reflectance
and the marks represent the estimated reflectance from SAE-ANN. For training results, four estimated
and observed spectra were selected with respect to 15th point on August 12, 2016, 7th point on
September 20, 2016, 7th point on September 11, 2017, and 10th point on October 25th, 2017. For
validation results, four estimated and observed spectra were selected with 13th point on September 20,
2016, 20th point on October 14, 2016, 7th point on September 15, 2017, and 1st point on October 25, 2017.
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3.3. Cyanobacteria Estimation of SAE

The estimated water reflectance was then used as input of the SAE #2. Seven layers,
with 86-60-40-20-40-60-86 node configurations, were adopted. The 86 nodes in the input layer
represent the estimated reflectance of the 86 bands. Then, the concentrated feature layer of ANN
(middle layer with 20 nodes) was used as input for the second ANN and SVR, that estimated the
cyanobacterial concentration. The consecutive ANN model for the cyanobacterial estimation had
20-10-5-2 node configuration, that yielded the PC and Chl-a concentrations. Among the applied
activation functions for the ANN model, the sigmoid function was adopted, by showing relatively
accurate model performance compared to the other activation functions. Then, the learning rate of
0.0001 was set. For the SVR models, RBF was utilized as the kernel function. The reconstruction of
the SAE input showed an RMSE value of 5.4 × 10−7 sr−1. Moreover, the ANN model without SAE
was performed by having an 86-2 node configuration for estimates of PC and Chl-a concentrations.
The ANN models adopted a sigmoid function as the activation function, with a learning rate of 0.0001.
The SVR model without SAE was conducted, to estimate cyanobacteria with RBF.

Figure 6 shows the results of PC estimation. SAE-ANN showed a satisfactory performance with
R2 values of 0.82 and 0.83 and RMSE values of 9.32 mg m-3 and 9.76 mg m-3, with respect to training
and validation (Figure 6a). For SAE-SVR, the results also showed R2 values of 0.80 and 0.62 and RMSE
values of 15.44 mg m-3 and 17.94 mg m-3, as shown in Figure 6c. Figure 7 presents the overall results of
SAE with the fine-tuning operators, in terms of the Chl-a estimation. Training and validation results of
SAE-ANN had R2 values of 0.81 and 0.78 and RMSE values of 7.33 mg m-3 and 6.34 mg m-3 (Figure 7a),
while SAE-SVR had 0.79 and 0.78 for R2 and 9.08 mg m-3 and 8.08 mg m-3 for RMSE (Figure 7c).
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The trained SAE-ANN and -SVR models were applied to generate the PC and Chl-a maps shown
in Figure 8. In the figure, the PC and Chl-a concentration levels of SAE-SVR were lower than those of
SAE-ANN, due to the tendency of SVR to underestimate PC and Chl-a. Regardless, both models were
still able to generate spatial distribution maps, indicating that SAE has the capacity to represent the
nonlinear spatial feature of the cyanobacteria by comparing RGB images. (Figure S1).

The SAE-ANN model was able to capture the temporal variation of the cyanobacteria, in terms of
the PC and Chl-a concentrations. A relatively low concentration was observed in autumn compared to
summer. However, the Chl-a maintained a concentration level > 10 mg m-3 in autumn (Figure 8f–h).
Meanwhile, the spatial dynamic of the cyanobacteria peaked in summer, which eventually lessens in
autumn (Figure 8).
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Figure 8. Temporal variations in cyanobacterial maps of SAE-ANN: (a–d) PC variation for August 12
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3.4. Model Comparison

The ANN and SVR models estimated the water surface reflectance and cyanobacteria concentration,
without the feature extraction. The evaluation results of both models for surface reflectance are presented
in Figure 9a,b. Compared to SAE-ANN and SAE-SVR, the ANN and SVR models showed higher MAE
values, > 0.75 for training and > 0.58 for validation (Table 2). This study also ran the conventional model
MODTRAN 6 from [51] for AC, to compare the results from the data-driven models. The accuracy
of MODTRAN 6 based-AC showed an R2 of 0.69 and RMSE of 0.0021 sr-1 (Figure 9a,b). Among the
models, SAE-ANN showed the best AC performance in terms of training and validation.
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Figure 9. Accuracy of the data-driven model and the conventional model (CM): (a–b) AC, (c–d) PC
estimation, and (e–f) Chl-a estimation. Black and gray bars represent training and validation accuracy
of the data-driven models (MOD indicates water surface reflectance simulated by MODTRAN 6, AOPa

and IOPa presents two-band ratio algorithm and the Simis algorithm for PC and Chl-a estimation).

