Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Input Data
2.1.1. Landsat Data
2.1.2. Atmospheric Data
2.1.3. Surface Emissivity
- (1)
- ASTER FVC is derived from NDVI using Equation (1);
- (2)
- The bare ground emissivity () for each ASTER band is derived from the original ASTER emissivity () and the corresponding ASTER FVC, using Equation (2) with the prescribed value of ;
- (3)
- The bare ground emissivity for each Landsat TIR band () is derived from the ASTER bare ground emissivity using the spectral adjustments provided in Table II of [25];
- (4)
- FVC values for the Landsat image are computed from the respective NDVI values using Equation (1);
- (5)
- The vegetation cover method (2) is used to obtain the actual surface emissivity for each Landsat TIR band.
2.2. LST Retrieval
2.2.1. SMW Algorithm
2.2.2. Algorithm Calibration
- (1)
- We define classes of LST ranging from 200 K to 330 K in steps of 5 K, and classes of TCWV from 0 to 6 cm in steps of 0.3 cm. TCWV values above 6 cm are assigned to the last class.
- (2)
- The Borbas database is iterated to randomly attribute a single clear-sky profile to each TCWV/LST class. At each new iteration, profile selection is limited to those with a great-circle distance to already selected profiles greater than 15 degrees. This guarantees a more extensive geographical coverage of the calibration database.
- (3)
- For each of the selected profiles, surface conditions are varied to ensure a wide range of conditions are included in the database: following [57], LST is set with respect to air temperature (Tair), namely to the difference between LST and air temperature (LST-Tair) ranging from -15 K to +15 K in steps of 5 K. Surface emissivity values are varied between 0.9 and 0.99 in steps of 0.01.
2.2.3. Processing Chain
2.3. In situ Data
2.3.1. In situ LST Derivation
2.3.2. Statistical Metrics
3. Results
3.1. Algorithm Calibration
3.2. LST Retrieval
3.3. Validation with in situ LST
4. Discussion
4.1. SURFRAD Stations
4.2. BSRN Stations
4.3. KIT Stations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mokhtari, A.; Noory, H.; Pourshakouri, F.; Haghighatmehr, P.; Afrasiabian, Y.; Razavi, M.; Fereydooni, F.; Sadeghi Naeni, A. Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2019, 154, 231–245. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.; Llovería, R.; García-Martín, A. Analysis of the Relationship between Land Surface Temperature and Wildfire Severity in a Series of Landsat Images. Remote Sens. 2014, 6, 6136–6162. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Ziemer, M.; Martin, D.; Ratick, S.; Cuba, N.; DeLauer, V. The impact of tree cover loss on land surface temperature: A case study of central Massachusetts using Landsat Thematic Mapper thermal data. Appl. Geogr. 2013, 45, 49–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Ramadan, E. Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. Int. J. Remote Sens. 2013, 34, 168–189. [Google Scholar] [CrossRef]
- Bindhu, V.M.; Narasimhan, B.; Sudheer, K.P. Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration. Remote Sens. Environ. 2013, 135, 118–129. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617. [Google Scholar] [CrossRef]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manage. 2007, 85, 245–257. [Google Scholar] [CrossRef] [PubMed]
- XIAO, R.; OUYANG, Z.; ZHENG, H.; LI, W.; SCHIENKE, E.W.; WANG, X. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [Google Scholar] [CrossRef]
- Xian, G.; Crane, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sens. Environ. 2006, 104, 147–156. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; de la Riva, J. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. J. Geophys. Res. 2009, 114, D08103. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G. Generation of Landsat surface temperature product for China, 2000–2010. Int. J. Remote Sens. 2013, 34, 7369–7375. [Google Scholar] [CrossRef]
- Li, F.; Jackson, T.J.; Kustas, W.P.; Schmugge, T.J.; French, A.N.; Cosh, M.H.; Bindlish, R. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sens. Environ. 2004, 92, 521–534. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J. An Improved Single-Channel Method to Retrieve Land Surface Temperature from the Landsat-8 Thermal Band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, J.; Zhang, L.; Hu, D.; Zhan, W. Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. Int. J. Remote Sens. 2012, 33, 2582–2602. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online Global Land Surface Temperature Estimation from Landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-B.; Li, Z.-L.; Wang, C.; Zhang, S.; Tang, B.-H.; Leng, P.; Gao, M.-F. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. Int. J. Remote Sens. 2019, 40, 1763–1778. [Google Scholar] [CrossRef]