In Figure 9c,d, the ANN model showed an PC estimation with R2 > 0.78, for both training and
validation, while the SVR model showed a lower validation performance. Although the coupling of
SAE and SVR improved the accuracy of the SVR model, SAE-SVR still needs further development.
Likewise, though the ANN model showed MAE value > 2.54, it was still higher than that shown
by SAE-ANN. The SVR model showed Chl-a results by yielding R2 values > 0.74 for training and
validation (Figure 9e,f); however, SAE-SVR showed a better performance than SVR, by having higher
R2 and NSE values. SAE-ANN also significantly improve the accuracy of ANN results, and showed
the best performance, as well as the lowest MAE < 0.22 for Chl-a estimation among the four models
(Table 2). In addition, the SAE-ANN showed a relatively better performance for cyanobacterial
estimation, compared to the conventional bio-optical algorithms, the two-band ratio and the inherent
optical property (IOP) algorithms [14]. The accuracy of the two-band ratio algorithm for the PC
estimation showed an R2 of 0.76 and an RMSE of 10.56 mg m-3, while the IOP algorithm yielded 0.82
for R2 and 25.83 mg m-3 for RMSE (Figure 9c,d). For the Chl-a estimation, the conventional algorithms
showed relatively low R2 and high RMSE values, having 0.29 and 13.62 mg m-3 for the two-band ratio
and 0.34 and 13.45 mg m-3 for the IOP algorithm (Figure 9e,f), respectively.



Remote Sens. 2020, 12, 1073 16 of 23

Table 2. Deep neural network and conventional machine learning performance.

SAE-ANN ANN SAE-SVR SVR

R2
NSE

(Nash-Sutcliffe
Efficiency)

RMSE
MAE

(Mean Absolute
Error)

R2 NSE RMSE MAE R2 NSE RMSE MAE R2 NSE RMSE MAE

Rrs
T * 0.73 0.73 0.0019 0.68 0.64 0.63 0.0022 0.75 0.73 0.73 0.0019 0.75 0.71 0.70 0.0020 0.78
V ** 0.74 0.73 0.0018 0.41 0.60 0.60 0.0022 0.59 0.70 0.69 0.0019 0.50 0.66 0.65 0.0021 0.58

PC
T 0.82 0.82 9.32 0.49 0.78 0.78 10.41 2.47 0.80 0.51 15.44 13.37 0.73 0.46 16.19 13.50
V 0.83 0.79 9.76 0.47 0.78 0.72 11.62 2.54 0.62 0.31 17.94 17.02 0.54 0.37 17.09 16.59

Chl-a
T 0.81 0.81 7.33 0.22 0.66 0.66 9.65 0.28 0.79 0.70 9.08 0.37 0.75 0.66 9.75 0.38
V 0.78 0.77 6.34 0.21 0.50 0.38 10.36 0.31 0.78 0.63 8.08 0.36 0.74 0.60 8.36 0.36

* indicates training result and ** represents validation result.
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4. Discussion

4.1. AC and Cyanobacteria Estimation

The NSE values of SAE-ANN and SAE-SVR were over 0.70, for both training and validation for AC
(Table 2), implying that the feature extraction and dimensionality reduction of SAE resulted in accurate
performance. Moreover, [52] and [53] mentioned that precise AC was necessary to achieve reliable
cyanobacteria estimation. Additionally, [43] suggested that the AC with high accuracy has an influence
on the accuracy of the bio-optical algorithm for PC and the reliability of the PC map. However, a few
outliers were observed, which resulted from an abnormal reflectance peak beyond 700 nm (Figures 4
and 5). The outlier peaks were caused by high phytoplankton scattering from high algae presence on
August 12 in 2016. SAE-ANN and -SVR models underestimated the peaks, because the models may be
difficult to learn the specific abnormal features of high phytoplankton scattering.

SAE-ANN has proven to be acceptable for estimating cyanobacteria, compared to previous studies
that applied the conventional bio-optical algorithms. The R2 values of the conventional bio-optical
algorithms for cyanobacteria estimations are as follows: 0.76 [54]; 0.71 [55]; 0.77 [14]; 0.55 [56];
and 0.65 [57]. When the PC concentration is greater than 10 mg m-3, most model performances showed
a good agreement with the observed PC, while inaccurate PC estimations can be observed for low PC
concentrations of less than 10 mg m-3. In particular, the A-D region in Figure 6a–d enclosed in broken
circles indicates the region with a discrepancy between the estimated pigments and the observed ones.
This could be caused by the relatively weak relationship between the corrected reflectance and low
PC concentration. In addition, by comparing the disagreement levels, SAE-SVR and SVR models
had higher uncertainties, compared to the SAE-ANN and ANN models (Figure 6c,d). The corrected
reflectance error at each band may result in the incorrect feature extraction of low PC concentrations in
the models (Figure 5), since the reflectance spectra is affected by the pigment concentration [52,58].
On the other hand, the SAE-SVR showed an underestimation of high PC concentrations greater than
40 mg m−3. This can be attributed to the occurrence of scum during an intense cyanobacterial bloom,
leading to the reduced accuracy of cyanobacterial estimation. Overall, the feature extraction with
dimensionality reduction of SAE was able to estimate both PC and Chl-a. The encoding layer showed
a well-defined temporal variation within the observed range of PC and Chl-a.

A high cyanobacteria concentration was mainly observed near the Baekje Weir region, due
to the high flow velocity caused by the hydraulic gate operation (i.e., hydraulic power plant),
which gathered the cyanobacteria from the upstream to the back of the Weir [33] (Figure 8a,e). After
the gate operation, the cyanobacteria temporarily disappeared in front of the Weir, by the flushing
and dilution effect [5]. The gate operation released a substantial amount of water, which generates
water turbulence, thereby increasing the turbidity. This occurrence resulted in the decrease of
light availability, which eventually hindered cyanobacterial growth [59]. The turbulent flow also
physically inhibited cyanobacterial growth by damaging the phytoplankton cells [60]. On the
other hand, a high concentration of cyanobacteria can be observed at the river side, which was
mainly caused by a longer residence time. The cyanobacteria favor low flow velocity for blooming,
since the temperature stratification zone and colonial formation are easily developed without flow
suppression. Moreover, [61] suggested that a critical flow velocity < 0.06 m s−1 would be proper
condition for cyanobacterial growth. Likewise, other previous studies found that flow velocity and
cyanobacteria concentration have a negative relationship [60]. The decrease in cyanobacteria was
driven by the unsuitable growth conditions, primarily due to the decreasing temperature and low light
intensity [62,63]. Furthermore, [64] also proved that the main control factors of cyanobacteria growth
were temperature and light availability, with 15-year MODIS imagery and the temperature dataset.
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4.2. Data-Driven Model Comparison

For AC, SAE-ANN and -SVR models were not comparable. In addition, SAE-ANN showed more
accurate AC than the conventional commercial software, even when the training dataset was limited.
In this regard, the data-driven model could be used as an alternative to the physical based-model for
accurate AC results, when the data of the atmosphere library of the commercial software could not
reflect real atmospheric conditions.

SAE-ANN showed higher pigment estimation accuracy than the SAE-SVR model. Similar results
were also found in a previous study. The ANN and SVR results without SAE were due to the limitation
of the conventional model in reflecting the temporal variability of the optically complexed inland
water [28]. Notably, [19] demonstrated that the stacked denoising autoencoder coupled with ANN
fine-tuning showed the highest accuracy, compared to conventional contrast models in predicting
water quality parameters of the biofilm system. In their study, the encoding layers were able to produce
a high-level feature representation of the input imagery, which made the coupling of the models more
efficient [65]. The SAE confronted the original input feature into smaller data and reconstructed the
reduced data to original data in the training process [45]. The internal parameters of the SAE were
updated to retrieve minimum error by comparing them to the output data. After training the SAE, the
similarity between original input and reconstructed input implied that the trained parameters ensure
the internal features in each layer that can represent the original input features. Accordingly, the input
data used for AC and estimation of cyanobacteria was present in the middle of the SAE network.
Thus, this confronted layer resulted in reduced data complexity and improved data abstraction, thereby
contributing higher regression accuracy than conventional machine learning regression without SAE.

Previous studies showed that ANN has a better regression performance than SVR [66,67].
The performance difference between ANN and SVR models depends on the data. The model
performance cannot be generalized, due to inconsistencies in the data behavior [68]. When coupled
with the SAE network, the high dimensionality of the input data is compressed to a relatively
low dimension with abstracted feature representation. The ANN model might reflect the PC and
Chl-a features at low concentrations, with multiple nodes and layers, better than the SVR model.
Moreover, [69] discussed the local underestimation of SVR, in which the kernel location was supposed
to be the center of the epsilon-tube, but the SVR only allowed a small number of estimated values to
fall below the observed values.