- Li, S.; Jiang, G.-M. Land Surface Temperature Retrieval From Landsat-8 Data With the Generalized Split-Window Algorithm. IEEE Access 2018, 6, 18149–18162. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zheng, S.; Cao, C.; Wang, M.; Xu, M.; Lu, S. Land surface temperature retrieval using HJ-1B/IRS data and analysis of its effect. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2285–2288. [Google Scholar]
- Sun, L.; Yu, H.; Gao, T.; Tian, X.; Li, X.; Sun, L. Land surface temperature retrieval from HJ-1B IRS supported by MODIS. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 320–324. [Google Scholar]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Duguay-Tetzlaff, A.; Bento, V.A.; Göttsche, F.M.; Stöckli, R.; Martins, J.P.A.; Trigo, I.; Olesen, F.; Bojanowski, J.S.; da Camara, C.; Kunz, H. Meteosat land surface temperature climate data record: Achievable accuracy and potential uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 m spatial scale. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef]
- Augustine, J.A.; Hodges, G.B.; Cornwall, C.R.; Michalsky, J.J.; Medina, C.I.; Augustine, J.A.; Hodges, G.B.; Cornwall, C.R.; Michalsky, J.J.; Medina, C.I. An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States. J. Atmos. Ocean. Technol. 2005, 22, 1460–1472. [Google Scholar] [CrossRef]
- Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al. Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- USGS. Landsat Collection 1 Level 1 Product Definition, LSDS-1656 version 2.0; USGS: Sioux Falls, South Dakota, 2019. [Google Scholar]
- USGS. Landsat 7 (L7) Data Users Handbook, LSDS-1927 version 2.0; USGS: Sioux Falls, South Dakota, 2019. [Google Scholar]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Validation of the North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens. Environ. 2009, 113, 2224–2233. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Ren, H.; Liu, R.; Qin, Q.; Fan, W.; Yu, L.; Du, C. Mapping finer-resolution land surface emissivity using Landsat images in China. J. Geophys. Res. Atmos. 2017, 122, 6764–6781. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.-L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.; Sobrino, J.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef]
- Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods. Remote Sens. Environ. 1997, 59, 490–521. [Google Scholar] [CrossRef]
- Caselles, V.; Valor, E.; Coll, C.; Rubio, E. Thermal band selection for the PRISM instrument: 1. Analysis of emissivity-temperature separation algorithms. J. Geophys. Res. Atmos. 1997, 102, 11145–11164. [Google Scholar] [CrossRef]
- Peres, L.F.; DaCamara, C.C. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1834–1844. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R.T.; Basara, J.B.; Sun, D.; Pinker, R.T.; Basara, J.B. Land Surface Temperature Estimation from the Next Generation of Geostationary Operational Environmental Satellites: GOES M–Q. J. Appl. Meteorol. 2004, 43, 363–372. [Google Scholar] [CrossRef]
- Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; Silva, R.; Perdigão, R.; Freitas, S.C.; Trigo, I.F.; Macedo, J.; Barroso, C.; et al. Land surface temperature from multiple geostationary satellites. Int. J. Remote Sens. 2013, 1161, 3051–3068. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J. a Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.; Trigo, I.; Bento, V.; da Camara, C. A Physically Constrained Calibration Database for Land Surface Temperature Using Infrared Retrieval Algorithms. Remote Sens. 2016, 8, 808. [Google Scholar] [CrossRef] [Green Version]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y.; et al. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Yu, P.; Göttsche, F.; Trigo, I. Quality Assessment of S-NPP VIIRS Land Surface Temperature Product. Remote Sens. 2015, 7, 12215–12241. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Ghent, D.; Pires, A.; Göttsche, F.-M.; Cermak, J.; Remedios, J. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.C.; Bork-unkelbach, A.; Göttsche, F.M.; Hulley, G.; Gastellu-Etchegorry, J.-P.; Olesen, F.S.; Privette, J.L. Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies — A Multisensor Analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1–5. [Google Scholar] [CrossRef]
- Ermida, S.L.; Trigo, I.F.; Dacamara, C.C.; Göttsche, F.M.; Olesen, F.S.; Hulley, G. Validation of remotely sensed surface temperature over an oak woodland landscape — The problem of viewing and illumination geometries. Remote Sens. Environ. 2014, 148, 16–27. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Hulley, G.C. Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote Sens. Environ. 2012, 124, 149–158. [Google Scholar] [CrossRef]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol. In Best Practice for Satellite-Derived Land Product Validation; Version 1.1; Guillevic, P., Göttsche, F., Nickeson, J., Román, M., Eds.; Land Product Validation Subgrou, 2018; p. 58. Available online: https://lpvs.gsfc.nasa.gov/PDF/CEOS_LST_PROTOCOL_Feb2018_v1.1.0_light.pdf (accessed on 1 April 2020).