4.3. Deep Neural Network for Remote Sensing Application

In several previous studies, AC [21,31,70] and cyanobacterial estimations [33,71,72] have been
performed using conventional machine learning models. However, a deep neural network yields a
relatively high accuracy compared to the conventional models, owing to the utilization of high-level
feature learning from the data [73,74]. Although deep neural networks with large datasets require
high-end infrastructure facilities, such as a graphical processing unit (GPU), and a long model training
time, the testing time for the trained model can be quite less. This aspect was identified by determining
the training time for AC to be 1045.96 s and 2.78 s, respectively, and those for pigment estimation to be
508.54 s and 3.28 s, respectively. In addition, the SAE-ANN model improved the accuracy of surface
reflectance estimations by 23% and that of pigment estimations by 26%, compared to conventional
ANN models. This is because SAE provides higher level features for the robust representation of the
temporal surface reflectance and pigment variations. However, it is difficult to accurately identify the
function of neurons and their layers in the network architecture to be modeled [75].

As a deep neural network is suitable for complex image processing, it has been implemented
for comprehensive remote sensing application (i.e., AC and cyanobacteria estimation) in this study.
When SAE is coupled with ANN, a high estimation accuracy of water surface reflectance and
cyanobacteria concentrations is possible. During the training process, the encoding layers learned the
abstract features of the input data by reducing their dimension. For AC training, the SAE extracted the
optical features (i.e., digital numbers) and atmospheric features (i.e., total flux, diffuse transmittance,
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direct transmittance, spherical albedo, path radiance), by reconstructing the original input data.
The optical and atmospheric features were utilized to estimate water surface reflectance in the
consecutive ANN model. During this process, the digital numbers with atmospheric effect were
directly transformed into surface reflectance that rarely possessed the effects. For pigment estimation,
the estimated reflectance features were concentrated by the SAE, to estimate Chl-a and PC concentrations.
This process also provided an efficient representation of the spatial distribution of the pigments during
different periods. In short, the data-driven models provided implicit methods that only considered
the relationship between the remote sensing input and target, without any complex formulations and
parameterization of AC and bio-optical algorithms.

For study areas that have input data ranges similar to this study, the trained model can provide
robust performance, whereas, for study areas that have different data ranges, the model can be
used as a pre-trained one that requires additional model tuning without initiating end-to-end model
configurations. As many researches have utilized a pre-trained model for their studies [76–78],
the application of such a model is the primary benefit for a data-driven model to rapidly achieve
reasonable outcomes. In addition, future research using deep learning can be conducted, by referring
to the structures and internal parameters of this study for regression tasks using remote sensing data.
Thus, we conclusively demonstrated the potential of a deep learning network in providing reliable and
comprehensive remote sensing applications.

5. Conclusions

This study utilized the deep neural network in implementing AC and cyanobacteria estimation
using hyperspectral images. To accomplish this, field and airborne monitoring, water sample collection,
and optical measurement of the water were implemented. After which, phytoplankton pigments were
analyzed (i.e., PC and Chl-a). To perform AC and estimate cyanobacteria, we developed the SAE-ANN
and SAE-SVR models. The input data for AC consists of AC parameters driven by MODTRAN 6, digital
numbers from hyperspectral imagery, and the number of sampling events. The input parameters
were fed into the first SAE-ANN and -SVR models to produce the estimated surface reflectance,
which was consequently assigned as input for the second SAE-ANN and -SVR, to estimate PC and
Chl-a concentrations. The ANN, SVR, SAE-ANN, and SAE-SVR models were evaluated by R2, RMSE,
NSE, and MAE. The major findings of this study are the following:

1. SAE-ANN and -SVR models for AC showed good agreement with the observed reflectance
spectra (i.e., NSE > 0.7); the SAE-ANN model estimated the cyanobacteria concentrations with
the highest accuracy.

2. The encoding layers of the SAE-ANN and -SVR models were able to contribute to the generation of
cyanobacterial distribution maps, that represented actual cyanobacterial distribution, by reflecting
the varied spatial and spectral features of the input data.

3. The SAE-ANN and -SVR models showed an improved accuracy of 23% and 6% for surface
reflectance, and 26% and 9% for cyanobacteria estimation, respectively, due to the high-level
feature extraction of SAE, compared to the single model performances of ANN and SVR.

This study demonstrated an integrative implementation of AC and cyanobacteria estimation with
high accuracy, by developing deep neural networks. Thus, we hope that this study will provide the
preceding information to a comprehensive remote sensing application for cyanobacteria management
to future researches.
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