- Speetzen, H.; Bartsch, R. Introducing new Crops and Crop Rotations in the Lower Monde Valley Irrigation Project, Portugal. Der Tropenlandwirt-Journal Agric. Trop. Subtrop. 1988, 89, 33–43. [Google Scholar]
- Davies, L.; Gather, U. The Identification of Multiple Outliers. J. Am. Stat. Assoc. 1993, 88, 782–792. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, Y.; Yu, P.; Wang, H. Ground validation and uncertainty esitmation of VIIRS land surface temperature product. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6922–6925. [Google Scholar]
- Martins, J.P.; Trigo, I.F.; Freitas, S.C. Copernicus Global Land Operations—Scientific Quality Evaluation of Land Surface Temperature, version 1.2, issue 1.00 (CGLOPS1_SQE2018_LST); Copernicus European Union: KS, USA, 2019. [Google Scholar]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Estimates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
Satellite | Used Bands | Wavelength (µm) | Dataset | Spatial Resolution | E.C.T. | Date Range |
---|---|---|---|---|---|---|
Landsat 4 (TM) | Red: B3 NIR: B4 TIR: B6 | 0.63–0.69 0.76–0.90 10.4–12.5 | C01/T1_SR C01/T1_SR C01/T1_TOA | 30 m 30 m 1202 m | 9:45 am (16-day) | 22 August 1982 to 14 December 1993 |
Landsat 5 (TM) | Red: B3 NIR: B4 TIR: B6 | 0.63–0.69 0.76–0.90 10.4–12.5 | C01/T1_SR C01/T1_SR C01/T1_TOA | 30 m 30 m 1202 m | 9:45 am (16-day) | 1 January 1984 to 5 May 2012 |
Landsat 7 (ETM+) | Red: B3 NIR: B4 TIR: B61 | 0.63–0.69 0.77–0.90 10.4–12.5 | C01/T1_SR C01/T1_SR C01/T1_TOA | 30 m 30 m 602 m | 10:00 am (16-day) | 1 January1999 to present |
Landsat 8 (OLI; TIRS) | Red: B4 NIR: B5 TIR: B10 | 0.64–0.67 0.85–0.88 10.6–11.19 | C01/T1_SR C01/T1_SR C01/T1_TOA | 30 m 30 m 1002 m | 10:00 am (16-day) | 11 April 2013 to present |
Site Location | ID | Coordinates | Elevation | Land Cover | Start Date |
---|---|---|---|---|---|
SURFRAD | |||||
Bondville, IL | BND | 40.051°N 88.373°W | 213 m | Grassland | 1 April 1994 |
Desert rock, NV | DRA | 36.623 °N 116.020 °W | 1004 m | Shrubland | 1 March 1998 |
Fort Peck, MT | FPK | 48.308 °N 105.102 °W | 636 m | Grassland | 1 November 1994 |
Goodwin Creek, MS | GWN | 34.255 °N 89.873 °W | 96 m | Grassland | 1 December 1994 |
Penn State Un., PA | PSU | 40.720 °N 77.931 °W | 373 m | Cropland | 1 June 1998 |
Sioux Falls, SD | SXF | 43.734 °N 96.623 °W | 483 m | Grassland | 1 June 2003 |
Table Mountain, CO | TBL | 40.126 °N 105.238 °W | 1692 m | Grassland | 1 July 1995 |
BSRN | |||||
Cabauw, Netherlands | CAB | 51.9711°N 4.9267°E | 0 m | Grassland | 1 December 2005 |
Gobabeb, Namibia | GOB | 23.519504°S 15.083229°E | 407 m | Desert | 15 December 2012 |
KIT | |||||
Evora, Portugal | EVO | 38.540 °N 8.003 °W | 230 m | Savanna | 1 January 2009 |
Gobabeb, Namibia | GBB | 23.551 °S 15.051°E | 406 m | Desert | 1 January 2009 |
Kalahari, Namibia | KAL | 22.933 °S 17.992 °E | 1380 m | Shrubland | 1 January 2011 |
Station | µ (K) | σ (K) | RMSE (K) | N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L5 | L7 | L8 | L5 | L7 | L8 | L5 | L7 | L8 | L5 | L7 | L8 | |
BND | 1.2 | 0.9 | 1.3 | 1.4 | 1.3 | 1.1 | 2.5 | 2.4 | 2.4 | 98 | 177 | 115 |
1.1 | 0.9 | 1.1 | 1.5 | 1.4 | 1.3 | 3.2 | 3.7 | 4.3 | 102 | 190 | 133 | |
DRA | 0.1 | −0.6 | −0.4 | 1.0 | 0.8 | 1.0 | 1.7 | 1.6 | 2.0 | 109 | 189 | 201 |
0.1 | −0.7 | −0.6 | 1.0 | 1.0 | 1.2 | 6.6 | 4.1 | 2.9 | 115 | 209 | 215 | |
FPK | 1.9 | 3.0 | 2.4 | 1.1 | 1.8 | 1.7 | 2.6 | 3.9 | 3.4 | 110 | 242 | 172 |
1.8 | 3.0 | 2.4 | 1.4 | 1.9 | 1.8 | 8.8 | 5.4 | 3.6 | 123 | 250 | 174 | |
GWN | 0.3 | 0.5 | 0.0 | 1.2 | 0.9 | 1.1 | 2.0 | 1.9 | 1.8 | 146 | 211 | 115 |
0.3 | 0.5 | −0.1 | 1.2 | 1.1 | 1.2 | 3.4 | 3.8 | 2.9 | 155 | 227 | 124 | |
PSU | 0.2 | 0.2 | 1.0 | 1.1 | 1.7 | 2.0 | 0 | 23 | 22 | |||
0.2 | 0.2 | 1.1 | 1.1 | 1.9 | 2.0 | 0 | 24 | 22 | ||||
SXF | 0.6 | 0.9 | 1.0 | 1.1 | 1.3 | 1.0 | 1.7 | 2.3 | 2.1 | 50 | 100 | 115 |
0.5 | 0.8 | 1.4 | 1.2 | 1.4 | 1.2 | 3.2 | 3.5 | 2.6 | 54 | 107 | 123 | |
TBL | 2.7 | 2.6 | 2.0 | 1.5 | 1.9 | 2.1 | 3.6 | 3.7 | 3.7 | 119 | 208 | 140 |
2.5 | 2.4 | 1.7 | 1.7 | 1.9 | 2.1 | 4.5 | 4.8 | 5.4 | 123 | 219 | 145 | |
CAB | −1.2 | −0.6 | 0.9 | 0.9 | 2.3 | 1.8 | 0 | 46 | 79 | |||
−1.4 | −0.6 | 1.4 | 1.1 | 5.0 | 3.0 | 0 | 56 | 86 | ||||
GOB | 2.9 | 2.3 | 1.6 | 1.3 | 3.7 | 2.9 | 0 | 97 | 131 | |||
3.2 | 2.4 | 1.6 | 1.6 | 4.2 | 3.8 | 0 | 103 | 140 | ||||
EVO | 0.3 | −1.2 | −0.3 | 1.4 | 1.3 | 1.1 | 2.3 | 2.2 | 2.1 | 29 | 113 | 94 |
−0.1 | −1.2 | −0.4 | 1.3 | 1.3 | 1.2 | 3.7 | 3.0 | 3.2 | 31 | 119 | 104 | |
GBB | 0.2 | 0.6 | 1.3 | 1.5 | 1.4 | 1.0 | 1.9 | 2.2 | 1.9 | 11 | 106 | 102 |
0.2 | 0.6 | 1.4 | 1.5 | 1.5 | 1.0 | 1.9 | 2.4 | 2.5 | 11 | 108 | 109 | |
KAL | 0.1 | 0.3 | 1.1 | 0.8 | 1.6 | 1.4 | 0 | 70 | 86 | |||
0.1 | 0.2 | 1.2 | 0.9 | 2.7 | 3.7 | 1 | 74 | 92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. https://doi.org/10.3390/rs12091471
Ermida SL, Soares P, Mantas V, Göttsche F-M, Trigo IF. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing. 2020; 12(9):1471. https://doi.org/10.3390/rs12091471
Chicago/Turabian StyleErmida, Sofia L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche, and Isabel F. Trigo. 2020. "Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series" Remote Sensing 12, no. 9: 1471. https://doi.org/10.3390/rs12091471
APA StyleErmida, S. L., Soares, P., Mantas, V., Göttsche, F. -M., & Trigo, I. F. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471